

上下動が傾斜基盤を有する盛土の 地震時応答に及ぼす影響

秦吉弥1・一井康二2・土田孝3・李黎明4・加納誠二5

 ¹日本工営㈱中央研究所 地盤耐震グループ 研究員 (〒300-1259 茨城県つくば市稲荷原2304)
 E-mail:hata-ys@n-koei.jp
 ²広島大学大学院工学研究科准教授 (〒739-8527 広島県東広島市鏡山1-4-1)
 E-mail:ichiikoji@hiroshima-u.ac.jp
 ³広島大学大学院工学研究科教授 (〒739-8527 広島県東広島市鏡山1-4-1)
 E-mail:ttuchida@hiroshima-u.ac.jp
 ⁴日本工営㈱中央研究所地盤材料グループ主任研究員 (〒300-1259 茨城県つくば市稲荷原2304)
 E-mail:li-lm@n-koei.jp
 ⁵広島大学大学院工学研究科助教 (〒739-8527 広島県東広島市鏡山1-4-1)
 E-mail:skano@hiroshima-u.ac.jp

傾斜基盤を有する盛土は,既往の地震でしばしば被害を被っており,強震時において水平応答だけで なく上下応答が生じやすいことが報告されている.しかしながら上下動が傾斜基盤上の盛土の耐震性能 に及ぼす影響については,これまであまり明らかになっていない.

そこで本研究では,有限要素法を用いた傾斜基盤上の盛土の地震応答解析を行い,上下動が盛土の地 震応答特性に及ぼす影響について検討を行った.その結果,上下動は残留変位量に対して安全側にも危 険側にも作用する可能性があり,入力地震動の位相特性に依存していることを示した.さらに水平動と 上下動が同じような位相特性を有している場合,残留変位量が増大する可能性があることも示した.

Key Words : Embankment, vertical earthquake motion, tilted bedrock, FEM, slope stability

1.はじめに

傾斜した基盤面上の盛土については,既往の大地 震において宅地造成盛土や道路盛土などの被害とし て報告されている¹⁾.しかしながらこういった傾斜 基盤を有する盛土の地震応答特性についてはこれま であまり明らかになっていない²⁾.

著者ら³⁾は、傾斜基盤を有する盛土を対象とした 動的遠心模型実験を実施し、傾斜基盤上の盛土は、 水平一方向加振の場合においても、地震時における 盛土の変形や水平応答が上下応答に励起する現象に よって上下方向にも比較的大きな加速度応答を示す ことがあり、非常に複雑な地震応答特性を有してい ることを報告している.また、実際の地震時におい ては、水平動だけではなく上下動も同時に作用する ことになり、近年発生した内陸直下型地震において は、非常に大きな加速度レベルの上下動が観測され ていることなどを勘案すれば、地震時における傾斜 基盤上の盛土は非常に大きな上下応答を示す可能性 が高い.しかしながら、この上下応答が盛土の変形 に及ぼす影響に関して詳細な検討がなされた例は少 ない4).

沖村ら⁵⁾は,傾斜した基盤上斜面の地震応答解析 を実施し,基盤層上の盛土では,上下方向の応答加 速度による慣性力が生じやすく,斜面安定性に大き な影響を及ぼす可能性があることを報告している。 そこで本研究では,二次元 F E M逐次非線形解析 手法である解析コードFLIP⁶を用いて傾斜基盤上を 有する盛土を対象とした地震応答解析を実施した. |具体的には,まず既往の動的遠心模型実験³⁾をシミ ュレートすることで,傾斜基盤上の盛土に対する FLIPの適用性について検討した.次に,同実験の傾 斜基盤上の盛土モデルを対象として,水平動と上下 動を同時に地震波入力したケースについて解析を行 い,上下動が傾斜基盤を有する盛土の地震時応答に 及ぼす影響について検討を行った.そして最後に入 力地震動の水平動と上下動の関係に着目したパラメ トリックスタディを実施することで,傾斜基盤を有 する盛土に対して耐震性能照査を行う場合の留意事 項について取り纏めた.

(1) 解析手法

本検討では,二次元FEM逐次非線形解析手法とし て,解析コードFLIP⁶⁾を用いた.この解析手法は, 運動方程式の復元力項に非線形履歴モデルを適用し 直接積分法による時刻歴応答解析により非線形解析 を行うものである.FLIPは,土のせん断応力-せん 断ひずみモデルとして,多数の仮想的な双曲線型バ ネで構成されているマルチスプリング・モデル⁷⁾を 履歴減衰の大きさを任意に調節可能なように拡張し ている.これにより,せん断面の双曲線型非線形の モデル化が可能となる.

(2) 解析パラメータ

盛土材料の物理試験,三軸圧縮試験,中空ねじり せん断試験結果³⁾より,解析パラメーターを設定し た.表-1に使用した解析パラメータの一覧を示す. 基盤面は剛土層の物性値を採用しており,動的解析 に影響を及ぼさない十分に剛な物性値となっている. また緩衝材はシリコンゴムの物性値を採用した. なお,盛土材料のせん断弾性係数については,同表 (d)に示すように動的変形試験結果を踏まえた拘束 圧依存性を考慮して次式のように設定した.

$$G_{m0}(kPa) = 53.94 \times 1000 \times \left(\frac{\sigma_m}{114}\right)^{0.5}$$
 (1)

表-1(a) 盛土材料の解析パラメータ

湿潤密度	ρ_t	t/m ³	1.741
ポアソン比	v d	(-)	0.3
初期間隙比	<i>e</i> ₀	(-)	0.413
内部摩擦角	ϕ_d	deg.	34.0
粘着力	c _d	kPa	2.26

表-1(b) 緩衝材の解析パラメータ

湿潤密度	ρ_t	t/m ³	1.545
ポアソン比	v d	(-)	0.49
弾性係数	Ε	kPa	2235

衣-1(C) (限科 盛の 解

湿潤密度	ρ_t	t/m ³	2.7
ポアソン比	v d	(-)	0.34
弾性係数	Ε	kPa	68300000

(3) 入力地震動

入力地震動としては,動的遠心模型実験の加振台 の能力に合わせて神戸海洋気象台のNS成分(最大加 速度818gal)の振幅を調整した波形(最大460gal)を 用いた.なお,上下動を同時入力する場合には,神 戸海洋気象台のUD成分(最大323gal)を耐震性能照査 指針⁸⁾を参考に水平動の最大加速度の半分にあたる 230galに振幅を調整した波形を使用することを基本 とした.図-1に入力地震動の時刻歴を示す.

(4) 解析モデル

図-2に解析モデルを示す.基盤角度10度および20 度のケースともに同様のメッシュ構成となっており, 水平方向は約1.8m毎,鉛直方向は約1.0m毎のメッ シュ構成となっている.動的遠心模型実験の状態を 模擬することで,傾斜基盤底面は剛基盤として水平 ならびに鉛直方向ともに固定,側方については水平 方向は固定,鉛直方向は自由とした.

(6) 墨盘用度20度 図-2 解析モデル図

表-1(d)	盛土材料の材料区分別(拘束圧別)の解析パラメータ
--------	--------------------------

	材料区分	初期せん断弾性係数G ₀ (kPa)	初期体積弾性係数K ₀ (kPa)	初期有効拘束圧 σ_{ma} (kPa)	最大減衰定数h _{max}
ľ	_v 50kPa	25300	67200	25.0	
ľ	50kPa < _v 100kPa	43800	116400	75.0	
l	100kPa < v 150kPa	56500	150300	125.0	0.301
ľ	150kPa < _v 200kPa	66800	177800	175.0	0.501
	200kPa < _v 300kPa	79900	212500	250.0	
ĺ	300kPa < _v 400kPa	94500	251500	350.0	

(5) 実験結果との比較

STRUCTURE SCALE 0. 2.0

図-3にFLIPを用いた解析による残留変形図(実変) 形の2倍のスケール)を,図-4に遠心模型実験によ る残留変形図を示す.これらの図より,基盤の角度 に関わらず,天端付近では両者の残留変形モードが 比較的よく似ている.図-5には,天端における水 平・上下方向の残留変位の分布を実験と解析で比較 したものを示す.これより基盤角度20度のケースで は,実験と解析が比較的よく一致しており,法肩に おける残留変位量においても両者に有意な差は確認 できない.これに対して基盤角度10度のケースでは 法肩からの水平距離が5m以遠では,両者の残留変形 量は一致する傾向にあるが、法肩からの水平距離が 5m以近では,FLIPを用いた解析では,残留変形量が 急激に大きくなっており,実験値との間に開きが見 られ,法肩位置において両者の差は最大となる. 図-6には法肩における変位の時刻歴を実験と解析で 比較したものを示す.この図によれば,基盤角度20 度のケースにおいては,実験と解析で変位の時刻歴 が一致しているにも関わらず,基盤角度10度のケー スでは,両者の時刻歴の形状は比較的似ているもの の,上述したように残留変位量では解析のほうが大 きくなっており,水平方向のほうが両者の差は大き い. 傾斜基盤角度が大きいほうが小さな残留変位と

なっているが,盛土の層厚の違いによる固有周波数 と入力地震動との関係によるものであると考えられ る.この関係は図-7は法肩下の位置(ACC5:図-8で後 述)における実験と解析の水平・上下方向の加速度 時刻歴を比較したもので,基盤の角度に関わらず両 者はよく一致している.また水平一方向加振(図-1 の水平動)であるにも関わらず,上下方向の応答加 速度が発生しているがこれも良好に再現できている. 図-8は水平方向と上下方向の応答加速度に対する粒 子軌跡を実験と解析で比較したものである.この図 によれば,水平一方向加振であるため,ACC13では 上下方向の振動はなく,全体ではACC4のように上下 方向の応答は小さい.しかしACC6,7,10のように上 下方向の応答が卓越している(水平と上下方向の応 答に位相差が生じている)のは興味深い.また基盤 角度に関わらず、実験と解析で傾向は一致しており、 一部の観測点を除けば両者の粒子軌跡の形状も一致 している.これらの結果を踏まえれば,局所的に見 れば,基盤角度10度のケースにおいて法肩において 両者の変形量に比較的大きな差が生じたなどの違い はあるが,両者のモデル全体の地震時応答や変形の 傾向は非常によく似ている.よってFLIPによる解析 を行うことで、傾斜基盤上の盛土の地震時応答や変 形をそれなりの精度で再現できるものと考えられる.

STRUCTURE SCALE

0. 2.0

図-5 天端における残留変位量の分布

(b) FLIP解析結果・基盤角度10度 図-8 主要位置におけるパーティクルモーションの比較【基盤角度10度】

(b) FLIP解析結果・基盤角度20度 図-8 主要位置におけるパーティクルモーションの比較【基盤角度20度】

3.上下動が残留変位量に及ぼす影響

(1) 最大加速度に関する検討

上記のFLIPを用いた再現解析では,水平一方向加 振による動的遠心模型実験を対象としていた.しか しながら実際の強震時においては,水平動だけでな く上下動も同時に作用することになり,傾斜基盤上 の盛土は,さらに大きな上下応答を示す可能性が高 い.そこでここでは,前述のように適用性の確認を 行ったFLIPを用いて,水平動と上下動を同時に作用 させた場合に,上下動が傾斜基盤上の盛土の残留変 位量に及ぼす影響に関して検討を行った.

図-9は図-1に示した入力地震動を採用した場合の 法肩における上下方向の変位時刻歴であり,水平動 のみを入力地震動としたケースおよび水平動+上下 動を同時に入力地震動としたケースを比較したもの である.これより,基盤の角度に関わらず上下動を 入力地震動として考慮したケースのほうが残留変位 量が大きくなっている.残留変位量の増加率は,基 盤角度10度のケースで約8%,基盤角度20度のケース で約11%となっており,絶対的な残留変形量では基 盤角度10度のほうが大きいものの,上下動を考慮す ることに伴う残留変位量の増加率は基盤角度20度の ケースのほうが大きくなっている.

図-10は水平動の入力地震動一定(最大加速度 460gal)の条件のもとで,上下動の入力地震動の最 大加速度値をぞれぞれ変化(最大加速度0~460gal) させた場合の,傾斜基盤上の盛土の耐震設計におい

て安全側に評価するための部分係数をイメージした 法肩における上下方向の残留変位量の増加率(上下 動考慮/上下動なし)をプロットしたものである.な お,解析ケースは表-2に示す入力地震加速度の符号 をそのままにしたものと反転させたものを組み合わ せた計4ケースである.この図によれば,上下動の 入力地震動の最大加速度が大きくなるにつれてCase 1,4では残留変位量の増加率が大きくなっているも のの,反対にCase 2,3では残留変位量の増加率が減 少している.言い換えれば,上下動の入力地震動は 法肩における上下方向の残留変位量に対して,安全 側にも危険側にも作用する可能性があることを示し ている.すなわち表-2に示した各解析ケースの入力 地震動の条件の違いは,水平動と上下動の入力地震 動に関する相互の位相関係が異なっているだけであ リ、入力地震動として採用する水平動と上下動の位 相特性によって傾斜基盤を有する盛土の耐震性能に 関する評価は異なってくるものと考えられる.

表-2 解析ケース

解析ケース	入力地震加速度の符号		
	水平動	上下動	
Case 1	そのまま(正転)	そのまま(正転)	
Case 2	そのまま(正転)	反転	
Case 3	反転	そのまま(正転)	
Case 4	反転	反転	

(2) 位相に関する検討

入力地震動としての水平動と上下動の位相特性に よって傾斜基盤を有する盛土の耐震性能が異なって くる可能性があることを踏まえ,ここでは図-11に 示すような入力地震動を新たに採用した.この入力 地震動は水平動は,図-1と全く同じ,すなわち神戸 海洋気象台NS成分を最大加速度460galに振幅調整し たものとなっている.上下動は,周波数特性に関し ては図-1と全く同じ, すなわち神戸海洋気象台UD成 分となっているが, 位相特性に関しては水平動と同 じ位相特性になるよう人工的に作成したものとなっ ている.検討解析ケースについては,図-11に示す 水平動と上下動の位相特性が同じ入力地震動を採用 した場合の,表-2に示した入力地震加速度の符号の 組み合わせを変えた計4ケースである.すなわち設 定した4解析ケースは,図-12に示すようにCase 1,4に関しては法面に沿うような方向で, Case 2,3 に関しては法面に直交するような方向で入力地震加 速度がそれぞれ作用するイメージとなる.

図-13は水平動の入力地震動一定(最大加速度 460gal)の条件のもとで,水平動と同じ位相特性を 有する上下動の入力地震動の最大加速度値をぞれぞ れ変化(最大加速度0~460gal)させた場合の,法肩 における上下方向の残留変位量の増加率(上下動考 慮/上下動なし)をプロットしたものである.この図 によれば,基盤の角度に関わらず,上下動の入力地 震動の最大加速度が大きくなるにつれて,残留変位 量の増加率が増加している.次に,基盤の角度によ る差に着目すれば,基盤角度20度のほうが残留変位

量の増加率が大きくなっている.よって基盤の勾配 が急になるほど,上下動の入力地震動の影響を受け やすいことが読み取れる.ただし,残留変位量の増 加率は、上下動の入力地震加速度のレベルが水平動 と同じ場合でも最大で3割程度となっていることか ら,あくまでも残留変位量は水平動の入力地震加速 度レベルに大きく依存しているといえる.最後に, 設定した解析ケースによる差に着目すれば, Case 1,4とCase 2,3がそれぞれ同じような特徴を有して おり, Case 1,4とCase 2,3を比較するとCase 2,3の ほうが残留変位量の増加率が全体的に大きくなって いる.なお,この傾向は基盤の角度には依存してい ない.言い換えれば,水平動と上下動の位相特性が 同じ地震動が傾斜基盤を有する盛土に作用した場合, 入力加速度のレベルに関わらず,残留変位量が増加 する可能性が非常に高い.その中でも入力地震加速 度が法面に直交するような方向に卓越しているよう な場合には,残留変位量がさらに増加する可能性が ある.

上記の結果を総合すれば,傾斜基盤を有する盛土 の耐震性能の指標の1つである残留変位量は,採用 する入力地震動の水平動と上下動の位相関係に大き く依存しており,両者が同じような位相特性を有し ている場合には,増大する可能性もある.したがっ て傾斜基盤を有する盛土の耐震性能照査を行う場合 には,入力地震動の位相特性についても留意し,安全 側の照査結果となるよう,適切な入力地震動を設定 する必要があるものと考えられる.

4.まとめ

本研究では,FEM解析コードFLIPを用いて傾斜基 盤を有する盛土を対象とした地震応答解析を実施す ることで,上下動が傾斜基盤上の盛土の地震時応答 に及ぼす影響について検討を行った.得られた結論 を以下に示す.

- (1) FLIPを用いた解析を行うことで,傾斜基盤上 の盛土の地震時応答を精度よくシミュレート できることを確認した.
- (2) 上下動は傾斜基盤上の盛土の法肩における上下方向の残留変位量に対して,安全側にも危険側にも作用する可能性があり,これは入力地震動の水平動と上下動の位相関係に起因するものである。
- (3) 採用する入力地震動の水平動と上下動の位相 が同じような特性を有している場合には,残 留変位量が増大する可能性がある.
- (4) 傾斜基盤を有する盛土の耐震性能照査を行う 場合には、入力地震動として上下動を考慮す るだけでなく、入力地震動の位相特性につい ても留意し、安全側の照査結果となるように 適切な入力地震動を設定する必要がある。

今後は,水平動と上下動の同時入力加振による遠 心模型実験の実施,数多くの入力地震動を採用する ことによるパラメトリックスタディを実施すること でより詳細な検討を行っていく予定である.

謝辞:入力地震動として気象庁の観測波形を使用さ せていただきました.記して謝意を表する. 参考文献

- 1) たとえば國生剛治:新潟県中越地震の地盤被害と対策, 土木施工, Vol.46, No.1, pp.84-87, 2005.
- 2) 秦吉弥,加納誠二,多賀正記,一井康二,土田孝,山 下典彦:傾斜基盤を有する盛土の水平ならびに上下方 向の簡便な固有周波数算定式,土木学会地震工学論文 集,Vol.29,2007.
- 3) 秦吉弥,一井康二,李黎明,土田孝,加納誠二:傾斜 基盤を有する盛土の地震応答特性に関する動的遠心模 型実験,土木学会地震工学論文集,Vol.29,2007.
- 4)田村重四郎,加藤勝行,森田道比呂:水平・鉛直の2 方向加振した場合のフィルダム模型の振動破壊について,第18回地震工学研究発表会講演論文集,pp.457-460,1985.
- 5) 沖村孝,山本彰,村上考司,鳥井原誠:傾斜基盤上の 斜面の地震応答解析,土木学会論文集,No.638/ -49, pp.143-154, 1999.
- 6) Iai, S., Matsunaga, Y. and Kameoka, T.: Strain space plasticity model for cyclic mobility, *Soils and Foundations*, Vol.32, No.2, pp.1-15, 1992.
- Towhata, T. and Ishihara K.: Modeling soil behavior under principal stress axes rotation, Proc. of 5th International conference on numerical method in geomechanics, Nagoya, pp.523-530, 1985.
- (社)土木学会原子力土木委員会:原子力発電所屋外重 要土木構造物の耐震性能照査指針,2005.

(2007.4.6 受付)

AN EFFECT OF VERTICAL EARTHQUAKE MOTION ON SEISMIC PERFORMANCE OF EMBANKMENTS ON TILTED BEDROCK

Yoshiya HATA, Koji ICHII, Takashi TSUCHIDA, Liming LI and Seiji KANO

The embankement on tilted bedrock often suffers seismic damage in the previous strong earthquake, and the level of vertical seismic motion by the earthquake in recent years was powerful; however, there is few previous study on the effect of the vertical seismic response of the embankments. Based on the seismic response calculation results using a FEM code 'FLIP', the effect of vertical earthquake motion on seismic performance of embankments with tilted bedrock were examined in this study.

The results indicate that the effects of the phase characteristics of the input earthquake motion in both horizontal and vertical motion are significant.