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The modeling of earthquake loads as design inputs for inelastic sdof structures in sites lacking earthquake data is 
considered. The earthquake load is expanded as a linear summation of past recorded ground motions with unknown 
coefficients. The resulting nonlinear optimization problem is solved such that the structure inelastic deformation is 
maximized subject to a set of predefined constraints. The structure force-displacement relation is taken to possess an 
elastic-plastic behavior. Influences of yield strength and damping ratio on modeling earthquake inputs for inelastic 
structures and issues related to dissipated energy are explored. Numerical illustrations on modeling critical seismic 
load inputs for an elastic-plastic frame structure at a firm soil site are provided. 
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1. INTRODUCTION 
 
The problem of modeling earthquake ground 
motions as design inputs for engineering structures 
has received significant research attention 
worldwide. The present practice is to use the 
method of design response spectra, the time history 
analysis or the method of random vibration. On the 
other hand, the method of critical earthquake load 
modeling has been established, during the last three 
decades, as a counterpart to these methods. This 
method relies on the fact that, for many parts of the 
world, available data on strong earthquake ground 
motion is either inhomogeneous or insufficient. 
Given that each earthquake event brings out new 
surprises, it is thus of significant interest to develop 
robust specification for earthquake inputs to 
engineering structures. The recent December 2004 
Asia earthquake of magnitude 9.0 is a remarkable 

example in this direction (PEER Center)1). The huge 
energy generated by this earthquake beneath the 
Indian Ocean caused several tsunamis to spread out 
in all directions, affecting Sri Lanka, Southern India, 
and even the east coast of Africa. The massive 
waves washed over islands and crashed against 
coastlines in these countries. Tens of thousands of 
people were killed while millions became homeless.  

Early works on modeling critical earthquake 
loads has been carried out by Drenick2), Shinozuka3) 
and Iyengar4). An extensive overview of the 
development of this method is reported by 
Takewaki5), Abbas and Manohar6) and Abbas7). This 
method can be developed within deterministic 
and/or probabilistic framework. In the deterministic 
approach the earthquake load is defined as an 
acceleration time history or in terms of response 



 2

spectra. In the probabilistic approach the earthquake 
ground motion is modeled as a random process. 
Regardless of the framework adopted, critical 
earthquake loads depend upon the structure 
considered, the site soil conditions and the 
constraints imposed on the earthquake signal. In 
implementing this method, the earthquake load is 
taken to be known only partially. Subsequently, an 
inverse dynamic problem is solved to compute the 
unknown information on the seismic input, such 
that, a pre-selected damage variable of the structure 
is maximized. At the same time the computed load, 
termed as critical excitation, satisfies a set of 
constraints that impart known features of real 
earthquake ground motion. Since critical earthquake 
loads represent extreme load scenario, it is, thus, 
essential to consider the structure nonlinear 
behavior. 

While the problem of modeling critical 
earthquake loads for linear structures is widely 
studied, the determination of critical earthquake 
excitations for nonlinear structures, however, has 
been studied to a very limited extent in the existing 
literature5-7). Iyengar8) modeled critical earthquake 
loads for nonlinear Duffing oscillators by imposing 
a constraint on the input total energy. Drenick9) 
extended his earlier study on linear structures to 
nonlinear structures using equivalent linearization. 
He showed that the critical excitation for a 
nonlinear system is again, except for a constant 
factor, the time reversed impulse response function 
of the linearized system. Philippacopoulos and 
Wang10) developed critical inelastic response 
spectra using recorded ground accelerograms as 
basis functions in a series representation for the 
critical seismic excitation. Westermo11) defined 
critical response in terms of input energy to the 
system and determined critical excitations for 
elastic-plastic and hysteretic single-degree-of-
freedom (sdof) systems using calculus of variations. 
The critical loads for inelastic systems were not 
harmonic and at low frequencies the response is 
significantly larger than the harmonically excited 
response. A similar study to that reported by 
Westermo was carried out by Pirasteh et al.,12). 
These authors computed critical excitations for 
inelastic multi-story frame structures under 
deterministic earthquake inputs. The response 
variable adopted for maximization was chosen as 
the cumulative inelastic energy dissipation or sum 
of inter-story drifts. The objective functions, in this 
study, were evaluated using approximate methods 

to reduce the computational costs of the nonlinear 
dynamic response analysis of the optimization 
algorithm. Recently, Takewaki13,14) developed 
critical random earthquake inputs for sdof and 
multi-degree-of-freedom (mdof) elastic-plastic 
systems. This author utilizes the method of 
statistical linearization to approximately evaluate 
the structure response. The variable of optimization 
in these two studies has been the sum of the 
response standard deviations of inter-storey drifts 
normalized to yield drifts. More recently, Abbas 
and Manohar15) have developed a reliability-based 
framework for determining random critical 
earthquake loads for nonlinear structures. This 
study integrates methods of structural reliability 
analysis, response surface modeling and nonlinear 
programming in computing seismic inputs for 
structures having cubic force-displacement relations. 
The damage variable adopted in this study was the 
structure reliability index. 

The present study treats the problem of 
modeling critical earthquake loads for inelastic 
structures. The earthquake acceleration is modeled 
as a deterministic time history which is expressed as 
a linear combinations in terms of a set of past 
recorded ground motions. Subsequently, the 
coefficients of the series representation are 
computed such that the structure inelastic response 
is maximized subject to a set of predefined 
constraints. Namely, an upper bound on the 
earthquake total energy and peak values of ground 
acceleration, velocity and displacement are 
considered. The structure force-displacement 
relation is taken to possess elastic-plastic behavior. 
The resulting nonlinear optimization problem is 
solved by using the sequential quadratic 
optimization method. Since, to the best of authors' 
knowledge, the influence of yield strength and 
damping ratio on modeling critical earthquake 
excitations has not been studied earlier the present 
study examines these aspects. Additionally, for sake 
of comparison, critical earthquake inputs for the 
elastic structure are also computed. Numerical 
illustrations on modeling critical earthquake loads 
for an elastic-plastic frame structure found at a firm 
soil site are provided. 
 
2. INELASTIC SDOF STRUCTURES 

UNDER EARTHQUAKE LOAD 
 
The equation of motion for the relative 
displacement u(t) of an inelastic sdof system subject 
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to a single component of ground acceleration )(tug&&  
(see figure 1(a)) is well known to be given by16)  

)(),()()( tumuuftuctum gs &&&&&& −=++            (1) 
Here, m, c are mass and damping of sdof system 
and ),( uuf s &  is the spring restoring force. Figure 

1(b) depicts the nature of ),( uuf s &  for nonlinear 
systems with elastic-plastic force-displacement 
characteristic. Herein, the restoring force is not only 
a function of the displacement response but depends 
on the velocity response as well. The above 
equation of motion may describe the dynamic 
analysis of a single-storey frame structure or a 
piping system under a uniform ground motion )(tug&& . 
It may be noted that, for systems governed by the 
above equation of motion, the force-deformation 
relation is no longer a single valued relation. Thus, 
for a displacement )( itu  at time ti the spring force 
depends upon prior history of motion of the system 
and whether velocity response )( itu&  is increasing or 
decreasing. In the present study, damping is taken to 
be viscous, and, also, it is assumed that system 
starts from rest. Equation (1) can be recast as  

)(),()(2)( 2 tuuufututu gsy &&&&&& −=++ ωζω     (2) 

where, kmc 2/=ζ is the damping ratio, 

mk /=ω is the natural frequency for the linear 
system or for the elastic-plastic system undergoing 
small deformations (i.e. u < uy) and uy is the yield 
displacement. It may be recalled that, at larger 
amplitudes the natural vibration period is not 
defined for inelastic systems. The function ),( uuf s &  
may be defined as the spring restoring force in a 
dimensionless form. Referring to the above 
equation, it may be noted that for a given 
earthquake acceleration )(tug&& , the displacement 
response depends on the natural frequencyω , the 
damping ratio ζ  and the yield displacement uy (see 
figure 1(b)). Herein, uy = fy/k, where fy is the yield 
strength and k is the initial stiffness. The dynamic 
analysis of inelastic structures governed by 
Equation (2) can be carried out by integrating this 
equation. Alternatively, response of these systems 
can be characterized in terms of the inelastic 
displacement response normalized to the yield 
displacement (known as the ductility factor). 
Defining this factor as )(/)()( tutut y=µ  and 
substituting into Equation (2) one gets  
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Figure 1. (a) Inelastic sdof system (b) Elastic-
plastic behavior 
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It follows from this equation that the ductility factor 
for systems driven by a time-variant dynamical load 
is also a time-variant quantity. It may be observed 
that the expressions )()( tutu yµ&&&& = and 

)()( tutu yµ&& =  were employed in deriving the 
above equation. The constant 

mfa yy /= appearing in the right side of this 
equation may be interpreted as the acceleration of 
the mass necessary to produce the yield force fy and 

),( µµ &sf is the force-deformation relation in 
dimensionless form. Furthermore, the acceleration 
ratio yg atu /)(&& is the ratio between the ground 
acceleration and a measure of the yield strength of 
the structure. For instance, Equation (3) implies that 
doubling the ground acceleration )(tug&& will 

produce the same response )(tµ as if the yield 
strength had been halved. The response analysis of 
inelastic systems governed by the above equation of 
motion (or Equation (2)) is generally carried out 
using numerical integration techniques. 
 
3. CRITICAL EARTHQUAKE LOADS FOR 

INELASTIC SDOF STRUCTURES 
 
The ground acceleration )(tug&&  appearing in the 
right side of Equation (3) is taken to be known only 
partially. Specifically, the information available on 
the ground acceleration )(tug&&  is assumed to be 
limited to its total energy and peak values of ground 
acceleration, velocity and displacement. 
Accordingly, the problem of modeling critical 
earthquake excitations for elastic-plastic structures 
can be stated as computing )(tug&&  such that the 
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structure inelastic response is maximized subject to 
the following set of constraints 
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Herein, the quantities E, M1, M2 and M3 represent 
upper bounds on the energy, peak acceleration, peak 
velocity and peak displacement of the input ground 
motion. To determine these quantities, it is assumed 
that a set of earthquake records denoted by )(tvgi&& , 
i=1, 2, …, Nr are available for the site under 
consideration or from other sites which are 
geologically similar to the given site. The values of 
energy, peak values of acceleration, velocity and 
displacement are obtained for each of these records. 
The highest of these values across the ensemble of 
the records are taken to be the respective estimates 
of E, M1, M2 and M3. The set of available records 

)(tvgi&&  are further normalized so that the energy of 
each record is set to unity, and these normalized 
records are denoted by )(tvgi

&& . As a first step to 
solve this optimization problem the ground 
acceleration )(tug&&  is expanded in terms of  
normalized past recorded accelerations as follows  

∑
=

=
rN

i
giig tvatu

1

)()( &&&&                       (5) 

Here, ai, i = 1, 2, …, Nr is a set of Nr unknown 
constants, )(tvgi

&& is the ith normalized record and Nr 
is the number of available records. Mathematically, 
the problem of computing critical earthquake loads 
for inelastic sdof systems can be posed as 
computing the optimization variables ai, i = 1, 2, …, 
Nr, such that the structure inelastic response is 
maximized subject to the following constraints  
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This constitutes a constrained nonlinear 
optimization problem and is solved using the 

sequential quadratic programming method17). An 
initial guess for the optimization variables ai, i = 1, 
2, …, Nr, is supplied to the optimization program. 
Subsequently, the optimization routine performs a 
sensitivity analysis searching for new values for 
these variables. The optimization code converges to 
the optimal solution when the following criteria on 
the objective function and optimization variables 
are satisfied 

rijijjj Niaa ,...,2,1;||;|| 2111 =≤−≤− −− llµµ (7) 
Herein, j represents the iteration number, aij is the 
ith optimization variable at the jth iteration and 

21 , ll are the convergence limits. It may be 
emphasized that the structure inelastic response is 
determined by numerical integration of the equation 
of motion using the Newmark-β method. The details 
of the steps involved in the computation of optimal 
earthquake loads and the associated response can be 
summarized as follows: 
1. Define the structure parameters m, c, k, the 
yield strength in tension and compression fyt, fyc and 
determine the parameter ay = fyt/m. 
2. Set the initial conditions )0(µ and )0(µ&  and 
compute the corresponding quantity )0(µ&&  from the 
equilibrium of Equation (3). Herein, the initial 
conditions 0)0( =u and 0)0( =u&  and the 
transformation yutut /)()( =µ  are employed in 

determining )0(µ  and )0(µ& . 
3. Select the time step t∆  and calculate the 
constants of the Newmark-β method (a1 = β/ t∆ , a2 
= 2/β, a3 = 1 – 1/4β, a4 =1/ β t∆ 2). 
4. Determine the initial yield ductility points 

ytttyt utu
yt

/|)( ==µ and ||/|)( ycttyc utu
yc==µ . 

Here, tyt and tyc define the time points at which 
system starts to yield in tension and in compression, 
respectively. 
5. For t = tj use the value of the parameter KEY to 
establish the elastic or plastic state of the structure 
based on the following criteria  
• KEY = 0 implies elastic behavior  
• KEY = 1 implies plastic behavior in tension 
• KEY = -1 implies plastic behavior in 
compression 
6. Calculate the incremental effective force  

jjgj
y

j aaaau
a

F µζωµζωω
&&&&& )2()2( 3221

2
−+++∆

−
=∆      (8) 

7. Calculate the effective stiffness 

41
2 aakK pj ++= ζωω                     (9) 
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Here, kp = k for elastic behavior (KEY = 0) and kp = 
0 for plastic behavior (KEY = 1 or -1). 
8. Compute the incremental displacement  

j

j
j K

F∆
=∆µ                                  (10) 

9. Solve for the incremental quantity  
jjjj taaa µµµµ &&&& ∆+−∆=∆ 3212                     (11) 

10. Calculate the quantities 
jjj µµµ ∆+=+1 ; jjj µµµ &&& ∆+=+1          (12) 

11. Set the new value for the parameter KEY as 
follows  
• When the system is behaving elastically at the 
beginning of the time step then KEY = 0 if 

ytjyc µµµ << , KEY = -1 if ytj µµ > and KEY = -

1 if ycj µµ < . 
• When the system is behaving plastically in 
tension at the beginning of the time step then KEY 
= 1 if 0>jµ&  and KEY = 0 if 0<jµ& . 
• When the system is behaving plastically in 
compression at the beginning of the time step then 
KEY = -1 if 0<jµ&  and KEY = 0 if 0>jµ& .  
12. Compute the incremental quantity 

),(2)( 11
2

11
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1 +++++ −−
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= jjsjgj
y

j ftu
a

µµωµζωωµ &&&&& (13) 

Here, ),( 11 ++ jjsf µµ & is given as )(1 1+−− jj µµ  if 
KEY = 0, 1 if KEY = 1 and -1 if KEY = -1. 
13. Repeat steps 5 to 12 for all discrete points of 
time (j = 1, 2, …, Np, and Np is the number of 
discrete points of time) 
14. The optimal normalized inelastic response is 
computed as .|)(|max)(

1
j

Nj
m tt

p

µµ
≤≤

= The 

corresponding set of optimization variables ai, i=1, 
2,…, Nr define the critical )(tu g&&  (Equation 5) and 
associated critical inelastic response. 
 
4. NUMERICAL RESULTS AND 

DISCUSSIONS 
 
4.1 Structure considered 
 
To illustrate the formulation developed in the 
preceding section, the determination of optimal 
earthquake excitations for an elastic-plastic one-
storey frame structure is demonstrated in this 
section. The frame structure has a width L = 9.14 m, 
height h = 7.07 m and modulus of elasticity of 200 
Gpa. The beam carries a total dead load of 3×103 

N/m and columns are made of W8×24 steel section. 
The initial stiffness of columns is computed as 1.17 
×  105 N/m and damping ratio is taken to be 0.03. A 
sdof system is used to model the frame structure. 
The natural frequency of the elastic linear system 
was determined as 1.03 Hz. The spring yield 
strength in tension and compression is taken as 
1.5×104 and -1.5×104 N, respectively. This, in turn, 
leads to defining yield displacement in tension and 
compression as 0.1285 and -0.1285 m, respectively.  
 
4.2 Quantification of constraints 
 
The frame structure is taken to be located at a site 
with firm soil condition and is subjected to uniform 
earthquake ground motion )(tug&&  at both support 
points. A set of 20 earthquake ground motions (Nr = 
20) is used to quantify the constraints E, M1, M2 and 
M3

6). The selection of these records is based 
primarily on soil site conditions. This can be 
justified since earthquake accelerations measured 
on sites with similar soil conditions exhibit the same 
features (e.g. dominant soil frequency and Fourier 
spectrum). Thus, if the number of available ground 
motions at the given site is limited, records from 
other sites with similar geological soil conditions 
can be used. The question on the number of 
adequate records is difficult to be justified since the 
series representation (equation 5, page 4) does not 
converge as the number of records increases. 
However, it was observed in the numerical 
computations that 10≥rN  provides a smooth 
average Fourier spectrum for the site. Accordingly, 
it is hopped that this set of ground motions contains 
necessary characteristics of past records. Based on 
analysis of these records the following quantities 
are adopted; E = 4.17 m/sec1.5, M1 = 4.63 m/sec2 
(0.47 g), M2 = 0.60 m/sec and M3 = 0.15 m. The 
average dominant frequency of these records was 
observed to be around 1.65 Hz. The parameter β of 
the numerical integration algorithm is taken as 0.25, 
and, the time step t∆  = 0.01 sec which was found to 
give satisfactory results in the numerical integration 
of the equation of motion. The convergence limits 

1l  and 2l were taken as 10-4 and 10-6, respectively. 
The constrained nonlinear optimization problem is 
tackled by using the sequential quadratic 
optimization algorithm “fmincon” of the Matlab 
optimization toolbox18). As mentioned earlier, this 
algorithm requires the specification of an initial 
guess for the optimization variables ai, i = 1, 2, …, 
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Nr. In the numerical calculations, alternative initial 
starting solutions, within the visible region (which 
satisfy the imposed constraints), were examined and 
it was found that all guesses lead to the same 
optimal solution. 
 
4.3 Dissipated energy 
 
To gain more insights into nature of optimal 
earthquake loads computed it is of interest to 
quantify various forms of energy dissipated by the 
inelastic system. Several studies have utilized the  

Table 1 Constraint scenarios considered 
 

Case Constraints imposed 
1 
2 
3 

E & PGA 
E, PGA & PGV 

E, PGA, PGV & PGD 
 
energy dissipated by the structure in characterizing 
response analysis of dynamical systems19,20). 
Various energy terms can be quantified by 
integrating the structure equation of motion. Thus, 
the energy balance of the inelastic system is given 
as (see Equation (1))  

∫∫ ∫ ∫ −=++
u

g
u u u

s duumduuufduucduum
00 0 0

),( &&&&&&       (14) 

The right side of the above equation represents the 
input energy to the structure since ground starts 
shaking until it comes to rest. The first energy term 
of the left side is the kinetic energy EK(t) of the 
mass associated with its motion relative to the 
ground and is given as  

∫ ∫ ===
u u

K
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0 2
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      (15) 

The second term of the left side indicates the energy 
dissipated by viscous damping ED(t) given by 

∫ ∫==
u t
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0 0

2)]([)()( &&            (16) 

 
The third term is the sum of the recoverable strain 
energy ES(t) and the energy dissipated by yielding 
EY(t) and are given as  

∫
∫

−

=−==

t
ss

u
ssY

s
S

tEdtuuftu

tEduuuftE
k
tftE

0

0

)(),()(

)(),()(;
2

)()(

&&

&

       (17) 

 
In the present study, time-variations of energy terms 
given in Equations (15-17) are employed in quantif- 
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Figure 2. Critical )(tug&& for inelastic structure, case 
(1) (a) Time history (b) Amplitude spectra 
 
ying and characterizing various forms of energy 
dissipated by the inelastic dynamical system. 
 
4.4 Results and discussions  
 
To study the effect of alternative constraints 
imposed on critical earthquake excitations three 
constraint scenarios are examined (see Table 1). 
The numerical results obtained for the elastic-plastic 
structure are presented in figures (2) to (6) and 
tables 2-4. The critical earthquake load computed 
for constraint scenario case (1) is presented in figure 
(2). This figure shows the time history of the ground 
acceleration (figure 2(a)) and the Fourier amplitude 
spectra of )(tug&& (figure 2(b)). The associated 
structure inelastic response is plotted in figure 3(a) 
and the hysteretic loops for the restoring force-
displacement is shown in figure 3(b). Convergence 
of objective functions for inelastic and elastic 
structures are given in figure (4). The time-
variations of different energy forms dissipated by 
the inelastic and elastic systems are provided in 
figure (5). To study the influence of the structure 
yield strength on critical earthquake loads and 
associated inelastic response a parametric study was 
carried out. The yield strength was varied, while  
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Table 2 Response of inelastic structure for different 
constraint scenarios 

Case 1 2 3 

maxµ  
umax (m) 
up    (m) 

2.81 
-0.3602 
-0.0348 

2.73 
-0.3507 
-0.0319 

2.68 
-0.3443 
-0.0292 
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Figure 3. Response of elastic-plastic structure, case 
(1); (a) Displacement (b) Restoring force-
displacement hysteretic loops 
 
other parameters are kept unchanged, and the 
earthquake acceleration is computed for each value 
of yield strength. Figure (6) shows part of these 
results. A similar study to examine the effect of 
damping ratio on critical inputs for inelastic 
structures was also carried out. Results of this 
parametric study are presented in table 3. Based on 
studying these results the following observations are 
made: 
 
1. It is observed that the critical ground 

acceleration for the elastic-plastic structure is 
rich in frequency content and possesses a peak 
amplitude at a frequency close to the natural 
frequency of the elastic system (see figures 2(a) 
and 2(b)). This peak, however, is seen to be 
significantly smaller than that observed in  
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Figure 4. Convergence of objective function, case 
(1); (a) Inelastic structure (b) Elastic structure 
 

critical )(tug&& for the elastic structure. It 
emerges also that the Fourier spectrum of 
critical )(tug&&  has peak amplitude at the 
dominant frequency of past records (see figure 
2(b)). 

2. It is evident from the numerical results on 
critical ductility factor and associated inelastic 
displacement response that the time variation of  
the structure deformation differs from that of 
the elastic system (see figure 3(a)). Unlike the 
elastic system, inelastic system after it has 
yielded does not oscillate about its initial 
equilibrium position. Yielding causes the 
structure to drift from its initial equilibrium 
position and system oscillates around a new 
equilibrium position until this gets shifted by 
another yielding. Accordingly, after the ground 
stops shaking, the structure comes to rest at a 
position different from its initial equilibrium 
position. In other words, the structure 
permanent deformation remains after ground 
stops shaking. For instance, the permanent 
displacement response of the structure up was -
0.0348 m. Additionally, the maximum value of  
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Figure 5. Dissipated energy, case (1) (a) Inelastic 
structure (b) Elastic structure 

 
Table 3 Response of inelastic structure for different 

damping ratios, case (1) 
Damping ratio 0.02 0.03 0.05 

maxµ  
umax (m) 
up    (m) 

3.25 
-0.4167 
-0.0493 

2.81 
-0.3602 
-0.0348 

2.36 
-0.3026
-0.0215

 
the structure deformation and the point at which 
it occurs are different from those of the elastic 
system. Thus, the peak displacement response 
for the inelastic structure, case (1), is around -
0.3602 m while the corresponding value for the 
elastic system was -0.5731 m. These peaks 
occur at t = 4.42 sec and t = 4.84 sec for the 
inelastic and elastic systems, respectively. The 
maximum value of the ductility factor was 
computed to be 2.81. 

 

3. The convergence rate of the objective function 
with respect to the number of iterations of the 
optimization algorithm is seen to be faster for 
the elastic structure compared to that of the 
inelastic structure. While the objective function 
for the linear case reaches initial convergence to 
the optimal solution within about 800 iterations, 
the corresponding number of iterations when  

Table 4 Sensitivity of objective function to 
constraint parameters, case (1) 

Parameters E M1 M2 M3 

1ε  

2ε  
0.22 
14.83

0.06 
3.64 

0.04 
18.73 

0.02 
37.47 

 

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time sec

E
ne

rg
y 

 N
 m

 f
y
 = 104          

 f
y
 = 1.5× 104

 f
y
 = 2× 104  

 
Figure 6. Energy dissipated by yielding, case (1) 
 

inelastic behavior is considered is around 1000. 
The final convergence of the objective function 
for the elastic system is achieved within 1100 
iterations, while for inelastic system the final 
convergence is achieved within 4800 iterations 
(see figure (4)). Furthermore, as might be 
expected, the computation CPU time necessary 
for the convergence of the objective function in 
the case of inelastic system is around three 
times that for the elastic system. 

 
4. The inelastic structure dissipates energy, mainly, 

through yielding and viscous damping. This is 
evident since kinetic and recoverable strain 
energy terms diminish near the end of the 
ground shaking (see figure 5(a)). Viscous 
damping dissipates less energy from the inelastic 
system compared to that for the elastic system 
(see figures 5(a) and 5(b)). This is not surprising 
given that velocity response is higher for the 
elastic system. It is also obvious that the input 
energy to inelastic system differs from that for 
elastic system. Input energy to inelastic system, 
at point of maximum response, is significantly 
higher compared to other time points. 

 
5. It is seen that the velocity and displacement 

constraints do not influence the derived critical 
earthquake inputs significantly. The effect of 
these constraints on the associated structural 
responses was also seen to be small (see Table 2). 
Accordingly, it can be concluded that energy and  
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Figure 7. Variation of inelastic response with 
respect to natural frequency 
 

acceleration constraints (case 1) are adequate to 
provide realistic earthquake loads. 

 
6. The effect of the structure yield strength on the 

computed earthquake acceleration is seen to be 
significant. It is observed that for lower yield 
values the structure yields more frequently and 
for longer intervals. The structure dissipated 
energy, due to the inelastic behavior of the 
structure, is seen to be higher for higher yield 
strength (see Equation 17). Additionally, with 
higher yielding strength, the structure maximum 
response increases. Thus, the peak inelastic 
response associated with yield strength 104, 1.5 
×104 and 2 ×104 N were -0.2875, -0.3602 and -
0. 4213 m, respectively. The associated ductility 
factors were 3.36, 2.81 and 2.46, respectively. 
The corresponding permanent deformation is -
0.0221, -0.0348 and -0.0536 m, respectively. 

 
7. The influence of damping ratio on the structure 

inelastic deformation was seen to be significant 
(see Table 3). As might be expected, for higher 
damping ratio the structure maximum inelastic 
response is seen to reduce. Thus, the structure 
maximum inelastic deformation was computed 
to be -0.4167, -0.3602 and -0.3026 for damping 
ratios 0.02, 0.03 and 0.05, respectively. The 
corresponding ductility factors were 3.25, 2.81 
and 2.36, respectively. Similarly, the permanent 
deformation of the inelastic system reduces for 
higher values of damping ratio. 

8. In order to study the sensitivity of critical 
response with respect to variations in values of 
constraints (E, M1, M2 and M3), a limited amount 
of sensitivity analysis using numerical methods 
have been carried out. To study the sensitivity of 

critical response with respect to a specific 
parameter, the value of this parameter is changed 
by 1 per cent while other parameters are held 
fixed at their respective specified values. The 
optimization problem is re-solved with this 
change in place. This leads to the calculation of 
the percentage change in the critical response, 
denoted by 1ε , and also the ratio of change in 
the response value to the change in the 
parameter value, denoted by .2ε  These 
parameters provide an idea about the sensitivity 
of the objective function to the constraints. Table 
4 summarizes the results of this calculation for 
constraint scenario (1). It evident from this table 
that the change in energy constraint alters the 
optimum solution considerably compared to 
similar changes in other parameters. 
Accordingly, it can be concluded that the 
optimum solution is more sensitive to the energy 
constraint compared to the constraints on peak 
values of acceleration, velocity and displacement. 

Finally, with a view to investigate the effect of the 
natural frequency of the structure on the derived 
critical ground acceleration and associated structure 
inelastic response, an additional study is carried out. 
Herein, the structure natural frequency was varied 
(by varying the structure mass while other 
parameters are kept unchanged) and critical )(tu g&& is 
computed. These results are presented in figure (7). 
It follows from this figure that the natural frequency 
of the linear system significantly influences the 
critical acceleration and associated structure 
inelastic response. Structures having natural 
frequency close the dominant natural frequency of 
the site under consideration produce higher inelastic 
response compared to structures that have their 
natural frequency far from site dominant frequency. 
 
5. CONCLUSIONS 
 
The modeling of earthquake ground motion as 
design inputs for inelastic single-degree-of-freedom 
structures is studied. The earthquake load is 
modeled as a deterministic time history which is 
expressed as a linear combinations of past recorded 
ground motions. The coefficients of the series 
representation are computed such that the structure 
inelastic response normalized to yield displacement 
is maximized under a set of predefined constraints. 
These constraints are taken to reflect known 
characteristics of actual recorded ground motions at 
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the site under consideration. Particularly, 
constraints on the total energy of the earthquake 
signal, and, bounds on peak values of ground 
acceleration, velocity and displacement are 
considered. The structure force-displacement 
relation is taken to possess an elastic-plastic 
behavior. The resulting nonlinear optimization 
problem is solved by using the sequential quadratic 
optimization method. It is shown that critical 
earthquake loads for the elastic-plastic structure 
differ from that for the same structure with linear 
behavior. Similarly, the time variation of the 
structure deformation differs from that of the elastic 
system. Unlike the elastic system, the inelastic 
system after it has yielded does not oscillate about 
its initial equilibrium position. Yielding causes the 
structure to drift from its initial equilibrium position 
and system oscillates around a new equilibrium 
position until this gets shifted by another yielding. 
The time-variation of alternative energy forms for 
the inelastic structure differ from those for the linear 
structure. Furthermore, it is seen that the inelastic 
structure dissipates the input energy, mainly, 
through yielding and damping. The present study, 
also, examined the influence of the structure yield 
strength and damping ratio on the derived 
earthquake load and associated structure response. 
It was found that for lower yield values the structure 
yields more frequently and for longer intervals. The 
effect of damping ratio was seen to be significant in 
reducing the structure inelastic deformation. 

The proposed formulation was demonstrated with 
reference to the inelastic seismic response analysis 
of a frame structure modeled as a sdof system. 
Given the complexity of engineering structures, it is 
thus of significant interest to extend this 
formulation to mdof structures. It is also of 
significance to investigate the influence of treating 
nonlinear damping models in computing critical 
earthquake inputs for inelastic structures. 
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