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   The study addresses the influence of local soft valley sediment on incident wave propagation and the 
relative response of two adjacent bridge structures. In contrast to previous studies the effect of various 
angles and dominant frequencies of the incident waves and soil-structure interaction (SSI) is considered. 
The investigation reveals that the local soft soil can significantly alter the spatial variation and also 
frequency content of the surface ground motions. The simultaneous effect of soil-structure interaction and 
the spatially varying ground excitations due to inclined incident waves are significant for an adequate 
estimation of the damage potential of bridge girders due to poundings and insufficient seat length.  
 

Key words: Relative displacement, non-uniform ground motions, soil-structure interaction, bridge 
structure, local soft sediment 

 
 
 

1. INTRODUCTION 
 
Bridge damages due to girder poundings or 
unseating have been observed in almost all major 
earthquake events such as the 1989 Loma Prieta 
earthquake1), the 1994 Northridge earthquake2) and 
the 1995 Kobe earthquake3). Girder pounding and 
separation are strongly determined by the relative 
displacements of the adjacent girders. They are 
therefore defined not only by the ground motions 
but also the relationship between the dynamic 
properties of the adjacent bridge structures. Studies 
on bridge relative responses focused on the causes 
of pounding responses, how their damaging effect 
can be reduced, and on design recommendations for 
mitigating the earthquake load effect on the 
responses of adjacent structures. However, most of 
the studies are based on assumption of uniform ground 
excitation and fixed-based structures. DesRoches 
and Muthumar4), for example, investigated the 
response of two bridge segments using single- 
degree-of-freedom (sdof) systems. Ruangrassamee 
and Kawashima5) proposed relative displacement 
response spectra for determining girder seat length. 

Jankowski et al.6) investigated various measures for 
reducing pounding effects. Recommendation of 
many current design regulations such as by 
Caltrans7) or Japan Road Association8) are also based 
on these assumptions. 

Since it is the nature of a bridge to span a large 
distance, such as a wide river or a valley, the bridge 
piers are often far apart. The ground motions at 
these distant pier locations are likely not the same 
owing to the propagation of seismic waves. Besides 
bridge structures on soft soil can behave differently 
than bridge on hard soil. Consequently, the results 
obtained from analyses with fixed-base structure 
assumption can differ from the ones with soil- 
structure interaction. Zanardo et al.9) and Chouw and 
Hao10), 11) confirmed the significance of the effect of 
spatially varying ground excitations on the relative 
bridge responses. Many works on pounding 
responses between bridge girders are published in 
the past, however, investigation on the simultaneous 
effect of inclined incident waves and local soft soil 
is unknown. In this study the effect of incident wave 
characteristics and the valley sediment on relative 
responses of two bridge segments is considered. 
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2. BRIDGE STRUCTURE, SUBSOIL AND 
INCIDENT WAVES 

 
Figure 1 shows the considered system. Two subsoil 
configurations are chosen:  
(1) A uniform half-space with a valley of 20 m 

depth and a width of 380 m at the bottom. 
(2) The valley with soft sediment of 150 m depth 

(marked by dash-dotted line). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The half-space consists of hard soil with a shear 

wave velocity of 600 m/s, a Poisson’s ratio of 0.33 
and a density of 2200 kg/m3. The soft sediment has 
a shear wave velocity of 100 m/s, a Poisson’s ratio 
of 0.33 and a density of 1800 kg/m3. It is assumed 
that the subsoil has no material damping. In Figure 2 
the two bridge segments are presented. For 
simplicity the displacement of each girder is 
described by a single-degree-of-freedom (sdof). 
Thus if the soil-structure interaction effect is 
neglected, each of the multiple-pier bridge segment 
is modeled as a sdof system with a mass of 1000 t 
(indicated in black) with an assumed fixed base.  

 
 
 
 
 
 
 
 
 
 
 
 
 

If soil-structure interaction is considered, a 
surface foundation of 9 m x 9 m is assumed. The 
bridge structures and their foundations are described 
by a finite element method, and the subsoil by a 
boundary element method. The displacements of the 
left and right girders are u1(t) and u2(t), respectively. 
When the approaching relative displacement |u1(t)- 
u2(t)| is larger than the gap size, pounding takes 

place.  When  the separating relative displacement  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
|u2(t)-u1(t)| is larger than the seat length, unseating 
occurs. Corresponding to the current Japan Road 
Association design regulation8) the relative responses 
are studied as a function of the fundamental 
frequency ratio of the adjacent bridge structures. It 
is assumed that the left and right bridge segments 
will experience only horizontal ground motions at 
the locations A and B (Figure 1). Both locations are 
95 m away from the centerline of the valley. It 
should be mentioned that the simplification of a 
multiple-pier structure to a single-pier system might 
overestimated the spatial ground motion effect, 
because multiple-pier system tends to average out 
the influence of the spatial ground variation12). 

In order to limit the influence factors and to 
enable a clear interpretation of the result, incident 
waves of a Ricker waveform with a single dominant 
frequency fd is chosen. Figures 3(a) and (b) show 
respectively the time history ui and the 
corresponding Fourier spectrum amplitude |ui| of the 
wavelet with the dominant frequency fd of 0.5 Hz. 
The direction of the wave propagation is defined by 
the angle M. The wave front is perpendicular to the 
wave propagation direction. In this study vertical 
wave propagation (M = 90o) and an inclined 
propagation with M = 30o are considered. 

ug1 (t) ug2 (t) 
A                         B

u1 (t)
u2 (t) 

Figure 2. Simplified bridge model
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Figure 1. Overview of the considered system: bridge, valley and subsoil 
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(1) Incident wave formulation 
The differential equation of Lamé-Navier describes 
the displacement field of a linear-elastic continuum. 
Under the assumption of homogeneous initial 
conditions and vanishing body forces this 
differential equation can be transformed to the 
boundary integral equation13) 

 

( ) ( ) ( )

( ) ( )

*

0

*

0

, , , , ,

, , , ,

t

ik k ik i

t

ik i

c u t u t t d d

t t u d d

τ τ τ

τ τ τ

Γ

Γ

= Γ

− Γ

∫ ∫

∫ ∫
x

x

x

x

ξ x ξ x

x ξ x

  (1) 

 
where tik

*  and uik
*  are the fundamental solutions14) 

for traction and displacement at the field point x at 
time t, caused by a Dirac-load acting at the 
boundary point  ξ  at time τ. iu  and it  represent 
displacement and the traction boundary values. Γx  
is the integration over the boundary Γ  with respect 
to x. The matrix ikc  includes the integral-free 
terms, which depend on the geometry in the vicinity 
of the source point ξ . 

For the case of scattering of incident waves 
Equation (1) cannot be applied directly to the total 
wave field, because it does not satisfy the radiation 
conditions. The superposition of the incident and 
scattered wave fields is thus applied and Equation 
(1) takes the form 
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where uii is the incident displacement vector at the 
boundary. Generally, for each point on the boundary 
Γ either the displacement or the traction are known, 
and Equation (2) is used to determine the unknown 
boundary values. 

For the numerical solution, the boundary integral 
equation (2) is discretized in time and space and 

then solved. The time integration of Equation (2) for 
the boundary values can be carried out analytically 
leading to functions that depend on space variables 
only. For arbitrary boundary geometry, these 
functions cannot be integrated analytically. 
Therefore, the boundary Γ is divided into constant, 
linear or quadratic isoparametric boundary elements. 
Equation (2) can be written in the form 
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where Tik  and Uik  are the traction and displace- 
ment kernels, respectively, resulting from the 
temporal integration of the fundamental solution. 
The outer summation in Equation (3) is carried out 
over the total number of elements L and the inner 
one is carried out over the number of time steps N. 
After integration, Equation (3) can be written in 
matrix notation as: 
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where Um and Tm  are the coefficient matrices of 
the system at time m ∆t. For the current time step N, 
all traction vectors tm , m = 1 to N, and previous 
displacement vectors um, m = 1 to N-1, are known. 
More details and verification of the algorithm can be 
found in Adam et al.15). The validity of the approach 
has been verified in a comparison of the results with 
the ones obtained using 3D BEM approach in the 
time domain15). 
 
(2) Relative response of adjacent bridge structures 
In the analysis of girder relative responses the 
bridge structures with foundations and the subsoil 
are described in the Laplace domain using finite 
elements and boundary elements, respectively. To 
incorporate the effect of girder pounding and 
separation the analysis is performed subsequently in 
the Laplace and time domain. The governing 
equation of each bridge segment with subsoil in the 
Laplace domain is 
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The superscripts b and s stand for the bridge and 
subsoil, respectively. The superscript n indicates the 
left or the right bridge segment. The subscripts b 
and c stand for bridge and contact-degree-of- 

(a)      Time [s] (b)  Frequency [Hz] 
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Figure 3. Incident ground displacement. (a) Time history ui(t) 
and its corresponding Fourier amplitude |ui| (f) 
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freedom at the interface between the bridge pier 
foundation and the subsoil, respectively. The tilde 
indicates a vector or matrix in the Laplace domain.  
  After transforming the surface ground motions 
from the time domain into the Laplace domain 
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0
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where s i= +δ ω is the Laplace parameter and 
i = −1 , the linear response { }~( )u s of both bridge 
structures can be obtained using Equation (5). A 
transformation of the results from the Laplace to the 
time domain gives the time history of the structural 
responses, and the girder relative displacements can 
be determined. 
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By examining the linear relative responses the 
instant when pounding takes place can be 
determined. To incorporate the pounding effect the 
unbalanced forces are defined using the relative 
displacement and the condensed stiffness of one of 
the subsystems  
 

       
)~~~~~ n

up
n
uu

n
pu

n
pp

*n
pp K)K(K(-KK -1=

         
       

The subscripts p and u stand for the pounding- 
degree-of-freedom and the other dofs of the 
considered subsystem. Since the two subsystems are 
now in contact the condensed stiffness has to be 
added to the stiffness of the uncondensed subsystem. 
Using the unbalanced forces and the stiffness of the 
coupled subsystems the corrective term can be 
determined, and the linear responses are corrected in 
the time domain from the instant when the pounding 
occurs. An examination of the results reveals the 
instant when the girders separate, e.g. at time ts. The 
unbalanced force to incorporate the separation effect 
is equal to the contact force. The corrective term is 
determined using Equation (5) of the uncoupled 
subsystems. Using the corrective term the results 
can be corrected from time ts. The actual responses 
are checked again for further poundings. The 
calculation is complete if no more pounding or 
separation occur. Details of the nonlinear 
soil-structure interaction procedure are described in 
the reference16). The validity of the approach has 
been confirmed in a comparison of the results with 
those obtained directly in the time domain using a 
step-by-step numerical integration procedure16).  

 

3. ALTERATION OF GROUND MOTIONS 
 
Figures 4(a) and (b) show the alteration of the 
maximum ground surface displacement and 
acceleration due to the hard soil valley, respectively. 
The ratios ug, max / ui, max (-) and ag, max / ai, max (-) are 
the amplification factors of the surface ground 
motions with respect to the maximum incident 
ground displacement ui, max and its corresponding 
ground acceleration ai, max. If the valley does not 
exist, the displacements and accelerations at all 
surface locations will experience an amplification 
factor of 2.0. The 20 m depth valley reduces the 
ground motions around the edges (locations C and D 
in Figure 1). Amplification takes place at about the 
middle of the valley escarpments (between C and E, 
and D and F). While incident waves with fd of 0.5 
Hz causes a reduction along the valley bottom, all 
other incident waves with higher frequencies produce 
almost the same ground displacement at the valley 
centerline as the case without a valley. Incident 
waves with fd of 1.0 Hz even amplify the ground 
acceleration (Figure 4(b)). The alteration of the peak 
ground displacement (PGD) and acceleration (PGA) 
depends strongly on the frequency content of 
incident waves and the shape of the valley. 

Figure 4(a) and (b). Alteration of horizontal ground motions 
along the valley surface. (a) Maximum surface displacements 
and (b) surface accelerations 
 
  In Figure 5 the influence of the incident wave 
dominant frequency fd, and incident angle M on the 
ground displacements and accelerations at the 
locations A and B is displayed. The left, middle and 
right columns show the ground motions due to 
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incident waves with fd of 0.5 Hz, 1.0 Hz and 2.0 Hz, 
respectively. In Figure 6 an additional effect of soft 
sediment is considered. Since the valley has a 
symmetrical shape, vertically propagating waves 
will produce the same ground motions. The inclined 
incident waves cause clearly non-uniform ground 
motions, and the amplitude at the left pier location 
A is smaller than the one at the right pier location B. 
In the case of uniform hard soil the influence of the 
wave dominant frequency fd can be seen in the 
change of the ground displacement amplitudes. 
Even though all cases have almost the same PGA 
around 3 m/s2, incident waves with low dominant 
frequencies cause larger surface ground displace- 
ments (compared, e.g. Figure 5(c) with 5(a)). In the 
case of valley with local soft soil lower dominant 
frequencies of incident waves cause larger ground 
displacements (Figures 6(a)-(c)), and also acceler- 

ations (Figures 6(d)-(f)). Compared with the case of 
uniform hard soil the local soft sediment generates 
longer duration of ground motions. The inclined 
incident waves with fd of 1.0 Hz and 0.5 Hz produce 
much stronger ground motions (thin and bold lines) 
than the one due to vertically propagating incident 
waves (bold dotted line). 
  Figure 7 shows the alteration of the frequency 
content of surface ground accelerations along the 
valley due to the local soft sediment. The left and 
right columns are the case without and with local 
sediment, respectively. Only vertically propagating 
incident waves are considered. The dominant fre- 
quency increases with the incident wave frequencies 
fd of 0.5 Hz, 1.0 Hz, 1.5 Hz and 2.0 Hz 
correspondingly from 0.85 Hz, 1.65 Hz, 2.4 Hz to 
3.2 Hz. 
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Figure 5(a)-(f). Effect of the dominant frequency fd and propagation angle of the incident waves on the non-uniform half-space 
ground motions. (a)-(b) Ground displacements ug and (d)-(f) ground accelerations ag 
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non- uniform half-space ground motions. (a)-(b) Ground displacements ug and (d)-(f) ground accelerations ag 
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Figure 7(a)-(d). Influence of the dominant frequency fd of the incident waves on the response spectra of surface ground acceleration 
along the valley bottom with a damping ratio of 5 %. (a)-(d) Uniform hard soil and (e)-(h) soft sediment over hard soil 
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Figure 8 shows the maximum response spectrum 
values of the surface ground accelerations along the 
valley without local soft sediment. With increasing 
fd the values alter strongly along the valley.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 9 the additional effect of the local soft soil 
is presented. The results clearly show that compared 
to the valley effect the local soft sediment causes 
much stronger alteration of the frequency content 
of the ground motions along the valley. 
 
 
4. RELATIVE RESPONSE  OF  ADJACENT 
BRIDGE STRUCTURES 
 
In this study it is assumed that the gap between the 
girders is 0.05 m, and the fundamental frequency f1 
of the left bridge segment with an assumed fixed 
base is always 1.0 Hz.  

Figure 10 shows the SSI effect on girder 
displacements. Uniform ground excitations and a 
fundamental frequency ratio f2/f1 of 1.0 are assumed. 
The bridge is located on the soft sediment, and the 
incident waves with the propagation angle M of 30o 
have the dominant frequency fd of 2.0 Hz. The 
displacements u1 and u2 of the left and right girders 
without SSI are plotted as dash and dash-dotted lines, 
respectively, and the ones with SSI as thin and bold 
lines. The result without SSI confirms the recommen- 
dation of many current design regulations such as 
Caltrans7) or Japan Road Association8) for mitigating 
pounding by adjusting the natural frequencies of 
neighbouring structures. If the considered adjacent 
structure have the same fundamental frequency and 
experience the same ground motions, thus both 
girders respond in phase. Consequently, no pounding 
takes place. If SSI is considered, smaller girder 
responses can be observed, because in the considered 
case the soft subsoil move the system fundamental 
frequency further away from the dominant frequency 
of the ground motions. Pounding also does not occur. 
  If non-uniform ground accelerations are considered, 

a fixed base assumption of the bridge structures will 
also cause no pounding (u1 = dash line, and u2 = 
dash-dotted line in Figure 11). SSI will, however, 
cause pounding, e.g. at 5.8 s, 7.0 s or 8.1 s (u1 = thin 
line, and u2 = bold line).  
  Figure 12 shows the girder responses with and 
without poundings due to non-uniform ground 
motions including the quasi-static responses owing 
to spatially varying ground displacements. Even 
though the ground displacements with a maximum 
value of around 0.02 m (see Figure 6(c)) are not 
large compared to the one due to incident waves 
with fd of 0.5 Hz (Figure 6(a)), they cause a later 
first pounding at 7.0 s (compared to the response at 
5.8 s in Figures 11 and 12). In the considered case 
both considered bridge segments are equally strong. 
However, the right bridge segment experiences 
stronger excitation. Consequently, it can force its way, 
and causes a reduction of the left girder response. 
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Figure 8. Influence of the dominant frequency fd of the 
incident waves on the alteration of the ground motion 
frequency content along the hard soil valley bottom surface 

Location along the valley surface (m) 

0
5

10
15
20
25

0
5

10
15
20
25

0
5

10
15
20
25

0
5

10
15
20
25

0 95 190 285 380

With soft sediment 

fd = 0.5 Hz 

(b) 

(d) 

Without 

(a) 

(c) 

With soft sediment 

Without 

With soft sediment 

Without 

With soft sediment 

Without 

fd = 2.0 Hz 

Figure 9(a)-(d). Effect of the soft soil sediment on the alteration 
of the frequency content of the ground acceleration along the 
valley bottom due to incident waves with the dominant 
frequency fd of (a) 0.5 Hz, (b) 1 Hz, (c) 1.5 Hz and (d) 2 Hz 

Location along the valley surface (m) 

fd = 1.0 Hz 
 
 
 
 
 
 
 
fd = 1.5 Hz 

ag (m/s2) 



8 

  The results clearly show that the commonly 
followed approach by assuming uniform ground 
excitations can underestimate the pounding potential, 
and consequently the damages of structures. 
  Figure 13 shows the effect of non-uniform ground 
excitations, the dominant frequency of incident waves 
and their propagation direction on the girder relative 
displacements. The effect of the local soft soil is not 
considered. Since the uniform soil is hard, SSI effect 
is neglected. The responses are given as a function 
of the fundamental frequency ratio f2/f1 of the right 
bridge segment to the left structure. The approaching 
and separating displacements are the displacements 
when the two girders come closer toward each other 
and when they move away from each other, respect- 
ively. They are indicated by solid, dash or dash- 
dotted lines correspondingly. Except the results in 
Figure 15 caused by vertically propagating waves, all 
results are due to incident waves with Mof 30o. 

  In Figure 13(a) uniform ground excitations (ag2 = 
ag1) and fixed-base structures are assumed as per- 
formed in most of current practices. In the case of a 
frequency ratio f2/f1 of 1.0 the in-phase responses will 
not cause pounding or separation. The approaching 
displacement with pounding effect of 0.05 m repre- 
sents the chosen gap size (dash-dotted line). If the 
right structure is stiff, poundings cause a reduction 
of the required seat length (black solid line). In 
contrast, if the right bridge segment is more flexible 
than the left bridge structure, poundings cause an 
amplification of the required seat length (compared 
solid thin with solid bold line for f2/f1 below 0.5).  
  If actual non-uniform ground excitations ag1 and 
ag2 are considered, the relative responses can be 
totally different (Figure 13(b)). The most significant 
difference can be seen just when the frequency ratio 
f2/f1 is 1.0. The relative displacement is no longer 
zero. The reason is that the inclined incident waves 
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Figure 10. Effect of soil-structure interaction on uniform ground motion induced structural responses u1 and u2. fd = 2.0 Hz 
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pounding on girder responses u1 and u2 

With SSI 



9 

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

Separating 

Approaching 

Separating 

Approaching 

Separating 

Approaching 

(b) 

(a) 

urel, max (m) 

 

fd = 0.5 Hz 

(c) 
Figure 13(a)-(c). Relative displacement due to incident 
waves with the dominant frequency fd of 0.5 Hz. (a) Uniform 
ground excitation, (b) non-uniform ground excitation, and (c) 
non-uniform ground excitation with quasi-static responses 

f1 / f2 (-)

cause non-uniform ground motions at the valley 
surface, even though both bridge piers are located 
symmetrically with respect to the centerline of the 
valley. While both bridge structures will respond to 
an assumed uniform ground excitation in phase 
owing to their same fundamental frequency, the 
bridge segments will respond to the strongly 
non-uniform ground excitation just out of phase. 
The recommendation of many current design 
regulations to adjust the fundamental frequency of 
the structure with the one of the adjacent structure 
can lead to just an opposite effect, when it can be 
ensured that the ground motions are spatially varied. 
  If the quasi-static responses owing to spatially 
varying ground displacements at the two bridge pier 
locations are considered as well (Figure 13(c)), in 
the higher frequency-ratio range poundings do not 
reduce the separating relative displacement much. 
The separating displacements are clearly determined 
by the quasi-static responses. In the lower frequency- 
ratio range the quasi-static responses have only 
minor influence. The results show that a neglect of 
non-uniform ground displacements in the analysis 
can clearly underestimate the required seat length to 
avoid bridge girders from unseating. 

  Figures 14(a) and (b) show the relative 
displacements due to incident waves with the 
dominant frequencies fd of 1.0 Hz and 2.0 Hz, 
respectively. Compared to those due to incident 
waves with fd of 0.5 Hz, the responses are much 
smaller. In the case fd of 2.0 Hz they are so small 
that poundings do not take place at all (Figure 
14(b)). Even though all incident waves with fd of 0.5 
Hz, 1.0 Hz and 2.0 Hz produce surface ground 
accelerations with similar PGA around 3 m/s2, the 
resulting relative displacements are different. The 
results show that PGA alone is not sufficient for 
estimating the pounding potential of bridge girders, 
the dominant frequency of the ground motions is 
also significant. Low-frequency incident waves can 
cause large spatially varying ground displacements. 
Since the relative displacement is not only 
determined by the ground accelerations but also by 
the quasi-static response, the large non-uniform 
ground displacements can therefore significantly 
increase the relative displacement responses, and 
consequently increase the pounding as well as 
unseating potential of bridge girders. 
  Figure 15 shows the relative displacements due to 
vertically propagating incident waves with fd of 0.5Hz. 
Since in this case the ground motions at the two bridge 
pier locations are the same, the ground displacements 
have no contribution to the relative displacement 
even though they are relatively large (dash line in 
Figure 5(a)). The result is similar to the one obtained 

with an assumption of uniform ground excitations in 
Figure 13(a). A comparison with the responses in 
Figure 13(c) clearly shows the influence of the 
propagation angle of the incident waves.  
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Figure 14(a) and (b). Relative displacement including quasi- 
static responses due to non-uniform ground excitation with 
the dominant frequency fd of (a) 1.0 Hz and (b) 2.0 Hz   
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Figure 15. Relative displacement due to vertically propagating 
incident waves with fd of 0.5 Hz 
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5. CONCLUSIONS 
 
The effect of incident wave characteristics, soft 
local soil sediment of a trapezoidal shape valley, 
soil-structure interaction and bridge girder pounding 
on the relative response of two adjacent bridge 
structures is presented. The structures are described 
using finite elements and the subsoil using boundary 
elements. The local soil consists of 150 m depth soft 
valley sediment. The incident waves have an angle of 
30o and 90o with the dominant frequencies of 0.5 Hz, 
1.0 Hz, 1.5 Hz and 2.0 Hz. The following results are 
therefore only valid for the considered cases. 
The investigation reveals: 
  Uniform hard soil valley (without local soft soil) 
reduces the PGA around the valley edges. Although 
all incident waves produce almost the same PGA, 
the PGD becomes larger with decreasing dominant 
frequency of the incident waves. 
  Soft sediment amplifies ground accelerations and 
also ground displacement at the valley surface. 
  Inclined incident waves generate strong spatial 
variation of ground motions, even at the bridge pier 
locations symmetrically located with respect to the 
valley centerline. The large non-uniform ground 
displacements cause large quasi-static responses, 
and consequently increase the relative responses, 
especially of stiff bridge structures. 
  If bridge structures are flexible, pounding can 
amplify the unseating potential of their girders. 

Depending on the relationship between structural 
frequencies and the dominant frequencies of incident 
waves, SSI can have beneficial and adverse effect.  
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