

動的応答が異なるピアにより構成される洪水吐 の地震時損傷メカニズムと地震対策法の検討

有賀 義明1

¹博(工) 電源開発株式会社茅ヶ崎研究所(〒253-0041 神奈川県茅ヶ崎市茅ヶ崎 1-9-88) E-mail:yoshiaki_ariga@jpower.co.jp

洪水吐は、ダムの放流機能を担う施設であり、地震時の機能喪失が許容されない重要な構造物に分類される.洪水吐は、動的応答特性が異なる部材や構造体によって構成されているため、地震時には複雑な地 震時挙動を示すものと考えられる.そのため、的確な耐震性能照査を行うためには、洪水吐の地震時挙動 を正確に評価することが必要になる.本研究では、1994年北海道東方沖地震での既設洪水吐の実地震時挙 動の再現解析を行い、洪水吐のメカニズムについて考察した.洪水吐では、相対変位の発生が地震時損傷 の大きな原因になっていることを示すとともに、簡便かつ効果的に相対変位を低減・解消するための地震 対策法について三次元動的解析に基づいて検討した.

Key Word : spillway, seismic safety, 3-D dynamic analysis, relative displacement, countermeasures, earthquake damage, reproduction

1. まえがき

ダムに要求される基本性能は、貯水機能であり、それに 連動して放流機能の保持も要求される.洪水吐は、放流 機能を担う施設であり、ダム本体と同様に、地震による 機能喪失が許容されない構造物に分類される. 洪水吐は, コンクリートピア、導流壁、鋼製スラブ、連絡橋、収納 建屋, ゲート巻上機, ゲート扉体等々, 様々な部材や構 造体,装置によって複合的に構成されている.そのため, 強い地震動を受けた場合には、個々の部材や構造体が複 雑な地震時挙動を示すことになり、動的応答が異なる構 造体等の間で、大きな相対変位が発生することが想定さ れる. 従来, 洪水吐の耐震設計は, 震度法に準拠して行 われているが、震度法は、マッシブで剛性の高い構造物 を対象にした設計法であり、洪水吐で想定されるような 複雑な地震時挙動を震度法で精度良く評価することは難 しい. また, 既に建設されている洪水吐施設に関しては, 建設後の時間の経過に伴い、耐震診断および耐震対策の 必要性が、これからますます増大するものと考えられる.

このような背景から、洪水吐に関して、実現象に即した、精度・信頼性の高い耐震性評価法を確立するために、 既設洪水吐の実地震時挙動の三次元再現解析を行い、地 震時損傷メカニズムについて考察した.そして、洪水吐 では、地震時に発生する相対変位が地震時損傷の大きな 原因のひとつになると考え、相対変位を低減させるため の簡便かつ効果的な地震対策法について,三次元動的解 析により検討した.

2. 洪水吐の地震被害事例¹⁾⁻¹⁰⁾

ダム地点等の洪水吐施設に関する主な地震被害事例を 表-1 に示す. 1999 年台湾集集地震(M7.6)では、ダム直 下に出現した相対変位約 7m の断層変位によって石岡ダ ム(堤高 25m, 重力式)が洪水吐と共に破壊した. 地震動 による地震被害事例としては、1990年ルソン島地震 (M7.8)の際に Ambuklao ダム(堤高 129m, ロックフィル) の洪水吐でゲートが損傷を受けた. 1993 年釧路沖地震 の際に、屈足ダム(堤高 27.5m、ロックフィル)の洪水吐 でコンクリートピア頂部に設置されていたゲート巻上機 の固定ボルトが破断し、巻上機の軸が変形した. 2000 年鳥取県西部地震(M7.3)では、賀祥ダム(堤高 46.6m, 重 力式)の下部で 531gal の地震動が観測され、ダム天端に 位置している補助ゲート操作室のコンクリート基礎と壁 面にクラックが発生した. 2004 年新潟県中越地震(M6.8) では, 只見ダム(堤高 30m, ロックフィル)の洪水吐でコ ンクリートピア頂部のコンクリート部でクラックが発生 した. これまでの洪水吐の地震被害事例を集約すると, 大地震の際には、コンクリート部の亀裂・剥離・剥落、 ピアの傾斜・倒壊、ゲート巻上機の固定部の破損、ゲー

地震	施設	地震被害概要
2004 新潟県中越	只見ダム	洪水吐コンクリートピア
M6.8	堤高 30m, ロックフィル	のクラック・剥落
	黒又川第一ダム	洪水吐コンクリートピア
	堤高 91m, 重力式	のクラック・剥離
	妙見堰	コンクリートヒッア
	堤高 13.8m, 可動堰	のクラック・剥離
2003 宮城県沖	日向(ヒナタ)ダム	ダム天端の
M7. O	堤高 56.6m, 重力式	洪水吐コンクリートピアルこクラック
2000 鳥取県西部	賀祥ダム	予備ゲート室の壁面
M7. 3	堤高 46.6m, 重力式	と基礎にクラック発生
1999 集集	石岡ダム	断層変位により堤体
M7.6(台湾)	堤高 25m, 重力式	とゲート設備が破壊
1993 釧路沖	屈足ダム	ゲート巻上機固定ボルト
M8.1	堤高 27.5m, ロックフィル	の破損、巻上機軸のズレ等
1990 ルソン島	Ambuklao ダム	洪水吐ゲートの損傷
M7.8 (フィッピン)	堤高 129m, ロックフィル	(ゲート越流)

表-1 洪水吐施設の地震被害事例 1)-10)

ト巻上機の軸の変形,ゲート扉体の変形,ゲート支承部の損傷,制御システムの破損,開閉機能の停止等の地震被害が発生する可能性があると想定される.

3. 既設洪水吐の実地震時挙動の三次元再現解析 による地震時の損傷原因の検討

(1) 検討目的

洪水吐は、常に、放流機能の保持が要求される重要構 造物であると同時に、地震時挙動が複雑であるため様々 な地震被害を受け易い構造物でもある.複雑な地震時挙 動を考慮するためには、精緻な動的解析が必要不可欠で あり、実現象に即して、洪水吐の地震時損傷メカニズム を明らかにしておくことが必要である.そこで、1993 年釧路沖地震の際に損傷を受けた既設洪水吐を研究対象 に、1994 年北海道東方沖地震の際に記録された地震動 を活用して実地震時挙動の三次元再現解析を行い、地震 時の損傷メカニズムについて考察した.

(2) 解析対象とした洪水吐

屈足ダム(堤高27.5m,堤頂長220.1mのロックフィル ダム,1987年竣工)の洪水吐を対象に解析を行った.解 析対象とした洪水吐の形状および地震計の配置を図-1 に示す.洪水吐は、ダム左岸に位置し、4本のコンクリ ートピアで構成されており、コンクリートピアの頂部に ゲート巻上機が設置されている.ピアと導流壁は鉄筋コ ンクリート製で、3門の鋼製ローラゲート(高さ13.5m, 幅12.7m)が設置されている.ダム周辺には段丘地形が 発達しており、ダム地点の地質は、未固結の砂層が水平 に分布しており、その下位に、半固結の熔結凝灰岩、新 第三紀の未固結の砂礫層等が分布している.

図-1 解析対象とした洪水吐の形状と地震計の配置

(3) 解析対象とした地震事象

1993 年釧路沖地震(1/15, M7.8)の際に震央から約 120km 離れた屈足ダムでは、コンクリートピアの頂部に 設置されていたゲート巻上機の固定用ボルトが破損する 等の損傷が発生した.ゲート巻上機は、ピアの頂部に設 置されており、左右1対の駆動装置で構成され、それら は駆動シャフトによって連結されている. 駆動シャフト は、ゲートを巻き上げるために必要な回転を伝達するた めのものであり、材料は鋼、断面形は円形の棒状である. 1999 年釧路沖地震の際には、ゲート巻上機が駆動シャ フトに引っ張られた結果として巻上機の固定用ボルトが 破断し、また、駆動シャフトが圧縮された結果として駆 動シャフトにダム軸方向の圧縮変形が発生した. なお, 固定ボルトの破断は、1号ピアおよび3号ピアの巻上機 で発生した. 1993 年の時点では、洪水吐に地震計を設 置していなかったが、この地震を契機に、洪水吐に地震 計を設置した.

その翌年の1994年北海道東方沖地震(10/4, M8.1, 震央 距離388km)の際に,ダム下部(漏水測定室)で最大 81.69gal,ダム天端で最大122.29gal,ピア基部で最大 177.65gal,ピア頂部で最大709.52galの地震動が記録さ れた.この1994年北海道東方沖地震を解析対象に,屈 足ダムの洪水吐の実地震時挙動の三次元再現解析を行っ た.地震計の配置は,前出図-1に示したとおりである.

(1994年北海道東方沖地震,ダム底部での観測波) 図-2 再現解析で用いた入力地震動

位置		振動方向	最大 加速度 (gal)	卓越 周波数 (Hz)
ダム天端		上下流方向	122.29	1.22
		ダム軸方向	115.78	1.86
		鉛直方向	80.82	2.06
ダム底部		上下流方向	81.69	1.22
(漏水測定室)		ダム軸方向	64.31	1.86
		鉛直方向	55.96	2.05
3号	頂部	上下流方向	187.29	4.63
ピア		ダム軸方向	333. 83	1.87
	下部	ダム軸方向	177.65	1.88
4号	頂部	上下流方向	243.96	4.24
ピア		ダム軸方向	709.52	1.64
	下部	ダム軸方向	128.06	2.28

表-2 1994 年北海道東方沖地震で観測された最大加速度

ダム底部(漏水測定室)で記録された加速度時刻歴を 図-2 に示す.各観測点で記録された加速度時刻歴を 度とフーリエスペクトルから求めた卓越周波数は表-2 に示すとおりである.地震動の卓越周波数は、ダム堤体 の上下流方向では1.22Hz、ダム軸方向で1.86Hz である. また、3号ピア頂部の上下流方向では4.63Hz,ダム軸方 向では1.87Hz、4号ピア頂部の上下流方向では4.24Hz、 ダム軸方向では1.64Hz である.ダム堤体は上下流方向 に揺れやすく洪水吐ピアはダム軸方向に揺れやすいこと、 4号ピアは3号ピアより少し低い周波数で揺れているこ とが理解できる.なお、1994年北海道東方沖地震では 洪水吐での地震時損傷は報告されていない.

図-3 三次元動的解析モデル(下流側より)

表-3 動的物性値 (No. は, 図-3 の区分番号に対応)

	対象	せん断	単位体積 重量	動ポア	減衰
No.	部所	阿小王 N/mm ²	重重 kN/m ³	ソン比	定数
1	1号巻上機	20800	34.9	0.20	0.02
2,3	2·3 巻上機	20800	29.6	0.20	0.02
4	4号巻上機	20800	36.9	0.20	0.02
5-8	卷上機基礎	9370	23.5	0.20	0.02
9	1,4号ピア	9370	23.5	0.20	0.02
10	2.3号ピア	9370	23.5	0.20	0.02
11	1,4℃7基部	9370	23.5	0.20	0.03
12	1,4 導流壁	9370	23.5	0.20	0.03
13	2,3 導流壁	9370	23.5	0.20	0.03
14	洪水吐基礎	9370	23.5	0.20	0.03
15	刀似如	500	16.7	0.30	0.08

(4) 再現解析モデル

再現解析に用いた三次元解析モデルを図-3 に示す. 洪水吐は、4 本のコンクリートピアで構成され、3 門の 鋼製ゲートが設置されているが、コンクリートピアと鋼 製ゲートは構造的には分離されているので、地震時挙動 に関する相互の影響は小さいと考え、ここでは、ゲート 扉体を省略してモデル化した.貯水については、ゲート と共にモデル化して解析するのが望ましいと考えている が、貯水は洪水吐の地震時応答を抑制する方向に影響す ると考えられること、洪水吐に関しては上下流方向の揺 れよりもダム軸方向の揺れが卓越すると考えられ、ダム 軸方向の揺れに対するは貯水の影響は小さいと考えられ ることから、ここでは、貯水も省略してモデル化した.

コンクリートピアの頂部に設置されたゲート巻上機, 収納建屋,連絡橋等に関しては,一単位体積重量に換算 しソリッド要素でモデル化した.解析モデルの側方は粘 性境界,下方は剛基盤を設定した.再現解析の精度が保 持されるように,洪水吐の形状は,できるだけ忠実にモ デル化すように配慮した.洪水吐周辺のフィルダム部と 地盤部は、洪水吐の左右 20m 区間をモデルに含めた. 解 析に用いた動的物性値は表-3 は示すとおりである.

なお, 表-3 の物性値の内, ピアのせん断剛性と減衰定 数は, 地震観測結果と三次元再現解析結果が近似するよ うに同定した動的物性値である.

(5) 三次元解析方法

入力地震動には、図-2 に示した地震動(1994 年北海 道東方沖地震、ダム底部漏水測定室)を用いた.再現解 析では、各観測点で記録された地震動の周波数範囲を揃 えることが必要であるため、5Hz 以上の周波数成分をカ ットした後に入力地震動として下方基盤から3成分同時 入力として使用した.解析法は、著者がこれまでに開発 した、ダムー基礎地盤-貯水池連成系三次元動的解析法 UNIVERSE¹¹⁾を用いた.再現解析では、3号ピアと4号 ピアに着目して、ピア頂部の加速度時刻歴およびスペク トルが、地震観測結果と三次元動的解析で近似するよう に動的せん断剛性と減衰定数の値を同定した.

(6) 再現解析結果

3 号ピアの頂部と基部, 4 号ピアの頂部と基部につい て、加速度時刻歴の最大振幅とフーリエスペクトルのピ ーク周波数に関する地震観測結果と三次元解析結果を 表-4に示す.3号ピア頂部および4号ピア頂部の加速度 時刻歴について、観測結果と解析結果の比較を図-4 に 示す. 同様に、フーリエスペクトルの比較を図-5 に示 す. 図-6 には、全時刻を通じての洪水吐での最大加速 度の分布状況を示す. 図-4から、3号ピアに関しては比 較的良い近似が得られたが、4 号ピアに関しては加速度 時刻歴の後半部,特徴的には 20 秒以降の区間で,解析 結果が観測結果より大きい結果となった.動的解析の視 点からは、設定した減衰定数の値が小さかったため解析 結果の方が大きくなったと解釈することができるが、地 震時の現象の視点からは、地震の最中に4号ピアの基部 に軽微な亀裂が発生し、 亀裂の影響によって 4 号ピア全 体の地震時応答が低下した可能性もあると考察される.

図-7 は、全時刻を通じての最大応力の分布状況である. ピアにおける引張応力は、4 号ピア基部で最大 4.01N/mm² と算出された. コンクリートの地震時引張強度は、一般 的に 3~5N/mm²程度と想定されるので、最大 4.01N/mm²と いう値は 4 号ピアの基部で軽微な亀裂が生じた可能性も 示唆するレベルではないかと推察される.図-8 は、全 時刻を通じてのコンクリートピアの最大変位の状況であ る.また、図-9 は、ピア間の相対変位の時刻歴である. 2 号ピアと 3 号ピアの相対変位は非常に小さいが、1 号 ピアと 2 号ピアの間、3 号ピアと 4 号ピアの間の最大相 対変位は、それぞれ 4.5cm、4.9cm と算出された.

表-4 地震観測結果と三次元解析結果の比較

ピアの位 置		地震観測結果		三次元解析結果	
		加速度	固有振動数	加速度	固有振動数
		gal	Hz	gal	Hz
3	頂部	321.3	1.00	318.5	1.04
号	基部	81.2	1. 89	89.6	1.94
4	頂部	507.5	1.64	487.9	1 79
号	基部	92.1	1.64	91.9	1.72

図-5 スペクトルの比較

1993 年釧路沖地震の後,相対変位に対する耐震対策 として,ゲート巻上機に関しては,最大 10cm のダム軸

図-8 全時刻を通じての最大相対変位の分布

方向変位に追随可能な耐震対策が施された. 1994 年北 海道東方沖地震の再現解析で得られた最大 4.9 c mの値 からは、釧路沖地震の後に実施された地震対策が北海道 東方沖地震の際に活かされたものと考えられる.

4. 地震時の損傷メカニズムについて

解析対象とした洪水吐は、4 本のコンクリートピアに よって構成されている. 前出図-1 から理解できるよう に、両側の1号ピアと4号ピアは、逆L字型の形状でピアの厚さが比較的薄い.中間に位置する2号ピアと3号 ピアはT字型の形状でピアの厚さが両側のピアよりも厚い.そのため、両側の逆L字型ピアと中間のT字型ピア の地震時挙動は当然異なることになる.その結果、ピア 頂部では大きな相対変位が発生することになり、この相 対変位が、ピア頂部に設置されたゲート巻上機に係わる 地震被害を引き起した主たる原因であると考えられる.

従来の震度法による耐震設計では、高さ方向に一様の 設計震度を想定し、同じ方向に地震荷重と作用させて解 析するのが一般的であり、ピアの厚さが薄く重量が小さ いほど、作用する地震荷重が小さくなる傾向がある。こ うしたことが、ここでの解析事例のような、逆L字型の 薄い構造体とT字型の厚い構造体を連立させた構造物が 建設された要因になっているのではないかと考察される. 図-8 より、逆L字型の薄い構造体の揺れは大きく、T 字型の厚い構造体の揺れは小さい、しかも、両端の逆L 字型のピアは偏心して内側に偏って揺れることが理解で きる. 図-8 では、最大変位を同位相で表記しているが、 図-9 に示したように、ピアが接近したり離反したりす るように揺れた場合には、ピアの間の相対変位は、ほぼ 倍増するようになる.動的応答特性の異なる構造体が複 合的に組み合わされた構造形式、T字型や逆L字型等の トップ・ヘビーの構造形式、逆L字型等の非対称の構造 形式等は、地震時応力の面で不利であると同時に、地震 時の相対変位の面でも不利である点に留意すべきである. 既に建設されている構造物に関しては、適切な耐震性評 価を行い、必要に応じて合理的な地震対策を講じること が必要であると考えられる.

5. ピアの相対変位を低減するための地震対策法 に関する解析的検討

(1) 検討目的

新規に建設する場合は、個々のピアの変位挙動を抑制 する、ピア間の相対変位の発生を抑制する、ゲート巻上 機を地表に設置する等の耐震設計上の配慮と工夫を凝ら すことができるが、既設の場合は、適用可能な対策に制 約が伴うことが多いと思われる.ここでは、洪水吐のコ ンクリートピアの間の相対変位を解消するための簡便で 効果的な対策方法として、4本のコンクリートピアを補 強用の部材で連結した場合について三次元動的解析によ り比較検討を行った.

(2) 解析方法

4本のピアを補強用の部材で連結することによって相

(連結なし:現状モアル、連結あり:耐震対策モアル、 図-10 相対変位の低減方法を検討するための 三次元動的解析モデル(上流側より)

表-5 想定した連結部材の物

項目	せん断剛性	単位体積重量	ポアル比	減衰定数
連結 部材	79000 N/mm ²	6.69 N/m ³	0.3	0. 1

対変位を低減させる方法の適用性を検討するために, 図-10 に示したような三次元解析モデルを作成した. 図-10 は、4 本のピアを補強用部材で連結した解析モデ ル(耐震対策モデル)であるが、比較検討のために、補強 用部材がない状態の解析モデル(現状モデル)も同時に作 成し、補強用部材による連結効果を考察した.補強用部 材に要求される機能は、4本のピアを連結することによ ってピア全体の地震時変位を低減させるとともに、ピア 間の相対変位の発生を解消することである. 補強用部材 としては、鋼製のプレートやビームを想定し、取付方法 については, 取付部の地震時損傷を許容する場合は剛結, 取付部の地震時損傷を回避したい場合は、回転を許容す るピン結合等が想定される. ここでの比較解析では、補 強用結部材は、鋼製のビームを想定し、高さ 50cm,幅 20m のソリッド要素でモデルした.補強用の連結部材は、 鋼製材料を想定し、高さ50cm、幅20mのソリッド要素で モデルした. その動的物性値は,表-5 に示したように 仮定した.連結部材以外の動的物性値は、前出表-3の 値を用いた.入力地震動は,前出図-2 に示した, 1994 年北海道東方沖地震の際にダム底部で観測された地震動 をそのまま3成分同時入力として使用した.

(3) 比較検討結果

補強用部材で連結しない場合と連結した場合の各ピア の最大変位およびピア間の相対変位量の比較結果を表-6 に示す.表-6に数値を示した、3号ピア頂部と4号ピア 頂部の間の相対変位量に関して、相対変位の時刻歴の比 較を図-11 に示す.また、補強用部材で連結していない、

表-6	補強用部材で連結しない場合と連結した場合の
	ピアの最大変位および相対変位の比較結果

位 置		現状モデル	耐震対策モデル
		ピア連結なし	ピア連結あり
各	1号ピア頂部	3.03 cm	2.63 cm
ビ最ア大	2号ピア頂部	3.02 cm	2.48 cm
の変位	3号ピア頂部	2.83 cm	2.48 cm
	4号ピア頂部	3.26 cm	2.60 cm
ピア間の の位	2 号と 3 号ピ ア頂部の間	0.59 cm	0.001 cm
	3 号と 4 号ピ ア頂部の間	4.45 cm	0.11 cm

現状モデルでの最大変位の分布状況を図-12 に、補強用 部材で連結した耐震対策モデルでの最大変位の分布状況 を図-13 に示す.3 号ピア頂部と4 号ピア頂部の間の最 大相対変位は、ピア連結なしの場合は 2.45cm であった が、ピア連結ありの場合は 0.11cm となった. 同様に、2 号ピア頂部と3号ピア頂部の間の最大相対変位は 0.59cm が 0.001cm となった. この結果から、ピア頂部の連結す ることによって、ピア間の相対変位を簡便に低減させる ことができること確認することができた. 個々のピアの 最大変位量は、ピアを連結することによって、3 号ピア 頂部では 2.83cm が 2.48cm に、4 号ピア頂部では 3.26cm が 2.60cm に変化した. 連結した後のピアの変位量は、 補強用部材の剛性や質量によって変化する可能性がある と考えられので、補強用部材の選定と設計に際しては、 目標とする変位量、補強用部材およびその取付部分に許 容される損傷や破壊を考慮しながら検討することが必要 であると考えられる.

6. 考察

洪水吐施設は、ダムの放流機能を担う施設であり、地 震時の機能喪失が許されない重要構造物であり、また、 様々な構造体等によって複合的に構成されているため、 強震時には複雑な地震時挙動を示す.しかし、これまで は、洪水吐施設に関しては、こうした地震時挙動を考慮 した耐震設計が殆んど行われていな.このような背景か ら、既設洪水吐の耐震性能照査の精度・信頼性の向上と 地震対策法の合理化を目的に、動的応答特性が異なるピ アにより構成される洪水吐の地震時挙動、地震時損傷の 原因、地震対策方法について検討した.

本研究で研究対象とした洪水吐は、4本のコンクリー トピアで構成され、両側の2本のピアは、逆L字型の形 状で厚さが薄く. 中間の2本のピアはT字型の形状で厚 さが厚い.このような場合、両側の逆L字型ピアと中間 のT字型ピアでは、変位増幅特性、位相特性が異なるた め、地震時にはピア頂部の間で大きな相対変位が発生す る. このようにして発生した相対変位が、ピア頂部に配 置されたゲート巻上機に係る地震被害の主たる原因にな る.動的応答特性が異なるピアによって構成されている 洪水吐施設に関しては、ピアの相対変位を低減させるこ とが必要になり、補強用の部材で連結することが簡便か つ有効な地震対策方法であると考察される. ダム軸方向 の応答に関しては、連結に使用する補強用部材の位置や 重量等によっては、トップヘビーな構造を助長すること も想定され、このような場合には、コンクリートピアの 損傷や破壊を発生させる要因になることも想定されるの で, 留意が必要と考えられる. 逆L字型, T字型等のト ップヘビー構造では、ピアの基部に大きな地震時引張応 力が発生するので、ピアの基部に亀裂が発生する可能性

図-14 ダム堤体における加速度の増幅 14

が高いと考えられる.

ダム本体では、上下流方向の揺れが卓越するが、洪水 吐では、ダム軸方向の揺れが卓越する.したがって、ダ ム本体の性能照査では、上下流方向の地震動が、洪水吐 の性能照査では、ダム軸方向の地震動が、より重要であ る.ダム本体に洪水吐が設置されている場合は、ダム軸 方向の地震動を重要視することが必要である.

既設ダムでは、ダム天端に洪水吐が設置されている事 例が多い. ダム天端では、地震動が大きく増幅するので、 ダム天端に洪水吐を配置した場合は基礎岩盤に建設した 場合よりも大きな地震荷重が作用することになる. 図-14 は、実地震時挙動の再現解析によって同定した、既 設アーチダムの三次元解析モデル 🕮に 1995 年兵庫県南 部地震の際に一庫ダムで観測され強震動を入力した際の 加速度応答の一例であるが、この事例では、ダム基礎で 306gal に対してダム天端では約 3200gal に増幅している. この事例からも明らかなように、ダム天端に配置された 洪水吐施設に対しては、堤体での地震動の増幅を考慮し た地震荷重が設定が必要である.従来の耐震設計では, こうした地震動の増幅は考慮されていないのが普通であ る. この点は、実際の現象との乖離が大きく、危険サイ ドの条件設定となることから、ダム天端に位置する洪水 吐に関しては、ダム堤体での地震動増幅、 地震動の長周 期化と長時間化、ダムおよび洪水吐での相対変位等を考 慮した,耐震性能照査が必要であると考察される.

洪水吐施設が地震により損傷を受け、放流機能が停止 した場合には、構造物や施設に関する直接被害のみなら ず、間接被害、二次災害、信用・信頼の低下等、様々な 地震被害が派生することもあり得ると想定されるので、 地震防災性能や事業継続性の向上の視点からも、実現象 に即した性能照査が必要である.

7. あとがき

洪水吐施設が大地震によって重大な被害を受け、放流

機能が損なわれた場合、リスクマネージメントの視点から、ひとつのシナリオとしては、貯水の越流が想定される. コンクリートダムに関しては、貯水の越流がダムの 決壊に直結する可能性は低いと考えられる. しかし、フ ィルダムに関しては、貯水の越流がダムの決壊に直結す る危険性も想定されるので、精度・信頼性の高い耐震性 能照査と合理的な地震防災対策が大切と思われる^{5,16}. 都市域に位置する地点、想定される流下水量が大きい地 点、下流域に住宅地や社会基盤施設が多い地点、二次災 害の派生が想定される地点、基礎地盤が柔らかく脆弱な 地点等に関しては、人的被害の未然防止、物的被害の抑 止軽減、二次災害の未然防止等を図るための配慮と工夫 が、将来に向けて重要であると思われる.

謝辞:解析ラン作業の実施に際しては、JPビジネスサ ービスの浅賀裕之氏、依田昌宏氏の協力をいただきました.記して感謝の意を表します.

参考文献

1) 杉田秀樹:河川構造物の耐震設計の歴史・現状・展望,基礎 工 2007.2 月号, pp. 36-41

2) 有賀義明:過去の実例に見るロックフィルダムの地震被害と 最大加速度との関係、土木学会第48回年次学術講演会講演概 要集 I-83、pp.314-315、1993

3)田村重四郎:昭和 59 年長野県西部地震の震央域のダムの挙動、土木学会第 40 回年次学 術講演会講演概要集 I-299、 pp.597-598、1985

4)田村重四郎:メキシコ地震被害調査報告、大ダム No.116、 pp.40-51、1986

5) 谷茂;平成 16 年新潟県中越地震による農業施設の被害,平 成 16 年新潟県中越地震による被害調査報告会梗概集,81-86, 2004 6) 三浦健司、他:ロマプリエタ地震によるダムの被害、土木学 会第45回年次学術講演会講演概要集 I-597-598、pp.1224-1227、1990

7)田村重四郎、他:海城・唐山地震の被害と中国の耐震研究、 生産研究 34 巻、1 号、pp. 10-24、1982

8) 木本悦郎、他:千葉県東方沖地震における房総導水路長柄ダムの状況について、水と土第73号、pp. 89-95、1988

9)安田正幸:フィルダムの耐震設計の動向、発電水力 No. 144、 pp. 52-59、1976

10) International Congress on Large Dams : Historic performance of dams during earthquakes, Design features of dams to resist seismic ground motion (Guidelines and case studies), ICOLD Bulletin 120, 2001

11) 有賀義明:三次元再現解析によるダムの動的変形特性の定量的評価に関する研究,埼玉大学学位論文,2001.3

12) Ariga Y., S.Tsunoda, H.Asaka;Determination of dynamic properties of existing concrete gravity dam based on actual earthquake motions, 12th World conference on earthquake engineering, No.0334, p1-8, 2000

13) 有賀義明, 曹曹延, 渡邊啓行:強震時の非線形性を考慮し たコンクリート重力式ダムの耐震性の評価について, 大ダム No. 175, 2001

14) 有賀義明, 曹増延, 渡邉啓行:強震時のジョイントの非連続的挙動を考慮したアーチダムの三次元動的解析に関する研究, 土木学会論文集 No. 759/I-67, p. 53-67, 2004.4.

15) Ariga Y., Fujinawa Y., Kawakami N., Ohsumi T., and Nishino T. : An immediate evaluation method of earthquake damage of dams by utilizing realtime earthquake information, *the Fifth International Conference on Earthquake Resistant Engineering Structures (ERES2005)*, p.229-23, 2005

16) Ariga Y., Fujinawa Y., and Hori M. : Development of immediate evaluation method for earthquake safety of existing dams, *100th Anniversary Earthquake Conference – commemorating the 1906 San Francisco Earthquake*, No.196, p.1-11, 2006.

(2007.4.6. 受付)

STUDY ON EARTHQUAKE DAMAGE MECHANISM AND MEASURES OF SPILLWAY COMPOSED OF CONCRETE PIERS WITH DIFFERENT DYNAMIC RESPONSE PROPERTY

Yoshiaki ARIGA

Spillway is an important facility whose function is discharge. Spillway is an complex structures which is composed of various materials and structural parts. So, in order to make an accurate evaluation of seismic safety of spillway, it is necessary to analyze the complex earthquake behaviors. In this study, I made 3-D reproduction analyses for actual earthquake behaviors of existing spillway, and made clear the mechanism of earthquake damage of spillway. And, I made comparative study on the earthquake countermeasuresms by 3-D dynamic analyses. As a result, it is concluded that the relative displacement between piers is main cause of earthquake damages and the countermeasures by connecting piers with the reinforcement is effective to reduce the relative displacement.