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   The application and effectiveness of seismic response control with variable viscous dampers for 
nonlinear isolated bridges is studied. Upon considering practical applications, the LQR optimal control 
algorithm is used to command variable viscous dampers. A typical viaduct is analyzed for evaluation. 
Through numerical simulation, the results show that the semi-active control system with variable dampers 
is effective for reducing the seismic displacement response and provides the similar performance by LQR 
active control with actuators.  
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1. INTRODUCTION 
 
The isolator in bridge structure is effective to 
mitigate the induced seismic force by a shift of 
natural period. However, the deck displacement 
becomes excessively large when subjected to a 
ground motion with large intensity or unexpected 
characteristics. Even in a standard-size bridge a 
deck displacement reaches 0.5m or larger under the 
ground motions developed in the 1999 Chi-Chi 
earthquake. Such a large displacement may result in 
the higher-than-expected seismic force due to the 
pounding effect of decks and the P δ−  effects1). 
In the previous studies2-5), structural controls were 
studied to effectively reducing seismic responses of 
isolated bridges. However, the control effectiveness 
of the isolated bridges, which exhibit high hysteretic 
behavior at both the column and the isolator has not 
yet been reported. Hence it is emphasized in this 
study to reduce the deck displacement of isolated 
bridges with nonlinearity of both the column and the 
isolator using seismic response control technology. 
Although active control systems have been studied 
to effectively mitigate the seismic response of 

structures, they require large external power supply 
and their reliability is still the issue of concern. 
Semi-active control systems have the major 
advantages of the versatility and adaptability of 
active control systems without large energy supply, 
and have the reliability of passive control systems. 
One means of achieving a semi-active control is to 
adopt a variable viscous damper, in which the 
damping coefficient can be regulated. Variable 
viscous dampers have been studied analytically and 
experimentally to effectively mitigate seismic 
response of bridges and buildings (Kawashima et 
al.2), Yang et al.3), Symans and Constantinou6)).  
This study focuses on the application of variable 
viscous dampers to reduce the seismic response of 
nonlinear isolated bridges. The recent control 
theories for nonlinear system were proposed by 
Yang et al.7,8). Upon considering practical 
applications, the linear quadratic regulator (LQR) 
optimal control algorithm is used here to command 
variable viscous dampers. A five-span viaduct with 
high-damping-rubber isolators, designed based on 
Japan Design Specification of Highway Bridges, is 
utilized for analysis. 
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2. ANALYSIS MODEL FOR NONLINEAR 

ISOLATED BRIDGE 
 
Assuming the deck of a typical isolated bridge is 
rigid in the longitudinal direction, a column with the 
effective deck mass on the top can be taken apart as 
a unit for seismic analysis, as shown in Fig. 1. For 
study of control effectiveness, the column-deck- 
isolator system may be idealized as a two degree of 
freedom lumped-mass system. A control device is 
set between the deck and the column where the 
isolators are installed. 
The column and the isolator are assumed here to be 
perfect elastoplastic and bilinear elastoplastic, 
respectively. The Bouc-Wen hysteretic model9) is 
used for the column and the isolator as 

( ) ( ) (1 ) ( )si i i i i i yi iF t k x t k x v tα α= + −  (i = c and b)
 (1) 

in which the subscripts c and b denote the column 
and the isolator, respectively, e.g. cx = deformation 
of the column and bx = deformation of the isolator; 

ik = initial stiffness; iα = ratio of the post-yielding 
to pre-yielding stiffness; yix = yield deformation; 

and iv  is a nondimensional variable introduced to 
describe the hysteretic component of the 
deformation with | | 1iv ≤ , where 

11 | || | | |i in n
i yi i i i i i i iv x A x x v v x vβ γ−−  = − − & & & &   (2) 

in which parameters iA , iβ  and iγ  govern the 
scale and general shape of hysteresis loop, whereas 
the smoothness of force-deformation curve is 
determined by the parameter in . These parameters 
are considered time invariant herein.  
The equations of motion of the isolated bridge 
system may be expressed as 

( ) ( ) ( ) ( ) ( )e I gt t t t x t U(t)+ + + = +Mx Cx K x K v η H&& & &&  (3) 

in which [ ]Tc bx x=x  is a vector with the 
deformations of the column and the isolator; 

[ ]Tc bv v=v  is a hysteretic vector; ( )gx t&& is the 
absolute ground acceleration; ( )U t  is the control 
force generated by the control device; M , C , eK  
and IK  are mass, damping, elastic stiffness and 
hysteretic stiffness matrices, respectively; η  and 
H  are the location matrices of  the excitation and 
the control force, respectively. These matrices are 
given by 
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where cm  and dm  are the masses of the column 
and the deck, respectively; cc  and dc  are the 
damping coefficients of the column and the isolator, 
respectively. 
The equations of motion by Equation (3) can be 
written as a state space formulation as  

( ) [ ( ), ( )] ( ) ( )gt t t U t x t= + +Z g Z v B W& &&     (5) 

where [ ]( ) ( ) T(t) t t=Z x x&  is a space-state vector; 

[ ], ( )(t) tg Z v  is a nonlinear function of ( )tZ  and 
( )tv ; B  and W  are the matrices of the control 

location and the excitation location, respectively. 
g , B  and W are defined as follows: 
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3. CONTROL ALGORITHM 
 
The linear quadratic regulator (LQR) optimal 
control algorithm has been extensively used for 
active control and for semi-active control  of 
structures (e.g. Soong10), Symans and 
Constantinou6)). In this algorithm, the control force 

( )U t  in Equation (3) is selected by minimizing, 
over the duration of the excitation, the quadratic 
cost function 

2

0
[ ( ) ( ) ( )]ft TJ t t RU t dt= +∫ Z QZ       (7) 

in which Q  is a (4 × 4) symmetric positive 
semidefinite weighting matrix and R  is a positive 
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Figure 1 Analytical idealization  
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weighting scalar. The weighting values should be 
determined depending on the design performance 
goals and the constraints on the controller. 
The optimal solution that minimizes the 
performance index, as shown in Equation (7), is 
obtained under the constraint of the state equations 
of motion by Equation (5) as 7)  

1( ) 0.5 ( )TU t R t−= − B PZ            (8) 
in which P  is the solution of Ricatti equation 
given by 

1' 0.5 2TR−+ − = −0 0Λ P PΛ PB B P Q      (9) 
where 

0( ) / | == ∂ ∂0 ZΛ g Z Z            (10) 
Note that the constant Ricatti matrix P  in 
Equation (9) is obtained by linearizing the structure 
at the initial equilibrium point 0=Z , which is 
stable, as shown in Equation (10), neglecting the 
ground excitation ( )gx t&&  and setting the transient 

part equal to zero, i.e. 0=P& . 
When a variable viscous damper is used as the 
control device, which is referred hereinafter to 
semi-active control, the control force ( )V t  from 
the variable viscous damper is given by 

( ) ( ) ( )b bV t t x tξ= &             (11) 
where ( )b tξ  is the time-variant damping 
coefficient and ( )bx t&  is the relative velocity of the 
isolator.  
It is noted that the control force cannot be 
commanded directly but viscous coefficient has to 
be regulated in the variable viscous damper. The 
damping coefficient is bounded by a minimum 
value minξ  and a maximum value maxξ  as 

min max( )b tξ ξ ξ≤ ≤             (12) 
When the variable viscous damper is expected to 
provide the desired optimal control force ( )U t  by 
Equation (8), equaling Equation (11) and Equation 
(8) leads to 

* 1( ) ( ) ( ) 0.5 ( )T
b bt x t U t R tξ −= = − B PZ&     (13) 

By dividing Equation (13) by ( )bx t& , the demanded 
active damping coefficient * ( )b tξ  is 

* ( )( )
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b

U tt
x t
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&

              (14) 

Note that the viscous damping coefficient ( )b tξ  
has the following constrain from Equation (12) 
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Therefore, the variable viscous damper not only 
changes the damping coefficient depending on 

feedback of structural responses to resemble an 
active system but also functions as a passive energy 
dissipater. 
 
 
4. NUMERICAL SIMULATION 
 
(1) Target viaduct  
In this study, an isolated bridge as shown in Fig. 2, 
which was designed by Japan Design Specification 
of Highway Bridges10), was analyzed to investigate 
the performance of structural control. The 
superstructure consists of a five-span continuous 
deck with a total deck length of 5@40 m = 200 m 
and a width of 12 m. They are supported by 12 m 
tall reinforced concrete columns. Five high- 
damping-rubber isolators with 112 mm×600 mm×  
600 mm ( H B D× × ) are used per column. 
The bridge is idealized as a two degree of freedom 
lumped-mass system. The effective mass of deck 
and column are 600 T and 243.15 T, respectively. 
As described earlier, the restoring forces of the 

 

 

 

   
 

Figure 2 A continuous elevated highway bridge (a)
elevation, (b) lateral view of superstructure, (c)
lateral view of column, and (d) side view of
column. 

0 5 10 15 20 25 30-10

-5

0

5

10

A
cc

el
er

at
io

n 
(m

/s
2 )

0 5 10 15 20 25 30-10

-5

0

5

10

A
cc

el
er

at
io

n 
(m

/s2 )

 
Figure 3 Ground motion records: (a) JMA Kobe 
observatory, and (b) Sun-Moon Lake  
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columns and the isolators are perfect elastoplastic 
and bilinear elastoplastic, respectively. The 
parameters in Equations (1) and (2) are ck =112.7 
MN/m, cα =0, ycx =0.0309 m, cA =1, cβ = cγ =0.5 

and cn =95 for the column, and bk =47.6 MN/m, 

bα =0.1912, ybx =0.016 m, bA =1, bβ = bγ =0.5 and 

bn =95 for the isolators. The first and second natural 
periods of the isolated bridge with the initial elastic 
stiffness are 0.86 sec and 0.24 sec, respectively. The 
damping ratios of the system are assumed 2% for 
both modes. In simulation, the isolated bridge is 
subjected to two near-field ground motions recorded 
at JMA Kobe Observatory in the 1995 Kobe, Japan 
earthquake and Sun-Moon Lake in the 1999 
Chi-Chi, Taiwan earthquake, as shown in Fig. 3. 
In the uncontrolled system, the peak responses are 
presented in column 2 of Tables 1 and 2 under JMA 
Kobe record and Sun-Moon Lake, respectively. It is 
observed that the peak deck displacement reaches 
0.54 m under Sun-Moon Lake ground motion and 
that the column has a residual displacement of 0.11 
m, which results in the same magnitude of residual 
displacement in the deck.  
 
(2) LQR optimum active control  
With an actuator exerting the active control force by 
LQR optimum control algorithm, weighting matrix 
Q  and R  in Equation (7) have to be properly 

selected. A thorough parametric study showed that 
choosing Q  as diag 3[1,10 ,1,1]  with off-diagonal 
elements to be zero achieves better performance in 
reducing the deck displacement. Larger weighting 
R  results in smaller control force. The 
displacement responses under active controls with 

1110R −=  and 123 10R −= ×  are presented in 
columns 3 and 4, respectively, of Tables 1 and 2. 
Both 1110R −=  and 123 10R −= ×  are effective in 
reducing the deck displacement, but larger control 
force does not achieve further decrease in deck 
displacement, even causes almost the same column 
deformation as the uncontrolled system and larger 
control residual displacement than the uncontrolled 
system.  
Figure 4 compares the peak normalized deck 
displacement dJ  with respect to the peak 
normalized control force UJ  between the active 
control with Q  as diag 3[1,10 ,1,1]  and R  varying 
from 910−  to 1310− , and the passive control with 
damping coefficient varying from 0 kN/m/s to 8000 
kN/m/s. dJ  and UJ  are defined as 

ˆmax ( ) max ( )d d d
t t

J u t u t≡       (16) 

max ( )U deck
t

J U t W≡          (17) 

in which ( )du t  and ˆ ( )du t  are the deck 
displacements in the controlled and uncontrolled 

 
Table 1  Summary of peak control force and peak responses under JMA Kobe record 

Peak force (KN) 
and responses (m) 

(1) 
Uncontrolled 

(2) 

Active I 
R=10-11 

(3) 

Active II
R=3× 10-12

(4) 

Active I
saturation

(5) 

Active II
saturation

(6) 

Semi-active
damper I

(7)  

Semi-active 
damper II 

(8)  

Passive 
minξ  

(9) 

Passive
maxξ  

(10) 

Control force - 1048  1906 882 882 882  882  356  1306 

Deck displacement 0.24  0.17  0.17 0.17 0.17 0.17  0.16  0.21  0.16 

Isolator deformation 0.23  0.17  0.13 0.17 0.15 0.17  0.16  0.21  0.16 

Column deformation 0.05  0.03  0.06 0.03 0.04 0.03  0.03  0.03  0.03 
Column  

residual deformation 0.02  0.00  0.03 0.00 0.01 0.00  0.00  0.00  0.00 
 

Table 2  Summary of peak control force and peak responses under Sun-Moon Lake record 
Peak force (KN) 

and responses (m) 
(1) 

Uncontrolled 
(2) 

Active I 
R=10-11 

(3) 

Active II
R=3× 10-12

(4) 

Active I
saturation

(5) 

Active II
saturation

(6) 

Semi-active
damper I

(7)  

Semi-active 
damper II 

(8)  

Passive 
minξ  

(9) 

Passive
maxξ  

(10) 

Control force  - 1278 1947 882 882 882 882 468 1581 

Deck displacement  0.54  0.35  0.37 0.36 0.37 0.36  0.36  0.47  0.40 

Isolator deformation  0.41  0.26  0.18 0.28 0.27 0.29  0.29  0.38  0.27 

Column deformation 0.25  0.13  0.25 0.12 0.12 0.11  0.10  0.17  0.14 
Column  

residual deformation 0.11  0.09  0.20 0.04 0.07 0.03  0.04  0.04  0.11 
 



5 

systems, respectively; ( )U t  is the control force, 
and deckW  is the deck weight. 
It is observed that the peak deck displacement 
decreases as the peak control force increases at 
smaller control force, namely 27%UJ ≤  under 
JMA Kobe record and 20%UJ ≤  under 
Sun-Moon Lake record. However, the peak deck 
displacement does not decrease monotonically, even 
increase, as the peak control force increases at larger 
control force. It can be attributed to that larger 
control force is effective for reducing isolator 
deformation while it also transfers larger force from 
the deck to the column so that it increases the 
column deformation. Once the increase of the 
column post-yield deformation surpasses the 
decrease of the isolator deformation, larger control 
force inversely increases the deck displacement. 
Moreover, the passive control shows close 
performance to the active control under JMA Kobe 
record for smaller peak control force, while the 
passive control are less effective than the active 
control under Sun-Moon Lake record. 
Saturation of control force is thus used to avoid 
large column post-yield deformation. The 
displacement responses under active controls 

1110R −=  and 123 10R −= ×  with saturation of the 
control force of 15% deck weight (882 kN) are 
presented in columns 5 and 6, respectively, of 
Tables 1 and 2. It is observed that the deck 
displacement decreases by almost the same as that 
of the unsaturated control and that the column 
residual displacement significantly decreases. 
 
(3) Semi-active control  
Variable viscous damper based on the LQR control 
algorithm is used to apply control force to the 
isolated bridge. The upper and lower bound of 
viscous coefficients of a variable damper, maxξ  and 

minξ  in Equation (12), are 1000 kN/m/s and 250 
kN/m/s, respectively. Fig. 5 compares the control 

force and the deck displacement response of the 
isolated bridge among uncontrolled, active 
controlled and semi-active controlled system, and 
shows the damping coefficient of variable viscous 
damper under Sun-Moon Lake ground motion. 
Weighting parameters in Equation (7) were assumed 
as Q =diag 3[1,10 ,1,1]  and 1110R −=  and the 
saturation of control force was 15% deck weight 
under both active and semi-active control. As 
observed from Fig. 5, the control force by an 
actuator and a variable viscous damper is virtually 
the same except at few time periods. The force 
difference between two devices can be attributed to 
two reasons. One is that variable viscous dampers 
are intrinsically energy dissipation devices and 
cannot add energy to the structural system while 
actuators can generate arbitrary force no matter how 
the control force provides energy. The other reason 
is that the damping coefficient of variable viscous 
dampers is bounded. Although there is slight 
discrepancy, the semi-active control achieves 
similar performance to the active control. Under 
semi-active control, the peak deck displacement of 
the bridge reduces to 0.36 m and the residual 
displacement reduces to 0.03 m, which are almost 
the same as those under active control.  
The hysteretic loops of the isolator and the column 
are shown in Fig. 6. These show that the column 
yields even under controlled systems and that both 
active and semi-active control have the similar 
hysteretic behavior. Figure 7 presents the hysteretic 
loops of control force and corresponding stroke. The 
hysteretic loops of active and semi-active control 
are similar. The force versus relative velocity for the 
control devices are shown in Fig. 8. These show that 
the damping coefficient of the variable viscous 
damper is confined, and that the actuator adds 
energy into system at ( ) ( ) 0bU t x t <& . 
Tables 1 and 2 present the peak responses of 
semi-active control in the columns 7 and 8. It is seen 
that semi-active control achieves slightly better 

 

 

 

 

 

 

 

 
Figure 4  Comparison of peak normalized deck displacement between active control and passive control
subjected to: (a) JMA Kobe, and (b) Sun-Moon Lake. 
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performance than or similar performance to the 
active control under both ground motions. 
Furthermore, when the damping coefficient of the 
variable viscous damper is fixed at the minimum 
and maximum value, minξ  and maxξ , the control 
effects are shown in the columns 9 and 10 of Tables 
1 and 2. The results indicate semi-active control 
shows similar or slightly better performance than 
passive control with the maximum damping 
coefficient maxξ  of the variable viscous damper. 
 
 
5. CONCLUSIONS 
 
The application and effectiveness of semi-active 
control for nonlinear isolated bridge, which exhibits 
inelastic response at both the column and the 
isolator, was studied. The LQR control algorithm 
was used to command variable viscous dampers. 
Numerical simulations were carried out to 
investigate and compare the control performance of 
a five-span continuous highway elevated bridge 
under active, semi-active and passive control. The 
results indicate that semi-active control using 
variable viscous dampers is effective in reducing the 
deck displacement response and provides the similar 
performance by LQR active control using actuators. 

Semi-active control also shows similar or slightly 
better performance than passive control with the 
maximum damping coefficient maxξ  of the variable 
viscous damper. 
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Figure 5  Comparison of the control force and the deck displacement (a) control force, (b) viscous
coefficient of variable viscous damper, and (c) deck displacement. 
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Figure 6  Hysteretic loops of the isolator and the column: (a) uncontrolled, (b) active control, and (c)
semi-active control. 
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Figure 7  Hysteretic loops: (a) actuator, and (b) variable viscous damper 
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Figure 8  Control force vs. velocity: (a) actuator, and (b) variable viscous damper 
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