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   This paper focuses on the methodology for modeling the dynamic behavior of steel structures due to 
severe earthquake ground motions. The development of the Improved Applied Element Method for 
analyzing the entire behavior of large-scale steel structures up to total failure is briefly discussed. The 
main features of the method are illustrated. The presented case-studies show different collapse 
mechanisms of moment-resistance steel frame structure under severe ground motions. The results show 
high capability on simulating the observed damage of many steel structures due to recent earthquakes.  
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1. INTRODUCTION 
 
Starting in the 1960s, welded steel moment- 
resisting frame buildings have been regarded as 
being among the most ductile systems contained in 
the building code. Prior to Northridge Earthquake 
(1994), it had been believed that steel 
moment-resisting-frame buildings were essentially 
invulnerable to earthquake-induced structural 
damage and thought that should such damage occur, 
it would be limited to ductile yielding of members 
and connections (FEMA1)). The 1994 Northridge 
earthquake caused serious damage to modern steel 
structures. The brittle fractures of beam-to-column 
connections for the moment-frame buildings were 
widely observed (Miller2)). The damaged buildings 
were of various heights ranging from one story to 26 
stories. One year later, in the Kobe earthquake 
(1995), nearly one thousand steel buildings were 
damaged, as well as 90 buildings being collapsed, 
333 buildings being severely damaged, and 300 
being slightly damaged (Nakashima3) and Holguin4)). 
According to the FEMA report1), modern 
steel-frame buildings, specially constructed to sway 
rather than fracture during an earthquake, are more 

vulnerable to collapse than had ever been 
considered. A poor design could cause these often 
massive skyscrapers to crack, tilt and even collapse 
during violent shaking. To reduce such damage, it is 
important to understand its main mechanism. 
However, it is very difficult or practically 
impossible to perform damage tests for total 
collapse process of real scale steel structures, 
especially high rise buildings. Therefore, studying 
those phenomena requires powerful numerical tools 
that can extend the analysis up to complete failure. 
To obtain full knowledge of the total behavior of 
steel structures under severe ground motions, it is 
essential to simulate the collapsing process and the 
trace of yielding and deformation at each structural 
member. The reliable numerical models are highly 
required as a cost effective method of obtaining a 
comprehensive knowledge of the main parameters 
that affect response of structures under severe 
earthquakes. The advanced analytical methods 
enable engineers to predict the type and range of 
possible collapse in both the design stage and after 
incidents to enhance the safety of people in 
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structures. For that reason, recently, a significant 
amount of research works has been carried out to 
considerable research efforts dealing with collapse 
analysis have been developed such as Rigid Bodies 
Spring Model (RBSM)5), Extended Distinct Element 
Method (EDEM)6), combined FEM/DEM7), and 
Applied Element Method (AEM)8)~10). Nevertheless, 
none of them have yet been used for collapse 
analysis of steel structures. In order to guarantee 
decent accuracy of the solution in the case of 
modeling of steel structure using AEM, a very large 
number of elements will be required to extend the 
computer power and time needed for numerical 
simulation.  
Therefore, In this paper the formulations of 
Improved Applied Element Method (IAEM)11)~13) 
are presented, where the effects of geometric and 
material nonlinearities are considered. The main 
features and analysis capabilities of IAEM are 
discussed, and verification examples are performed 
to demonstrate the extreme efficiency of the 
developed code in performing inelastic analysis for 
steel structures. The IAEM requires a very small 
number of degrees of freedom compared to 
conventional AEM, while decreasing the CPU time 
needed for analysis and increasing the capacity of 
the solver. A case study shows the different collapse 
mechanisms of a nine-story steel structure model 
under severe ground motion excitations. The 
proposed method can be utilized to achieve better 
understanding of the response of structures toward 
ground motion, impact, fire, and hazardous blasting. 
 
2. APPLIED ELEMENT METHOD  
 
Only a brief introduction to the two-dimensional 
Applied Element Method is given here. The AEM is 
a recently developed technique for structural 
analysis (Meguro8)). The application of AEM to 
structural analysis is recognized as a powerful tool 
for analyzing the structural behavior from early 
stage of loading and up to the total collapse occurs 
(Tagel-Din10)).  
In AEM, the structure is modeled as an assembly of 
small rigid square elements. In two dimensions 
analysis, each element has three degrees of freedom. 
A pair of elements is connected with pairs of normal 
and shear springs uniformly distributed on the 
boundary line. Each pair of springs totally 
represents stresses and deformations of a certain 
area (hatched area in Figure 1) of the studied 
elements. Therefore, the normal and shear stiffness 
can be determined by Equation 1. 

Normal and Shear Springs

and shear springs
by a pair of normal 
Area represented 

d
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d/2

a

d

 

Figure 1  Area of influence of each pair of springs 

 
where d is distance between each spring; a is length 
of representative area; E and G are Young’s and 
shear modules of the material, respectively; and T is 
the thickness of element, which is considered 
constant for all springs attached to the element 
(Meguro 8)). 
The springs represent the microscopic material 
properties, such as stiffness and yield strength. The 
conventional AEM used in different engineering 
field has shown high accuracy and applicability for 
modeling reinforced concrete10), soil14) and 
masonry15). However, some applications are difficult 
to handle like huge steel structure buildings. Using 
the current version of AEM, elements with very 
small size should be used to follow the change in the 
thickness especially in non-rectangle cross sections 
(i.e. I Shape, Channel, and Boxed sections), since 
the element should be chosen to fit the flange 
thickness. In this paper, we introduce the Improved 
Applied Element Method which can easily handle 
this type of cases. 
 
3. IMPROVED APPLIED ELEMENT 

METHOD (IAEM) 
 
(1) Basic formulations  
IAEM is a newly developed method for structural 
analysis of large scale structural11)~13). It can follow 
total behavior of structures up to complete failure 
stage with high accuracy in reasonable CPU. In 
IAEM, each structural member is divided into a 
proper number of rigid elements connected by pairs 
of normal and shear springs uniformly distributed 
on the boundary line between elements. Two major 
extensions of the AEM8) have been implemented in 
IMEM: The first is improving the element type to 
use different thickness per each spring to be able to 
follow change of thickness in non-rectangular 
cross-sections. The second is using different 
thicknesses for calculating normal stiffness and 
shear stiffness in each pair of springs. These 

n
E d TK

a
× ×

=  and S
E d TK

a
× ×

=  (1)
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modifications allow modeling cross sectional 
geometric parameters of structural members using 
elements with large size. The value of normal and 
shear stiffness for each pair of springs can be 
determined as:   

i
i n
n

E d TK
a

× ×
=  And 

i
i s
s

E d TK
a

× ×
=  (2) 

where: d is the distance between each spring; a is 
the length of the representative area; E and G are 
Young’s and shear modules, respectively; i

nT  and 
i

sT are the thickness represented by the pair of 
springs “i” for normal and shear cases, respectively.  
A pair of rigid elements, as shown in Figure 2, are 
assumed to be connected by only one pair of normal 
spring stiffness ( i

nK ) and shear spring stiffness 

( i
sK ). The values of dx and dy correspond to the 

relative coordinate of the contact point with respect 
to the center of gravity. To have a global stiffness 
matrix, the location of elements and contact springs 
is assumed in a general position. The stiffness 
matrix components corresponding to each D.O.F. 
are determined by assuming a unit displacement in 
the studied direction and by determining forces at 
the centroid of each element. The element stiffness 
matrix size is only (6 x 6). Equation (3) shows the 
components of the upper left quarter of the stiffness 
matrix. All notations used in this equation are 
shown in Figure 2.  
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Figure 2  Contact Point and D.O.F 

Although in this method, we can change the 
characteristics of all springs surrounding any 
element, in practice, only changing the corner 
springs is needed for steel flanged sections. As 
shown in Figure 3, changing the ratios of (K1/K2) 
and (K3/K4) can control the stiffness of any element. 
That kind of improvement allows using many 
different flanged steel sections like I-beam, Box and 
Channel cross sections. Moreover, any cross section 
can be simulated by adjusting the values of the 
element height, number of springs, ratio of outer to 
inner thickness, and the ratio of normal to shear 
thickness. 

{

 

Figure 3  Element Shape for IAEM 

(2) Dynamic analysis in IAEM 
The general differential equation of motion, 
governing the response of structure in a small 
displacement range can be expressed as: 

}]{[)(}]{[}]{[}]{[ GUMtfUKUCUM ∆−∆=∆+∆+∆ (4)

where: [M] is mass matrix; [C] is the damping 
matrix; [K] is the nonlinear stiffness matrix; ∆f(t) is 
the incremental applied load vector; 
{ },{ },{ }U U U∆ ∆ ∆ and{ }GU∆ are the incremental 
acceleration, velocity, acceleration, and gravity 
acceleration vectors, respectively. The mass matrix 
and the polar moment of inertia of each element 
have been idealized as lumped at the element 
centroid. The lumped mass in each D.O.F direction 
can be calculated by summing the effect of small 
segmental masses represented by each spring 
considering the change of the springs’ thickness. 
Equation (5) represents the value of lumped mass in 
each degree of freedom direction assuming that 
elements have rectangular shape.  
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(5)

where: a and b are the element dimensions; ρ the 
density of the material considered; nsp is the 
number of connecting springs, and x

it and y
it are 

the thickness of spring ‘i’ the element local 
directions.  

(3) Geometric nonlinearity 
The geometric nonlinearity due to large 
displacement has been introduced by Tagel-Din and 
Meguro9). According to their concept, the AEM can 
follow the geometric nonlinearity under both static 
and dynamic load by applying a slight change in the 
equation of motion Equation (6).  

Gm RRtfUKUCUM ++∆=∆+∆+∆ )(}]{[}]{[}]{[ (6) 

where Rm represents the residual force vector due to 
cracking and incompatibility between strain and 
stress of each spring; and RG the residual force 
vector due to geometrical changes in the structure 
during loading.  
By assuming Rm and RG equal to null and solving 
Equation (6) to get {∆U}, the geometry of the 
structure can be modified to obtain the direction of 
spring force vectors according to the new element 
configuration. From the incompatibility between the 
applied force and the internal stress the value of RG 
is calculated. In case of considering the material 
nonlinearity, the material residual load vector Rm is 
calculated by checking the situation of cracking. 
However in case of elastic analysis Rm equals null.  

(4) Material nonlinearity 
Over previous decades, numerous researchers have 
developed and validated various methods of 
performing the inelastic analysis on steel frames 
based on second order inelastic analysis which can 
be categorized into two main approaches:   
1) plastic hinge based approach which is considered 
the most direct and simplified approach for 
representing the material nonlinearity. In this model, 
all elements are assumed to remain elastic except at 
the places where zero length plastic hinges are 
allowed to form16),17). This method accounts for 
inelasticity but it can’t account for the spread of 
yielding through the section. Therefore, it is not 
possible to capture member stability with enough 
accuracy for a wide range of beam-to-column 
problems18).  
2) Plastic zone analysis in which the spread of 
plasticity of the member is assumed to be modeled 

by subdividing the frame members into several 
finite elements. Furthermore, each element is 
subdivided into many fibers19),20). The plastic zone 
solution is known as an exact solution. This method 
has been used in IAEM whereas the connecting 
springs work as fibers. Once the strain of each 
spring is calculated, the stress state can be explicitly 
determined and the gradual spread of yielding 
traced.  

(5) Material Model 
A simplified uniaxial bilinear stress-strain model 
with kinematic strain hardening is adapted for 
representing the normal stiffness component of 
structural steel, as shown in Figure 4. In this model, 
the plastic range remains constant throughout the 
various loading stages. Although, this is not an 
entirely realistic representation of the material 
behavior, it allows for the hardening to be included 
while keeping the formulation simple. 

 
Figure 4  Material Model 

4. VERIFICATIONS OF THE PROPOSED 
TECHNIQUE 

Two examples are presented to demonstrate that the 
proposed IAEM for carrying out an elasto-plastic 
analysis for structures is efficient and accurate.  
(1) Example 1: long span steel beam  
The first example is a 16x40 wide flange section 
steel beam of 9.14 m span. The dimensions, 
supports, loading conditions, and cross section are 
shown in Figure 5. The beam has a modulus of 
elasticity of 205GPa and yield strength of 248MPa. 
The beam is loaded at one-third points along its 
span. With the IAEM, 24 general shaped elements 
are used including two boundary elements. However, 
22,357 square elements with a constant thickness 
are required to model the same beam using original 
AEM while taking in consideration the variation in 
thickness for flanges and web. Based on IAEM 
analysis, the sequences plastic collapse mechanism 
of the beam and the formation of the plastic zones 
are shown in Figure 6.The results obtained by the 
proposed method (IAEM) are compared with those 
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by Salmon21). The results are presented in vertical 
load versus deflection at the loaded point curve as 
shown in Figure 7. The comparison shows a very 
good agreement with the theoretical results.  

P
W 16x40

3.048 m. 6.096 m.

Figure 5  Long-span steel beam 

P=245 kN    ∆=16.8 mm 

P=296 kN    ∆=33.6 mm 

P=299 kN     ∆=48.3 mm

P=301 kN    ∆=60.0 mm 

P=289 kN    ∆=26.4 mm 

 
Figure 6  Formation of plastic zones 
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Figure 7  Ultimate load carrying capacity 

(2) Example 2: Portal steel frame  
The ultimate carrying capacity analysis for the 
rectangular portal frame (shown in Figure 8) had 
carried out. The frame was divided into 61 elements. 
The cross section and material properties of the 
members are listed in Table 1. The ultimate load 
capacity of the frame, according the experimental 
test that was carried out by Hodge22) was 133.0kN. 
However, based on IAEM, the maximum frame 
resistance is reached at load (P) of 136kN which is 

around 2% higher than the maximum recorded load 
during the experiment. The load-vertical 
displacement curve obtained by both IAEM and the 
Rigid Body-Spring discrete element Method 
(RBSM) obtained by Ren23) are plotted in Figure 9 
as well as the experimental data by Hodge22)]. 
Figure 10 shows the location of the developed 
plastic zones which are represented as dark areas in 
the figure. The results demonstrate the good 
agreement with experimental and RBSM results. 
Moreover, it can be also shown that unlike RBSM, 
the IAEM can follow the spread of yielding through 
the section. Therefore, it can capture member 
stability with enough accuracy for a wide range of 
beam-to-column problems. 
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Figure 8  Analysis Model 

Table 1  Cross-section and material properties of members 

Area  (A) 0.645x10-2 m2 

Moment of inertia (I) 1.0886x10-4 m4 

Yield strength   (Fy) 275.8 N/mm2 

Young’s modulus  (E) 209 kN/mm2 

Poisson’s ratio  (ν) 0.30 
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Figure 9  Ultimate load carrying capacity of the frame 
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Figure 10  Location of plastic hinges 

5. COLLAPSE OF MULTI-STORY STEEL 
BUILDINGS  
 
In this section, the IAEM is applied to investigate 
the validity of the proposed method in simulating 
progressive failure of steel structural buildings 
under hazardous load conditions. Concerning the 
collapse mechanisms of steel frames under severe 
ground motions, Figure 11 shows four common 
patterns of failure for severely damaged buildings 
based on IAEM analysis. From the figure, main 
causes of building collapse are illustrated, included: 
the global plastic building collapse, collapse of 
intermediate floors and collapse of upper floors. 

 
Figure 11 Failure modes of frames 

A detailed analysis of the collapsing process of a 
multi-story steel structure under severe ground 
motion conditions is presented in this section. 

(1) Structural model  
The structure considered is a plane nine-story steel 
frame with three bays of 9.00m long, as illustrated 
in Figure 12. The typical height per story is 3.75m. 
The dimensions of the structural members are given 
in Table 2. In this frame, columns are bent about 
their major axes and rigid connections are assumed. 
The building was designed in accordance with the 
1997 NEHRP recommended seismic provisions 
(Foutch24)). The steel is modeled as a bi-linear 
plastic material with a yield stress of 275 MPa and 
355 MPa for beams and columns, respectively, and 
a strain hardening ratio of 4% of the elastic modulus. 
Young’s modulus is taken as 205GPa. Rayleigh 
damping with 5% damping for the first fundamental 
mode is assumed. Using IAEM, only 477 elements 
are utilized for modeling the whole structure. 

(2) Seismic response  
The inelastic dynamic analysis has been performed, 
which integrates step-by-step the differential 

equations of motion corresponding to a given 
seismic input. Both material and geometric 
nonlinearity has been considered. Displacement 
time history analysis has been conducted of 
combined horizontal and vertical components of the 
first 40 seconds of the Hyogoken-Nanbu Earthquake 
(1995). The PGA of the horizontal component 
(KOBE/KJM000) was 813 gal and had a PGD of 
17.68cm while the vertical component 
(KOBE/KJM-UP) had a peak ground acceleration of 
336gal and a PGD of 10.29cm. 
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Figure 12  Nine-story steel frame 

Table 2  Cross sections assigned for a 9-story steel building 

Columns 
Story 

Exterior Interior 
Beams 

9 w14x342 w14x398 w21x62 
8 w14x342 w14x398 w27x94 
7 w14x398 w14x455 w33x118 
6 w14x398 w14x455 w33x118 
5 w14x455 w14x550 w36x150 
4 w14x455 w14x550 w36x150 
3 w14x455 w14x550 w36x150 
2 w14x550 w14x550 w40x183 
1 w14x550 w14x605 w40x183 

 
(3) Collapse analysis  
The seismic response of the moment-resisting 
steel-frame structure had been preformed using 
IAEM. It had been shown from the analysis that 
however plastic hinges had been deformed at the 
end of all beam-to-column connections, the frame 
did not collapse. Therefore, a virtual structure will 
be used in this paper to illustrate a simulation of the 
building collapse under two different failure modes. 
The first failure is ground floor type failure as 
illustrated in Figure 13. In the virtual frame a 
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reduction of 40 % of steel strength of the columns at 
ground level and lack of ductility in 
column-to-beam connections were assumed. The 
intense shaking caused the failure of load bearing 
columns in the lower floor level and cause 
progressive failure. According to the figure, firstly 
the ground motion excitation resulted in the 
formation of plastic hinges at several locations. The 
zones that have plastic deformation are represented 
by dark color in the figure. From the figure, it can 
be noted that most of the plastic hinges formed in 
beams, instated of columns, is due to the strong 
column-weak beam design philosophy. With the 
progress of time and formation of enough plastic 
hinges, the weakness of the strength and the low 
ductility demand of the ground floor level produced 
a failure in the ground floor columns. The end stage 
of the failure, illustrated in Figure 13, shows a good 
agreement with a recorded collapse case of 
multi-story steel buildings due to Hyogoken-Nanbu, 
Kobe Earthquake (1995) (as shown in Figure 14).  

8.50 sec 9.80 sec 10.50 sec

48.00 sec16.00 sec12.00 sec  
Figure 13  Soft–story damage at ground floor level 

 
Figure 14  Ground-level soft-story collapsed building during 

Kobe Earthquake, 1995 (by K. Meguro) 

Another well observed failure mode is the 
intermediate soft floor type of failure. This failure 
mechanism had been widely observed for many 
multi-story steel buildings due to the Kobe 
Earthquake (1995), as illustrated in Figure 15. The 
sequence of intermediate soft-story failure based on 
IAEM simulation is illustrated in Figure 16. The 
collapse had been initiated due to the same 
assumption of weakness of columns and reduction 
of ductility at intermediate floor level. The 
weakness of columns and the intensity of the ground 
motion develop inelastic behavior through the 
formation of yielding zones at the connections 
between beams and columns. Developing plastic 
zone hinges permit free lateral displacement of 
frame to occur and initiate the failure. The collapse 
process in Figure 16 represents a progressive 
collapse type in which the collapse is propagating to 
several floors. A detailed analysis of effect of 
enhancing the connection ductility on the 
mitigation of this progressive collapse using 
IAEM is given in [25]. The results show that with 
certain ductility level the collapse may be stop at 
only one-story-collapse as shown in Figure 15.      

 
Figure 15  Typical intermediate floor soft-story collapsed 
buildings during Kobe Earthquake, 1995 (by K. Meguro) 

9.00 sec 9.30 sec5.0 sec  

10.40 sec 10.80 sec9.50 sec  
Figure 16  Soft–story damage at intermediate level 
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From the results, it can be concluded that the 
collapse of large scale structures due to earthquakes 
can be performed with sufficient accuracy by using 
the well-verified and calibrated analysis tool 
(IAEM). The calculation time required for the 
simulation of complete failure required only 
approximately one and half hours on a personal 
computer. This was due to the simplification of the 
IAEM which assumes a much less number of 
elements compared to traditional methods. Such a 
minimal requirement of computational time, with 
acceptable accuracy, can be considered as a unique 
advantage of this model. 

6. CONCLUSIONS 

This paper has attempted to briefly trace the 
development of the IAEM for analyzing the entire 
behavior of large scale steel structures up to total 
failure. The main feature of this tool is to use as few 
elements as possible to model each structural 
component and to obtain a realistic representation of 
material and geometric non-linearity. The results 
indicate that the improved method is capable of 
accurately analyzing the ultimate load-carrying 
capacity of steel structures. Numerical examples 
showing the accuracy, efficiency, and the range of 
application are presented. The program is a useful 
tool for performing intensive parametric studies to 
achieve a deeper understanding of structural 
behavior of steel structures under strong ground 
motions. Our method can help engineers to 
investigate the performance of even high-rise 
buildings under different hazardous loads such as 
fire11)~13), explosion13) and ground motions. The 
mechanism of progressive failure and the effect on 
the neighboring buildings can also be simulated. 
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