
JSCE Journal of Earthquake Engineering

 

1 

 
MATERIAL POINT METHOD FOR RUN-OUT 

ANALYSIS OF EARTHQUAKE-INDUCED 
LONG-TRAVELING SOIL FLOWS 

 
Muneyoshi NUMADA1, Kazuo KONAGAI 2, Hironori ITO3 and  

Jörgen JOHANSSON4 
 

1 PhD Candidate, Institute of Industrial Science, University of Tokyo 
Tokyo 153-8505, Japan, numada@iis.u-tokyo.ac.jp 

2 Professor, Institute of Industrial Science, University of Tokyo 
 Tokyo 153-8505, Japan, konagai@iis.u-tokyo.ac.jp  

3 Ms. Candidate, Institute of Industrial Science, University of Tokyo 
Tokyo 153-8505, Japan, itouhrnr@iis.u-tokyo.ac.jp 

4 PhD Candidate, Research Associate, Institute of Industrial Science, University of Tokyo 
Tokyo 153-8505, Japan, jorgen@iis.u-tokyo.ac.jp 

 
 

   Landslides can range in size from small movements of loose debris to massive collapses of entire 
summits. For short to medium-length slopes, some measures will be effective for assessing and mitigating 
landslide hazards. Extremely large slope failures, however, are very difficult to mitigate, and the 
importance of run-out analysis emerges. Lagrangian Particle Finite Difference Method (LPFDM) is 
extended to handle rapid and long-traveling flows of soil. LPFDM describes a soil mass as a cluster of 
Lagrangian material points that carry all necessary information of the material and move freely across a 
Eulerian grid where the equations of motion are solved.  
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1. INTRODUCTION 
 
Landslides can range in size from small movements 
of loose debris to massive collapses of entire 
summits. For short to medium-length slopes, 
installing preventive drainage works, anchoring 
and/or reinforcing slopes will be effective for 
assessing and mitigating landslide hazards. 
Extremely large slope failures, however, are very 
difficult to mitigate, and thus the importance of 
run-out analysis emerges. Many landslides with 
limited internal deformation will move as coherent 
masses on thin mobile basal layers. Others, however, 
will become flow-like in character after running 
some long distances, though exhibiting some solid 
features at their early stages of failure. 

For studying large deformations of soils, 
numerical methods such as FEM or FDM have been 
widely used. For example, the finite difference 
based FLAC (Fast Lagrangian Analysis of 
Continua)1) calculates large strains by using          
low-order strain elements. However, when dealing 

with large strains, highly distorted elements often 
account for inaccurate results. 

In the field of computational fluid dynamics, 
where history-dependent materials are less common, 
purely Eulerian methods are often used. Sulsky et 
al.2) extended it further to solid mechanics. Their 
method evolved from a particle-in-cell (PIC) 
method is referred to as the Lagrangian Particle 
Method (LPM) or the Material Point Method 
(MPM). The MPM is categorized as one of the 
mesh-less methods formulated in an arbitrary 
Lagrangian-Eulerian description of motion. In MPM, 
a body to be analyzed is described as a cluster of 
material points. The material points, which carry all 
Lagrangian parameters, can move freely across cell 
boundaries of a stationary Eulerian mesh. This mesh, 
called a computational mesh, should cover the 
virtual position of the analyzed body. The 
computational mesh can remain constant for the 
entire computation, thus the main disadvantage of 
the conventional finite element method related to 
the problem of mesh distortions is eliminated. 
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Konagai and Johansson3) developed two 
dimensional LPFDM (Lagrangian Particle Finite 
Difference Method) based on the LPM scheme of 
calculation. The method was intended to be a 
projection of FLAC formulations on the LPM 
scheme so that the present method allows for 
extremely large deformations of soils retaining the 
merits of FLAC. The method is further extended 
herein to model a rapid and long-traveling soil flow 
keeping its planar geometry.  
 
 
2. MODELING OF LANDSLIDE MASS 
 

Though the use of a three-dimensional model is a 
straightforward approach to the problem, the 
landslide mass flowing thin over a stiff base slope is 
modeled as a two-dimensional soil mat. The 
landslide mass is represented by a planner 
assemblage of soil columns (Material Points) 
contacting each other, free to deform and retaining 
fixed volumes in their descent down a curving path 
(Figure 1).  

A cluster of material points representing the 
landslide mass slide on a thin mobile basal layer 
( ψξ − plane in Figure 1). Cells of a computational 
Eulerian mesh on the ψξ − plane are arranged in 
such a way that their projections on a horizontal x-y 
plane are a regular square mesh with sides parallel 
to x and y axes of the Cartesian coordinate system. 
Though the real slope is not a perfect plane, each 
cell is assumed to be small enough for the cell and 
its neighboring cells to be arranged in one plane. 
The cells on the ψξ −  plane are thus 
parallelograms. The orientation of the ψξ −  plane 
is described by ξ  and ψ  axes; the ξ  axis is a 
horizontal line produced by the intersection of the 

ψξ −  plane and a horizontal plane, while the ψ  
axis describes the slope of the ψξ −  plane. 
LPFDM formulation on the ψξ −  plane is 
available in the reference (Konagai et al., 2002). 

A soil column (material point) is assumed to 
experience the same strains in the ψξ −  plane 
over its entire height (z: 0-h). Excluding its weight, 
the stress components for the soil column, 0,xxσ , 

0,yyσ  and 0,xyτ  are kept unchanged over its height. 
However with the presence of its weight, realized 
stress components are described as: 
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Figure 1. Material points showing landslide mass 
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 Figure 2. Soil column (above) following 

Mohr-Coulomb’s criterion (below) 
 
 
The above components are averaged over the 
column’s height.  
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Essentially, Mohr/Coulomb criterion should be used 
for a particular soil element that experiences 
homogeneous stresses over its entire size. For the 
averaged stress components, however, 
Mohr/Coulomb criterion is tentatively used herein 
for describing elasto-plastic features of the “material 
point”. To draw a Mohr circle for the material point, 
the maximum and minimum principal stresses must 
be chosen among three principal stresses including 

zzσ~ . For this, two principal stresses aσ~  and bσ~  
in the x-y plane are first to be obtained. It is noted 
that differing from the geotechnical engineering 
customary to describe compressive stresses as 
positive, tensile stresses are expressed to be positive 
in LPFDM. 
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Among the three principal stresses, the maximum, 
intermediate and minimum principal stresses are 
determined as: 

 

)~,~,~max(1 zzba σσσσ −−−=  

=2σ intermediate )~,~,~( zzba σσσ −−−
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- 
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Once the Mohr circle intersects the failure envelope, 
stresses are “reduced” in such a way that the 
reduced stress make up a slightly reduced Mohr 
circle that touches the envelope. 
 
 
3. NUMERICAL EXAMPLES 
 
Both the internal friction angles and the cohesions 
for Lagrangian points were modified to fluctuate 
randomly around their mean values so that the 
deviations eventually exhibit the Gaussian 
distributions. This manupulation is based on the idea 
that a material exhibiting a complicated hysterisis is 
comprised of a number of elements exhibiting 
simple and ideal features. Parameters (mean values) 
for the material used in the following example are 
listed in Table 1.  Standard deviations of the 
fluctuated parameters were set at 33% of their mean 
values. 
 
 

Table 1.  Lagrangian parameters 

Young’s modulus: 
5×107 N/m2 

Poisson’s ratio: 0.30 
Density: 1700 kg/m3 
Internal friction angle: 0.5 rad 
Cohesion: 9800 N/m2 
Strength reduction: Both cohesion and Internal 

friction angle are reduced by 
50% 

Initial friction angle on the 
slip surface 

0.5 rad 

refu  in Equation (9) 0.1 m 

α  for local non-viscous 
damping 

0.8 

L: Cell size on x-y plane 1m 
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Figure 4. Comparison of travel distance 
 

The slope discussed herein is described as a 
combination of different planes intersecting with 
each other. The uppermost surfaces of these planes 
define the slope configuration. Figures 3a-3c show 
the plan of the slope. Contour lines in this figure 
show that there are two slopes A and B making up 
the configuration. Diagonal contour lines on the left 
show that Slope A goes diagonally down to the 
right, while contour lines to the right describe that 
Slope B dips 45 degrees leftward. Lagrangian points 
are initially arranged in square on Slope B. The 
gravitational acceleration was then given at once to 
the soil mass, and the mass started sliding the slope 
under its own weight (Figures 3a-3d). The head of 
the landslide mass slows down to block the motion 
of its tail when it reaches the flat land causing the 
soil at the toe of Slope B to be pushed up by the tail. 
With no lateral confinement on its edge, the soil 
mass spreads wide as it surged across the horizontal 
plane, and after hitting Slope A, the direction of the 
mass flow turned avoiding Slope A. 

Figure 4 compares travel distances for two 
landslides with the same constitutive properties 
moving to the left and down along a 45 degrees 
slope. The thickness of soil mass in Figure 5b is 
assumed to remain constant due to a strong restraint 
from plant roots, whereas the soil mass in Figure 4a 
is the same as that examined in Figure 3, and 
changes its thickness freely.  

The analysis shows that travel distance of the soil 
mass in Figure 4b is longer than the mass in Figure 
4a. Difference in energy loss accounts for the 
difference of travel distances. The thickness change 
of the soil mass in Figure 4a reduced the kinetic 
energy. 

 
4. SUMMARY AND DISCUSSIONS 
 

The previous example provided a perspective on 
the capability of the present method for describing 
long-traveling soil flows. The landslide mass is 
represented by a planner assemblage of soil columns 
(Material Points) contacting each other, free to 
deform and retaining fixed volumes in their descent 
down a curving path.  

The method however leaves much to improve by 
comparing these numerical simulations with real 
examples. Because all Lagrangian parameters for 
the entire landslide mass are hardly obtained. For 
example, it is quite often that plants growing on a 
landslide mass shoot their roots all through the soil 
mass in such a way that the overall characteristics of 
the soil mass is largely different from those obtained 
through conventional soil tests. One possible way 
will be to consider a real landslide as a huge “simple 
shear test”. In the “real-size” simple shear test, the 
distal end and surface configuration of the landslide 
mass can be clearly measured. If the landslide mass 
exhibits some liquefiable features, possible peak 
velocity of the landslide mass will be estimated 
from mud spatters remaining on walls, tree trunks 
etc. assuming that they follow forms of parabola  

Differing from a conventional 2D model for 
run-out analysis, the model proposed herein allows 
the effect of energy consumption within the 
deformed landslide mass to be reflected on the 
numerical evaluation of travel distances(Figure 4). 
Once a good agreement with a real travel distance is 
obtained in a landslide-prone area through a 
parametric study, it is expected the result will 
provide necessary pieces of information for the 
landslide risk assessment in this area. An extension 
of this study will be addressed in future 
publications.  
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(a) Thickness changes of the soil mass 

(b) Thickness constant of the soil mass 
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