

泥炭地盤上盛土の耐震性に関する遠心模型実験

林 宏親1・西本 聡2・橋本 聖3

1土木研究所寒地土木研究所	寒地地盤チーム(〒062-8602 札幌市豊平区平岸1条3丁目)			
E-mail:hayashi@ceri.go.jp				
2土木研究所寒地土木研究所	寒地地盤チーム(〒062-8602 札幌市豊平区平岸1条3丁目)			
E-mail:nishimoto@ceri.go.jp				
3土木研究所寒地土木研究所	寒地地盤チーム(〒062-8602 札幌市豊平区平岸1条3丁目)			
E-mail:94138@ceri.go.jp				

北海道において発生したいくつかの大規模地震によって,泥炭地盤上の道路盛土ならびに河川堤防に大 きな被害が発生している.しかし,そのメカニズム,耐震性の評価手法ならびに合理的な補強法などは明 確にされていない.そこで,泥炭地盤上の盛土に関する動的遠心模型実験を実施し,その耐震性および既 設盛土を意識した補強法について検討した.その結果,泥炭地盤上の盛土で特徴的に見られた被災変状モ ードを再現することができ,沈下によって泥炭層にめり込んだ盛土底部における過剰間隙水圧の発生とそ れによる盛土の泥濘化が変状の主な要因であることが明らかとなった.さらに,ふとん籠による補強が有 効なことがわかった.

Key Words : peat, embankment, centrifuge model test, excess pore water pressure, stone filled net

1. はじめに

北海道から東北にかけて広く分布する泥炭地盤は,高 有機質で特異な工学的性質を有する極めて軟弱な地盤で ある.北海道において発生したいくつかの大規模地震に よって,泥炭地盤上の道路盛土ならびに河川堤防に大き な被害が発生している.しかし,そのメカニズムならび に耐震性の評価手法などが明確になっていないのが現状 である.さらに泥炭地盤上には,既に相当数の道路盛土 や河川堤防が築造されており,既設盛土に対する合理的 な耐震補強法の確立も求められている.

そこで,泥炭地盤上の盛土に関する動的遠心模型実験 を実施し,その耐震性および既設盛土を意識した補強法 について検討した.本文では,泥炭地盤上の盛土被害の 特徴について整理するとともに,動的遠心模型実験結果 について述べる.

2. 泥炭地盤上の盛土の地震被害事例

1993年釧路沖地震によって、十勝川統内地区築堤に著 しい変状が生じた(図-1,図-2)¹⁾. 天端および堤外側 のり面上部が約2~3.5m沈下し、築堤法線方向の大きな

図-1 1993 年釧路沖地震における十勝川統内地区築堤
 (KP32.7)の被災断面^{文献 いを据に一部修正}

図-2 1993 年釧路沖地震における十勝川統内地区築堤の被 災状況

表-1 実験ケース

ケース	想定した条件	沈下盛土の厚さ	盛土高	加振条件
1	良好な基礎地盤上の盛土	_	10cm(実物換算:5m)	ステップ加振(100gal相当→200gal相当→600gal相当)
2	沈下した盛土底部が液状化層として存在	2cm(実物換算:1m)		単発加振(600gal相当)
3	沈下した盛土底部が液状化層として存在	4cm(実物換算:2m)		単発加振(600gal相当)
4	ふとん籠による対策(のり尻にふとん籠2段)	4cm(実物換算:2m)		単発加振(600gal相当)
5	ふとん籠による対策(のり尻にふとん籠4段)	4cm(実物換算:2m)		単発加振(600gal相当)

開口亀裂がみられた.これ程の大きな変状は,泥炭層に おける地震動の増幅だけでは説明できないと考えられる. ここでの特徴は,基礎地盤表層が泥炭であるにもかか わらず,天端付近に液状化の痕跡を示す噴砂が確認され たことである.当研究所の調査¹⁰および佐々木²⁰は,堤体 底部の飽和領域が液状化したと推測している.すなわち, 泥炭は極めて大きな圧縮性があり,沈下量も大きい.加 えて,地下水位が地表面付近にあることが多い.結果と して,堤体底部は泥炭層の中にめり込み,地下水位以下 に飽和した状態で存在しており,この部分が液状化した としている.なお,被災後の地盤調査によって,地下水 位以下に堤体材料が存在したことが確認されている.液 状化によるものだとすれば,このように大きな変状が説 明できる.また,同様な被災は,1994年北海道東方沖地 震の時に道路盛土においても報告されている³.

泥炭地盤上の盛土が被害を受けやすいことは、古くから指摘があったこと^{例えば4)}ではあるが、盛土底部の液状化が認識されたのは、1993年釧路沖地震以降であろう.

3. 遠心模型実験の目的と方法

前述した変状メカニズムを再現することと,その詳細 な挙動を調べる目的で,当研究所が所有している遠心力 載荷装置を使って動的遠心模型実験を実施した.

実験ケースの一覧を表-1に示す.各ケースの盛土材料 および形状は同一とし、基礎地盤が良好なケース(ケー ス1)と泥炭地盤上の盛土で盛土底部が液状化層として 地表面以下に飽和して存在する条件を模したケース(ケ ース2とケース3)の比較を行った.さらに、ふとん籠を のり尻に設置して、耐震補強を施した実験も行った.な お、模型寸法は実物の1/50縮尺とし、50G(G:重力加速 度)の遠心加速度場において加振実験を行った。

(1) 実験条件と模型の作成方法

ケース1とケース3の模型地盤と計測センサー配置を 図-3 に示す.ケース1では、良好な基礎地盤となるよう、乾燥豊浦砂を相対密度 Dr =90%程度になるよう空中 落下法にて作成した.

一方,盛土底部が液状化層となっているケースでは,

(a) 基礎地盤が良好なケース (ケース1)

(b) 盛土底部の液状化層があるケース (ケース3)
図-3 模型地盤と計測センサー

図-4 ケース2およびケース3の実験フロー

図-4 に示す流れで模型を作成した. 泥炭層の下位には, 基盤層として豊浦砂を空中落下法によって Dr =90%程度 に作成した後,脱気水を模型容器底部のポーラスストー ンを介して静かに供給し飽和するように努めた. 泥炭層 には,市販の園芸用ピートモスを 60°C で炉乾燥した後, 粉砕し 0.85mm ふるいを通過させたものとカオリン粘土 を乾燥重量比で 1:1にて混合した材料を用いた. この 材料に含水比 600%まで加水した後,真空ミキサー内で 脱気しながら撹拌した. その状態で5日以上放置し,材 料の物性が安定するのを待って,模型容器に投入した. その後,図-4 の通り自重圧密ならびに盛土荷重に相当 するプレロード荷重による予備圧密を行った.

泥炭層の物性を表-2 に示す.含水比は実験終了後に サンプリングした供試体の平均値である.比較的高い含 水比,低い土粒子の密度ならびに大きな圧縮指数は,実 際の泥炭と同じ傾向である.

上記の作業により平坦な泥炭層を作成した後, 沈下した盛土底部を模した土層(以下, 沈下盛土層という)を 作成するため, 試料を乱さないよう慎重に所定の断面ど おり掘削し, 豊浦砂を空中落下法にて Dr =50%になるよ う投入した. さらに, 間隙流体の速度に関する動的な相 似則を満足させるために, 水の 50 倍の粘性を持つシリ コンオイルで飽和した. 今回実験した沈下盛土層の厚さ は 2cm と 4cm であり, 盛土高さは 10cm である. 実物に 換算すると盛土高 5m の下に 1m あるいは 2m の液状化 を起こしやすい沈下盛土層が存在することになる.

盛土に用いた材料は、豊浦砂とカオリン粘土を乾燥重 量比で8:2に混合し、水で最適含水比に調整した土で ある.盛土材の物性を表-3に示す.

(2) 対策工の設定

新設盛土であれば、地盤改良などの実施は容易である. また、盛土の締固めを充分に行うだけでも耐震性の向上 をある程度図ることができる⁹.しかし、既設盛土の補 強を念頭に置くと、大規模な地盤改良などによる対策は 現実的ではない.また、道路盛土や河川堤防は延長が長 いことから、経済性は重要な要素である.

著者ら⁵は,沢部などの集水地形において盛土内に浸 透水が存在する場合の耐震補強として,ふとん籠をのり 尻に設置する方法が有効なことを明らかにしている.ふ とん籠には排水効果や盛土の拘束効果が期待できる.ま た,土木工事において一般的に用いられるものであり, 施工が容易で工費も安価である.以上のことから,既設 盛土の耐震補強として有効と判断した.

実験に用いたふとん籠は、化学繊維製ネットと豆砂利 を用いて作製した. 寸法は厚さ 5mm, 幅 20mm, 長さ 100mm(実物換算:厚さ 25cm, 幅 100cm, 長さ 500cm),

表-2 実験に用いた泥炭の物性

項目	値	
材料	ピートモス:カオリン=1:1	
自然含水比(%)	290~340	
土粒子の密度(g/cm ³)	2.03	
圧縮指数	2. 7	
粘着力(kN/m ²)	2	
内部摩擦角(°)	34. 2	

※強度定数は、CU条件の三軸圧縮試験結果

表-3 実験に用いた盛土の物性

項目	値	
材料	豊浦砂:カオリン=8:2	
締固め度(%)	85	
土粒子の密度(g/cm ³)	2. 68	
最大乾燥密度(g/cm ³)	1.87	
最適含水比(%)	10. 8	
粘着力(kN/m ²)	14	
内部摩擦角(°)	27.5	

※強度定数は、CD条件の三軸圧縮試験結果

(a) 2段(ケース4)
 (b) 4段(ケース5)
 図-5 ふとん籠の設置パターン

密度は 1.58g/cm³である. 実際のふとん籠より寸法が長 いが,これは模型作製を容易にするためである. ふとん 籠の設置パターンを図-5 に,ふとん籠を 4 段設置した ケース (ケース 5)の模型断面を図-6 に示す. ケース 5 では,沈下盛土層に発生した過剰間隙水圧の消散を促す 目的でふとん籠を盛土のり尻付近の地盤表層部にも埋設 した.

(3) 計測装置

基礎地盤および盛土内部の応答加速度は、超小型の圧 電型加速度計によって計測した.間隙水圧計も超小型の ものを使用した.盛土の変形を測定するために、レーザ 一変位計を設置した(図-3).

(4) 加振条件

設定した加速度波形は、全て周波数 100Hz(実物換算 2Hz)の正弦波である.加振時間は 0.2 秒(同 10 秒)と した.ただし、後に示す図-9 からわかるように、加振 装置の性能上、実際に入力された加速度波形はきれいな 正弦波ではない.

ケース2からケース5においては、約300m/s²(実物換 算:600gal相当)の入力加速度を1回与えた.液状化層が ある場合,加振によって液状化層の形状や剛性が加振前 と比べ大きく変化することを考慮したものである.ケー ス1においては、同一模型に対して入力加速度を約50m/s² (実物換算:100gal相当),約100m/s²(実物換算:200gal 相当),約300m/s²(実物換算:600gal相当)と順次大き くしていくステップ加振を行った.このケースでは液状 化層がないため、1回目および2回目の加振後に盛土なら びに基礎地盤に大きな変形がなかった.したがって、ケ ース2からケース5の結果とケース1の3回目の加振と比較 を行った.

4. 盛土の耐震性と変状メカニズム

ここでは、ケース1からケース3までの比較を行い、泥 炭地盤上の盛土の耐震性と変状メカニズムについて述べ る.

(1) 盛土および地盤の変形

ケース1ならびにケース3の加振後における変形断面 および上面からの変形状況を図-7と図-8に示す.基礎 地盤が良好なケース1では、加振によって盛土中央で 7mm 程度(実物換算:35cm)の沈下が生じた.しかし、 図-7(a)からわかるように、盛土全体的には加振前の盛 土形状がほぼ保たれていた.クラックは、主に盛土天端

(a) 側面からの状況

(b) 上面からの状況 図-7 ケース1の実験後観察

(a) 側面からの状況

(b) 上面からの状況 図-8 ケース3の実験後観察

に発生しており,幅 1mm 程度,深さ 10mm 程度であった(図-7(b)).

一方, 沈下盛土層 4cm のケース 3 では, 16mm 程度 (実物換算:80cm)の沈下が発生した.加振によって 盛土の形状が大きく変わっていることがわかる.盛土の り尻付近の土が盛土外側に大きく流動し,全体的に盛土 が潰れたような形状となっている.この変状モードは, 1993 年釧路沖地震の時の十勝川統内地区築堤(図-1)や 1994 年北海道東方沖地震時の泥炭地盤上道路盛土の被 災と似ている.模型実験後,盛土ののり尻付近が泥濘化 していることが観察されている.沈下盛土層の飽和流体 の水圧が加振によって上昇し,土被りの小さい盛土のの り尻付近に浸潤し,のり面に流れ出たと推測される.基 礎地盤に目を転じると,沈下盛土層が側方にはほとんど 流動せずに鉛直に圧縮していることがわかる.緩い砂

(Dr =50%)が、加振によって密になった結果と考えられる.また、盛土外側付近の泥炭層は側方にやや流動している.しかし、せん断面は観察されていない.クラックは、ケース1と比べ大規模に発生した(図-8(b)).幅が 5mm 以上のクラックが天端だけではなく、のり面にも数多く発生した.

河川堤防の場合、かさ上げが数度にわたって行われて いることがままあり、その施工履歴は複雑なことが多い. 古くに築造された堤体底部部分の締固めは充分になされ ておらず,密度が比較的低いと考えられる.道路盛土の 場合も、古くに建設された道路では、同様な状況となっ ている可能性がある. つまり, 築造された年代の古い河 川堤防や道路盛土の場合、盛土上部に比べ底部が液状化 しやすい状況になっている可能性が高い. 今回の実験は, 盛土材と比べ液状化しやすい材料で沈下盛土層を作成し ているが、上記の現況をある程度模していると考えられ る. したがって、地震による泥炭地盤上の盛土被害は、 泥炭層にめり込んだ盛土底部の圧縮、泥炭層の側方流動 ならびに沈下盛土層の間隙水の浸潤による盛土のり尻付 近の泥濘化が複合的に作用した結果と推測される. 盛土 ののり尻付近が盛土外側へ流動し、全体的に押し潰れた ような盛土形状となったこと、ならびに大きなクラック の発生を考えると、沈下盛土層での過剰間隙水圧の発生 に伴う盛土材の泥濘化の影響が強いと思われる.

(2)加速度,間隙水圧および沈下

図-9 にケース 3 における入力加速度,盛土中央天端 における応答加速度,沈下盛土層の盛土中央下における 過剰間隙水圧ならびに盛土のり肩における沈下量の経時 変化を示す.入力加速度(A1)は,平均的に 270m/s² (実物換算:540gal)であった.盛土中央下の沈下盛土 層(P3)の過剰間隙水圧は,加振時間の継続に伴って

0 ▲ 基礎地盤良好 沈下盛±2cm 沈下盛±4cm 図-10 ケース1からケース3の盛土沈下量の比較 徐々に蓄積されており、振動成分を除くと最大 30 kN/m² 程度に達している.この位置での有効土被り圧は、約 70kN/m²であることから、過剰間隙水圧比で 0.42 程度に なる.図には示していないが、他の計測位置 (P1, P2) においても同程度の過剰間隙水圧比が計測された.した がって、完全液状化ではなかったが、相当に強度および 剛性が低下したものと考えられる.この水圧上昇によっ て、盛土のり尻付近に間隙流体(実験ではシリコンオイ ル、実際は水)が流出し、盛土材の泥濘化に至ったと推 測される.

盛土中央天端の応答加速度が入力加速度と比べ減衰し ている.通常,泥炭層内ならびに盛土内において加速度 が増幅されるのが一般的であるが,沈下盛土層および盛 土のり尻付近の泥濘化による剛性低下があったと考える と説明がつく.

盛土のり肩の沈下は、加振時間の継続および過剰間隙 水圧の蓄積に伴って徐々に進行し、最終的に盛土高 100mmの0.16倍に相当する約16mmに達した.

図-10 にケース 1 からケース 3 の沈下量を示す. 基礎 地盤が良好なケース (ケース 1) において発生した沈下

(7mm 程度)の要因は、観察などから加振による盛土 の圧縮によるものと考えられる.一方、沈下盛土層のあ るケース (ケース2とケース3)では、ケース1の2倍 程度の沈下が生じた.いずれも、盛土中央とのり肩で沈 下量に大きな差はなく、このことからも泥炭地盤で特徴 的に見られた盛土全体が潰れるような変状モードであっ たことがわかる.

5. 対策工の効果

図-11 および図-12 にケース 4 とケース 5 の加振後の 変形状況を示す.ふとん籠 2 段のケース (ケース 4) に おいては,無対策のケース (ケース 3:図-8) より少な い状況ではあったが,のり尻部の泥濘化が生じており, 盛土の側方流動も若干発生した.盛土天端のクラックの 幅は約 8mm であった.一方,ふとん籠 4 段のケース (ケース 5) では,無対策のケース (図-8) と比較して, 盛土の変形およびクラックが抑制されており,盛土のり 尻付近の側方流動が小さい.盛土天端に発生したクラッ クの幅は, 2mm 程度であった.実験後の観察において も,のり尻部の泥濘化が確認されなかった.

図-13 にケース 3 からケース 5 における沈下盛土層の 過剰間隙水圧比を示す.対策の仕様があがるにつれ,過 剰間隙水圧の消散が促進されている.特にケース 5 では, 過剰間隙水圧比が 0.05~0.17 であり,ふとん籠を表層地 盤内にも設置したことによって,排水効果が充分に発揮

(a) 側面からの状況

(b) 上面からの状況 図-11 ケース4の実験後観察

(a) 側面からの状況

(b) 上面からの状況 図-12 ケース5の実験後観察

されている.実際の施工においては、置換え工法のよう にのり尻付近の表層地盤内に砕石を充填する方法が適当 と思われる.

各ケースにおける沈下量を図-14 に示す.ケース5の 沈下量が,基礎地盤が良好なケースと無対策のケースの 中間値程度にまで抑えられている.これは,表層地盤内 に埋設したふとん籠の排水効果によって盛土の泥濘化を 防いだことに加え,盛土の側方流動を抑制するに充分な 拘束効果があったことの両方によると考えられる.

図-15 にすべてのケースにおける過剰間隙水圧比と盛 土沈下率(盛土高で正規化したのり肩沈下量)の関係を 示す.過剰間隙水圧比と盛土の沈下量は,ほぼ線形関係 にある.つまり,過剰間隙水圧の発生が,盛土の変状に 大きく影響を与えたことがわかる.また,無対策,ふと ん籠による対策後にかかわらず,過剰間隙水圧の発生量 から盛土の変形量を推定できる可能性がある.

6. 結論

動的遠心模型実験を実施し,泥炭地盤上の盛土の耐震 性およびその補強に関して検討を行った.その結果,以 下のことが明らかになった.

- 泥炭地盤上の盛土底部が沈下によって泥炭層にめり 込み液状化層(沈下盛土層)として存在する条件を 模して実験を行ったところ,泥炭地盤上の盛土で特 徴的に見られた変状モードを再現することができた.
- ② 泥炭地盤上の盛土被害は、沈下盛土層の圧縮、泥炭層の側方流動ならびに沈下盛土層での過剰間隙水圧の発生による盛土のり尻付近の泥濘化が複合的に作用した結果と推測される.しかし、盛土のり尻付近が外側へ流動し、全体的に押し潰れたような変状モードであったことなどを考えると、盛土材の泥濘化の影響が強いと思われる.
- ③ ふとん籠をのり尻付近の表層地盤とのり尻に4段設 置したケースでは,盛土の変形を抑制できた.
- ④ これは、表層地盤内に埋設したふとん籠の排水効果によって過剰間隙水圧の発生を抑制したことに加え、ふとん籠が盛土を拘束し、盛土の側方流動を防いだことの両方によると考えられる。
- ⑤ 過剰間隙水圧比と盛土の沈下量には、ほぼ線形な関係が認められた.無対策、ふとん籠による対策後にかかわらず、過剰間隙水圧の発生量から盛土の変形量を推定できる可能性がある.

本検討では,盛土高5mおよび盛土天端幅5mを想定し た実験結果を基に議論した.今後,種々の条件下での実 験を行い,一般化に向けて検討を継続する予定である.

図-13 沈下盛土層での過剰間隙水圧比

図-14 各ケースの盛土沈下量の比較

参考文献

- 北海道開発局開発土木研究所: 1993 年釧路沖地震被害調 査報告,開発土木研究所報告第 100 号, pp.13-32, 1993.
- 佐々木康:堤防の地震災害と災害軽減工学,JICE REPORT Vol.9, p.89, 2006.
- 地盤工学会:1994 年北海道東方沖地震災害調査報告書, pp.100-105, 1998.
- 4) 北海道開発局土木試験所: 1968 年十勝沖地震被害調查報告, 土木試験所報告第49号, pp.9-24, 1968.
- 林 宏親,西川純一,江川拓也:浸透水の影響を受ける 道路盛土の耐震性に関する検討,開発土木研究所月報 No.568, pp.28-37, 2000.

(?.?.? 受付)