

# 境港の液状化地点での地震動に及ぼす深い地盤 の増幅特性の影響

森伸一郎1・曽我部 繁之2

 <sup>1</sup>愛媛大学工学部環境建設工学科 助教授 (〒790-8577 愛媛県松山市文京町3) E-mail: mori@ehime-u.ac.jp
<sup>2</sup>愛媛大学大学院環境建設工学専攻 大学院学生 (〒790-8577 愛媛県松山市文京町3) E-mail: shige19800315@hotmail.com

2000年10月6日の鳥取県西部地震の際に液状化した地盤で観測された地震動記録に対して,有効応力法 による非線形応答解析を行うことにより,地震動に及ぼす液状化と深い地盤構造の増幅特性の影響が研究 される.この観測された水平動の加速度記録には,主要動以降に長周期成分が卓越することとスパイク状 の形状を有するピークを持つことの2つの特徴がある.近傍の硬質地盤で得られた地震記録を入力地震動 として用いて,表層390mの地盤モデルが解析される.その結果,深い地盤による増幅は大きいこと,大 きく増幅された地震動により約5mの深さで液状化に達するが,その厚さは薄く地震動への影響は大きく ないこと,しかし,スパイク状の形状のピークは液状化現象に起因することなどが明らかにされる.

Key Words : liquefaction, ground motion, effective stress analysis, geological structure, amplification

## 1.はじめに

本論文は,鳥取県西部地震の際に液状化した地盤 で観測された地震動記録に対して,有効応力法によ る非線形応答解析を行うことにより,地震動に及ぼ す液状化と深い地盤構造の増幅特性の影響を明らか にしたものである.

2000年10月6日に発生した鳥取県西部地震では, 境港市の多くの埋立地では液状化が生じ<sup>1)</sup>,またそ の内の一地点で地震動が観測された.この記録は, 主要動以降の後続位相で,やや長周期成分が卓越し, スパイク状のピークを有するという2つの特徴を持 つ.この特徴に着目して,これまでいくつかこの地 震記録に関して地震応答解析が行われている<sup>2),3)</sup>. しかし,地震応答解析に用いる解析モデルと地震波 については課題が残っていると考えられた.著者ら は,表層72mをモデル化し,地盤物性と入力パラメ ータの再検討を行うとともに,近くの硬質地盤で観 測された地震動を入力地震動として用い,その振幅 を単純調整して液状化の影響を分析したが,トータ ルモーションとして1.8倍にすると,観測記録をよく 説明できることを明らかにした<sup>4),5)</sup>.

この1.8倍という倍率は深い地盤における増幅や多次元の増幅現象などが想定されるものの,深い地質

構造に関する情報がなければ合理的な説明はできな い.しかし,最近,境港周辺の深い地盤構造が明ら かにされる<sup>6)</sup>とともに,地震観測地点の表層72mにつ いて詳細な地盤調査が行われた<sup>7)</sup>.そこで,この深 い地盤構造と表層の地盤物性に基づいて地盤モデル を再構築して,有効応力法による非線形地震応答解 析を行い,地表の地震動に及ぼす深い地盤構造によ る増幅特性と液状化の影響を検討した.

#### 2.液状化の状況と地震観測記録

図-1に2000年鳥取県西部地震で発生した液状化地 点7)と2つの地震観測地点を示す.港湾地域強震観 測の境港観測地点<sup>7)</sup>(以下S地点と略す)は,弓ヶ浜 半島の北端の昭和町という埋め立て地に位置してい る.地震時にこの地点では噴砂は見られなかったが, 周辺では約100m離れた南西,南東,北西に最も近い 噴砂が観察された.S地点は地震記録と地盤資料が 地震直後に公開されており,さらに最近ではPS検層 などの新たな地盤情報が公開された<sup>7)</sup>.

もう1つの地震観測地点は,防災科学研究所の基 盤強震観測網Kik-net<sup>8)</sup>の美保関観測地点(地点コー ドSMNH10,ここではM地点と呼ぶ)である.この 地点は表層4 mはVs=500 m/s,表層30 mの平均は





図-2 S 地点と M 地点で観測された水平 加速度の時刻歴の EW 成分

Vs=1000 m/sという硬質地盤である.両観測地点は約 4.5 km離れているが,震源から概ね北に位置する2点 の震央距離は約32 kmでありほぼ等しい.M地点の 加速度記録が,後のS地点の地震応答解析に用いら れる.

図-2にS地点とM地点で観測された水平加速度の 時刻歴のEW成分を示す.最大加速度はS地点で302 cm/s<sup>2</sup>,M地点で226 cm/s<sup>2</sup>であり,両地点ともEW成 分が卓越している.S地点の観測記録の開始時刻か ら5.4秒まで0を加えた.これは,M地点の観測記録 を入力した解析結果による地表の応答と比較をする 際に位相を合わせるためである. S地点の加速度記録にはM地点の記録と比較して 次の二つの特徴が認められる.すなわち,M地点で は,22~26秒に見られる主要動部分では短周期成分 が卓越し,それに続く後続部分では小振幅の長周期 成分が見られるのに対して,S地点では,主要動部 分では急激に長周期成分が卓越しており,後続部で は振幅の大きい長周期成分の卓越とスパイク状のピ ークを有する波形になっていることが特徴である. 特にこのスパイク状のピークは表層地盤の液状化 (サイクリックモビリティー)の影響と推察される <sup>2),3),4)</sup>.S地点の記録は約0.55 Hz付近で卓越している.

#### 3.解析モデルと解析条件

#### (1) S地点の地盤

図-3にS地点の地盤柱状図を示す.図中のせん断 波速度Vsの分布は新たにPS検層により得られたもの である.S地点は深さ0~4.8 mまでは平均N値6の緩 い砂層があり,4.8~11.7 mまでは中位の細砂層があ り,それから深さ41 mまでN値3~6の中位のシル ト・粘土層が分布している.41 m以浅の平均Vsは 135 m/sであり軟弱な地盤である.63 m以深はN値50 以上の層が分布する地盤構造をしている.先の解析 では質量密度とせん断波速度はN値と土質名から推 定した<sup>4)</sup>が,ここでは両方とも測定値を用いる.1.8 ~3.0 mのシルト層の土質は,下部に従い含水が多く なっているとの調査による記述があるので,本解析 モデルにおける地下水面はこのシルト層の中間であ る深さ2.4 mとした.

深さ72 mまではボーリング調査により知られるが,



図-3 S 地点の地盤柱状図とせん断波速度分布

それより深い地盤構造は,次のように推定した.吉 川ら<sup>6)</sup>は,直線上に配置した地震計による余震観測 アレー微動観測,重力測定を行い,弓ヶ浜半島の深 い地盤構造を決定した.図-4に深い地盤構造を示す 図-1のA-A'断面である.重力測定によるブーゲー異 常に基づき大局的な基盤構造を把握し,余震観測の レイトレーシング解析により基盤の南側の急激なせ り上がりを確認し,特にアレー微動観測の行われた 4か所では, $V_{\rm S}$ , $V_{\rm P}$ の速度構造が逆解析により得られ ている.4か所の内の1地点(SSH地点)がS地点に 近く,これを参考に,S地点の深い地盤構造を決定 した.SSH地点では,深さ96.4 mで $V_{\rm S}$ が700 m/s,390 mで1500 m/s,690 mで3300 m/sの層上端がある.

S地点の地盤モデルでは,72 mから96.4 mまでは Vs=440 m/sであると仮定し,それ以深はSSHと同様 とした.

### (2) 解析方法とS地点の地盤物性

地震応答解析は有効応力法に基づく非線形解析に より行った.解析プログラムはIaiら<sup>9)</sup>によって開発 されたFLIPである.FLIPに組み込まれている構成モ デルでは,応力ひずみ関係が双曲線型であり,サイ クリックモビィティーが表現でき,その際の繰り返 しによる有効応力経路の原点方向への進展が制御さ れている.解析は非排水条件である.入力パラメー タとして動的変形特性と液状化に関するものがある これらのうち,弾性に関する物性はPS検層に基づい て決定した.密度ρは測定値である.弾塑性や液状 化に関するパラメータはN値と土質名に基づき設定 した.一次元応答を対象にしたモデル化とした.

動的変形特性を決定づけるパラメータに初期有効 拘束圧σ<sub>c0</sub>',初期せん断剛性G<sub>0</sub>,初期体積弾性係数 K<sub>0</sub>,減衰定数の上限値h<sub>max</sub>がある.本解析では



 $G_0 = \rho V s^2$  ( $\rho$ は密度)により初期せん断剛性を求めた. 各層の初期せん断剛性は初期有効拘束圧に依存した 形で表されるため,各層中央の初期せん断剛性が  $G_0 = \rho V s^2$ になるように,解析パラメータにおける基 準となる初期有効拘束圧を各層中央の初期平均有効 拘束圧とした.体積弾性係数 $K_0$ は,次式より求めた.

#### $K_0 = (2/3)(1+\nu)/(1-2\nu)G_0 \tag{1}$

ここで,ポアソン比vは全ての層で0.33とした.砂の 内部摩擦角φfについては,まずN値から相対密度を 推定し,既往の三軸試験の結果を参照して設定した <sup>10)</sup>.粘土の内部摩擦角については,30度とした.減 衰定数の上限については,既往の研究結果<sup>11),12)</sup>より 砂質土のとき0.3,シルト・粘土のとき0.24と設定し た.表-1に各土層の地盤物性を示す.

図-5に解析モデルで用いる各層のせん断剛性と減 衰定数のひずみ依存特性を示す.ここに示す動的変 形特性については,FLIPの要素シミュレーションで 液状化パラメータを設定しない条件で解析を行い算 出したものである.

また,液状化に関するパラメータは,初めに2つの繰り返し回数に対する液状化強度比を設定し,次 に要素シミュレーションによりその2点を目標とし て適切なパラメータを試行錯誤的に設定するもので ある.目標とする液状化強度は,道路橋示方書<sup>13)</sup>の 液状化判定式に用いられている海洋型と直下型に対 応する液状化強度を,それぞれ繰り返し回数20回の 液状化強度R20と繰り返し回数5回の液状化強度R5 に対応するものとして考えた.表-2に液状化検討対 象層の液状化強度R20,R5と解析で用いた液状化パ ラメータ(変相角,s1,w1,p1,p2,c1)を示す.図-6に目標と要素シミュレーションによって求められ た液状化抵抗曲線を示す.なお,液状化パラメータ の設定では,パラメータの感度分析を行い目標とな る液状化強度により近づけた.

また,レイリー減衰に関するパラメータは,α=0, β=0.001とした.ただし,βを0.0001~0.005の間で感

| No.   | Depth<br>of<br>bottom<br>(m) | Soil<br>classification | Unit<br>weight<br>(Mg/m <sup>3</sup> ) | Mean<br>SPT-N | Shear<br>velocity<br>(m/s) | Number<br>of<br>element<br>division | Rigidity,<br>G (MPa) | Bulk<br>modulus,<br>K (MPa)         | Initial<br>effective<br>overburden<br>pressure<br>(kPa) | Upper<br>limit of<br>damping<br>ratio h <sub>max</sub> | Internal friction angle $\phi_f$ (deg.) |
|-------|------------------------------|------------------------|----------------------------------------|---------------|----------------------------|-------------------------------------|----------------------|-------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|
| 1     | 1.8                          | Sand                   | 1.50                                   | 6             | 90                         | 2                                   | 12.2                 | 32                                  | 24.9                                                    | 0.30                                                   | 39                                      |
| $2^*$ | 3.8                          | Sand                   | 1.66                                   | 6             | 90                         | 2                                   | 12.2                 | 32                                  | 24.9                                                    | 0.30                                                   | 39                                      |
| 3*    | 11.7                         | Fine sand              | 1.88                                   | 16            | 180                        | 3                                   | 60.9                 | 159                                 | 55.1                                                    | 0.30                                                   | 41                                      |
| 4*    | 14.0                         | Silt                   | 1.88                                   | 9             | 180                        | 1                                   | 60.9                 | 159                                 | 88                                                      | 0.24                                                   | 38                                      |
| 5*    | 18.0                         | Silt                   | 1.76                                   | 6             | 150                        | 2                                   | 39.6                 | 103                                 | 107                                                     | 0.24                                                   | 37                                      |
| 6*    | 27.9                         | Silt                   | 1.69                                   | 4             | 180                        | 3                                   | 55.0                 | 143                                 | 143                                                     | 0.24                                                   | 37                                      |
| 7     | 41.8                         | Clay                   | 1.63                                   | 3             | 180                        | 4                                   | 53.0                 | 138                                 | 200                                                     | 0.24                                                   | 30                                      |
| 8     | 46.7                         | Sand                   | 1.95                                   | 43            | 530                        | 2                                   | 548.0                | 1,429                               | 250                                                     | 0.30                                                   | 41                                      |
| 9     | 48.1                         | Clay                   | 1.77                                   | 34            | 180                        | 1                                   | 57.3                 | 149                                 | 271                                                     | 0.24                                                   | 30                                      |
| 10    | 51.3                         | Gravely sand           | 2.01                                   | 43            | 250                        | 1                                   | 126.0                | 329                                 | 286                                                     | 0.30                                                   | 40                                      |
| 11    | 58.3                         | Clay                   | 1.57                                   | 11            | 250                        | 2                                   | 98.0                 | 256                                 | 313                                                     | 0.24                                                   | 30                                      |
| 12    | 62.9                         | Sandy silt             | 1.96                                   | 33            | 330                        | 1                                   | 213.0                | 555                                 | 344                                                     | 0.24                                                   | 39                                      |
| 13    | 67.2                         | Sand                   | 1.96                                   | 50            | 330                        | 1                                   | 213.0                | 555                                 | 375                                                     | 0.30                                                   | 40                                      |
| 14    | 72.0                         | Clay                   | 2.01                                   | 50            | 440                        | 1                                   | 389.0                | 1,014                               | 408                                                     | 0.24                                                   | 30                                      |
| 15    | 96.4                         | Clay and sand          | 2.0                                    |               | 440                        | 5                                   | 387.0                | 1,009                               | 516                                                     | 0.30                                                   | 45                                      |
| 16    | 390                          | Firm soil              | 2.2                                    |               | 700                        | 20                                  |                      | Vp=2,060 m/s as reference           |                                                         |                                                        |                                         |
| 17    | 690                          | Rock                   | 2.4                                    |               | 1,500                      | Viscous b                           | oundary              | Vp=2,940 m/s used in viscous damper |                                                         |                                                        |                                         |

表-1 各土層の地盤物性

Note: Poisson's ratio = 0.33 (for static analysis), Porosity = 0.3, Cohesion = 0 for all layers except two lowest layers. Number of elements = 51

\* Layers No.2 to 6 are considered as liquefiable soil layers are modeled with liquefaction parameters.

Layer 16 and 17 are modeled as linear elastic medium. Layer 17 is modeled into viscous boundary as dash pots.

## 表-2 液状化検討対象層の液状化強度と解析で用いた液状化パラメータ

| No. | Depth<br>(m) | Soil classification | Liquefaction resistance<br>CRR |                | Model parameters   |            |      |     |     |     |  |
|-----|--------------|---------------------|--------------------------------|----------------|--------------------|------------|------|-----|-----|-----|--|
|     |              |                     | R <sub>20</sub>                | R <sub>5</sub> | $PTA \; \phi_{p'}$ | <b>S</b> 1 | W1   | P1  | P2  | C1  |  |
| 2   | 3.8          | Sand                | 0.21                           | 0.29           | 28                 | 0.005      | 6.0  | 0.5 | 1.0 | 2.2 |  |
| 3   | 11.7         | Fine sand           | 0.29                           | 0.48           | 28                 | 0.005      | 8.5  | 0.7 | 1.0 | 3.0 |  |
| 4   | 14.0         | Silt                | 0.30                           | 0.49           | 28                 | 0.005      | 13.0 | 0.6 | 1.0 | 3.0 |  |
| 5   | 18.0         | Silt                | 0.24                           | 0.34           | 28                 | 0.005      | 9.5  | 0.6 | 1.0 | 2.3 |  |
| 6   | 27.9         | Silt                | 0.22                           | 0.31           | 28                 | 0.005      | 8.0  | 0.5 | 1.0 | 2.2 |  |

Note PTA: Phase transmission angle

R20 and R5 are determined as liquefaction resistance ratios for subductionzone earthquake type and internal crustal earthquake type, respectively, according to Seismic Standard for Highway Bridge of Japan Road Association.

度分析を行い,5Hz以上の高振動数領域での感度を 調べて設定した.解析モデルは一列51要素であり下 方に粘性境界を設定した.自重解析の後,全節点水 平方向自由,左右節点同一変位の条件で解析した.

#### (3) 入力地震動とその扱い

入力地震動については,前述の通りM地点の地表 で観測されたEW成分の加速度時刻歴を用いた.観 測記録は開始時刻が13時30分0秒で300秒間であり, 初めの80秒間を解析に使用した.

M地点の地盤は, 深さ4mまで硬い中砂が堆積しそ れ以深は岩盤である.各地層のせん断波速度は,表 層は500 m/s, 深さ4 mで960 m/s, 深さ14 mで1270 m/s, 深さ140 mで1570 m/sの層が現れる.S地点の Vs=1500 m/sの層とM地点の1270 m/sの層がほぼ対応 するものと考え, S地点は深さ390 mの層を弾性層と







## 図-6 目標と要素シミュレーションによって 求められた液状化抵抗曲線

考えそれより浅い部分をモデル化し,390 mで入射 波入力させることとした.M地点の地表の観測波を 入力として利用するが,M地点の表層14 mの増幅の 影響は10 Hz以下では極めて小さかったので,無視 できると考え観測波そのままを用いた.

S地点の地盤モデルでは,深さ390 mから現れる Vs=1500 m/sの層を粘性境界にモデル化して,M地点 で観測された加速度時刻歴を用いて入射波として入 力した.

(3) 解析ケース

解析は、上述の有効応力解析(ESAと略す)を基本ケースとし、それに加えて、次の2ケースを比較のために実施した。一つは液状化の影響を評価するためのもので、液状化可能層を液状化しないものとした解析、すなわち全応力解析(TSAと略す)であり、他の一つは、深い地盤の増幅特性の影響を評価

しようとするもので,72mの深さに入射波入力する ESAである.

#### 4.解析結果

(1) 最大応答分布

図-7に加速度,相対速度,相対変位,せん断ひず み,過剰間隙水圧比の最大応答分布を示す.

ESAの390 m入力の応答をTSAの390 m入力の応答 と比較する.この差は,液状化の影響として評価さ れる.過剰間隙水圧の応答が第一義的な違いである. 深さ3-4 mで過剰間隙水圧比(EPWP比)が約1に達 しており,完全液状化が極めて薄い層で起きたと評 価される.このことは,実際の現地で観察された液 状化の状況と整合する.深さ14-27 mのシルト層で もEPWP比が0.4-0.6に達している.

このEPPRの応答は, せん断ひずみ応答に反映される.ひずみ振幅はそれぞれの深さで, TSAの場合に0.15%と0.2-0.3%であるのに対して, ESAでは深さ3-4mで5%, 深さ14-27mで0.2-0.5%にまで伸びている.さらに, このようなひずみ分布の違いは, 直接的には変位分布の違いに見られ, 深さ14-27mの間での緩やかな増幅と深さ3-4mにおける不連続な増幅がそれに当たる.

一方,加速度や相対速度の分布にはほとんど差異 がない.一般に応答の最大値は,変位は長周期成分 に,加速度は短周期成分に支配されるので,これら を併せて考えると,変位に現れた違いは液状化によ る軟化で長周期成分が増幅されたと考えられるが, そのような成分を除く他の短周期成分は,両者でほ ぼ同じであることを示唆している.また,27 m以深 にどの応答にも差が見られないことを指摘しておく. さて,ESAの72 m入力を390 m入力と比べる.



図-7 加速度,相対速度,相対変位,せん断ひずみ,過剰間隙水圧比の最大応答分布

EPWP比は72 m入力では深さ3-4 mで0.5, 深さ14-27 mで0.06-0.16であり, 390 m入力より小さい.せん断 ひずみは,深さ3-4mで2.5%,深さ14-27 mで0.14-0.18%であり, 390 m入力の場合のおよそ1/2である 42 m以深のせん断ひずみの大きさにあまり差が見ら れない.したがって,390 m入力は72 m入力の場合 に比べて,表層27 m以浅のせん断ひずみを約2倍に させる効果があることがわかる.速度や変位につい ても図では異なるが,これらは入射基盤に対する相 対変位であるので,ここでは詳細な議論はしない.

加速度分布では50 m以深の値が約2倍である.しかし,それ以浅では1-1.3倍程度であり,特に地表ではほぼ同じ大きさである.これは,40 m以浅の地層におけるひずみ応答が大きくなることで減衰効果が発揮され,最大加速度値に大きく作用する短周期成分が減衰するためであると考えられる.

すなわち,粘性境界を用いた入射波入力による有 効応力解析(ESA)では,深さ390 mへの入力は, 深さ72 mへの入力の場合に比べて,地下72 m以上の 表層では,加速度が約2倍になって入射されること, 軟質な表層27 mではせん断ひずみが約2倍にする効 果があることがわかる.

## (2) 地表の加速度時刻歴

図-8に地表の加速度時刻歴を示す.加速度時刻歴 について観測記録と解析結果を考察する.23秒まで の時刻歴は,短周期成分が卓越し,振幅や波形の包 絡形について,どの解析も観測とよく似ている.し たがって,ひずみレベルが小さく短周期成分が卓越 している状態では入力する深い部分での増幅は波形 に影響がない.

3つの解析は23秒以降異なる様相を示す.おおよ そ23秒から25秒までは,解析3ケースで位相が異な り始めるが,振幅については大差はなく,最大値も 238-248 cm/s<sup>2</sup>でありほぼ同じである.しかし,25秒 以降は大きく異なる.25秒は2つのESAで過剰間隙 水圧の上昇のしかたが大きく違い始める時期に相当 する.

ESAの-72 m入力の場合は,25秒以降,振幅は時間 とともに小さくなり,30秒以降に卓越する長周期成 分の振幅もどれよりも小さい.

TSAの-390 m入力の場合には,25秒以降振幅は時間とともに減衰するものの,30秒以降に卓越する長周期成分の振幅は,ESAの-72 m入力の場合より約2 倍大きく観測波の振幅に近づく.このことから,深い地質による長周期成分の増幅の効果が重要であることがわかる.しかしながら,観測波と比べて振幅が不足し,短周期成分が多く,スパイク状のピークは再現できない.

一方,ESAの-390 mの場合は,30秒以降に卓越す る長周期成分の振幅・位相ともには観測波にほぼ等 しく,しかも観測波に現れている第2の特徴である スパイク状のピークもかなりよく表現できている.

以上の考察から,長周期成分の振幅の伸びは,深 部の地質による増幅と表層の液状化による増幅が相 まって現れたものであるという解釈が得られる.



図-8 地表の加速度時刻歴.上より,観測記録,-390m入力 ESA,-72m入力 ESA,-390m入 力の TSA の応答



図-9 深さ 3-4 m の層の過剰間隙水圧の時刻歴

## (3) 過剰間隙水圧の時刻歴

図-9に深さ3-4 mの層の過剰間隙水圧の時刻歴を 示す.2つの有効応力解析(ESA-390 mとESA-72 m)による過剰間隙水圧比(EPWP比)の挙動を見 る.図には最も間隙水圧の上昇した深さ3~4 mの EPWP比の時刻歴を示す.加速度応答の最大値を示 す約25秒までは余り違いはないが,それ以降違いが 生じる.-72 m入力では25秒ですでに最大EPWPの約 7割が上昇し,その後の上昇が鈍く,負方向の水圧 の変動は見られない.

一方,-390 m入力では25秒以降もどんどん上昇し 続け,30秒ではEPWP比が0.8に達し,それ以降は上 昇を続けながら,負方向の水圧変動が顕著になる. この1秒強の周期で現れる負方向の変動は,2秒強の 振動の卓越と併せ考えると,土のサイクリックモビ リティーに起因することは明らかである.

(4) 変位の時刻歴

図-10に地表の変位時刻歴を示す.変位時刻歴に ついて,観測波は最大加速度を示した25秒より少し 前に最大変位が生じるが,同振幅のピークは31秒に も現れ,40秒程度まではほとんど減衰しないことが 特徴的である.次に観測記録と解析結果を比較して 考察する.

23秒までの時刻歴は,入力位置によって振幅が異 なる.-390 m入力の場合は-72 m入力の場合の約1.7 倍である.加速度波形では短周期成分が卓越し振幅 に違いはなかったが,長周期成分の増幅が異なるこ とがわかる.

-72 m入力のESAの場合は,EPWPの発生が考慮されているとは言え,-390 m入力のTSAと比べて,終始振幅はおおよそ1/2である.両者とも30秒付近の2回目の最大変位のピークを示した後,時間の経過とともに減衰している.また,この2つは振幅だけでなく波形も異なる.

-390 m入力のESAとTSAを比較する.両者は,30 秒付近までは波形がよく似ているが,30秒以降様相 を異にする.すなわち,30秒から40秒にかけて, TSAでは振幅が観測波よりも小さく,時間の経過と ともに減衰するのに対して,ESAでは観測波と比べ て振幅がほぼ一致し,時間とともに減衰する様子が 極めて小さいことである.この時間帯は,EPWP比 が0.8から1.0に徐々に上がっていく過程であり,サ イクリックモビリティーがよく現れた時間帯である

以上の考察から,深部の地質が地震動の長周期成 分の増幅が表層地盤の振動に基本的に重要な役割を 果たし,ひいては液状化現象の進展にも重要な役割 を果たすこと,30秒以降の過剰間隙水圧が0.8を越え サイクリックモビリティーを発現させながら完全液 状化へ向かう過程は,長周期成分のさらなる増幅に 重要な役割を果たすことが理解できる.

(5) フーリエスペクトル

以上の議論により,時刻歴ではESAの-390 m入力 の解析が観測記録をよく説明できることがわかった. そこで,最後に振動数領域の面から考察する.

図-11に観測記録, ESA-390 m入力の際の地表の応答,入力地震動のフーリエスペクトルを示す.0.1-10 Hzの広い範囲にわたって,1-2 Hzを除き,ESA-390 m入力の解析は観測に概ね等しいことがわかる. 入力地震動に対する地表の応答のフーリエスペクト ル比では,0.4 Hzで6倍,1.3 Hzで3倍,2.0 Hzで3.5倍 のピークが認められる.図の1-2 Hzに見られる観測 との差異は,S地点北側にある島根半島向かって急 激に上がるであろう基盤の変化などによる多次元効 果によるものと推察される.ESA-72 mは他の2つの 解析に比べて小さく,TSA-390 mは,1.3Hz付近で異 なるが,1Hz以下の領域では大きく増幅している.



図-10 地表の絶対変位時刻歴 . 上より, 観測記 録,-390m 入力 ESA,-72m 入力 ESA,-390m 入力の TSA の応答.応答波形には 参考のため観測波形も重ねて示した



図-11 観測記録, ESA-390 m, TSA-390m, ESA-72m モデルの地表の応答,入力地震動の フーリエスペクトル

### 5.結論

2000年鳥取県西部地震の際に境港の液状化が発生 した地点で観測された地震動の水平加速度記録には, 主要動に続く後続位相で,長周期成分が卓越し,ス パイク状のピークが現れるという2つの特徴が見ら れた.この原因を深い地盤構造の増幅と液状化の影 響の2つの観点から,有効応力法による地震応答解 析に基づき検討し,次の結論を得た.

- (1) 近くの硬質地盤で観測された地震波を地下390m に入力した有効応力解析は,加速度,変位の時 刻歴で観測をよく模擬できた.特に,2つの特徴 は定量的にも再現できた.
- (2) その解析で,深さ3-4mで過剰間隙水圧比が約1 に達しており,完全液状化が極めて薄い層で起 きたと評価された.このことは,実際の現地で 観察された液状化の状況と整合する.
- (3) 地下72 mに入力した解析との比較から,地下 390 mから72 mまでの深い地質構造を考慮する ことにより,後続位相で卓越する長周期成分を 概ね2倍に増幅させる効果があった.
- (4) 地下390mに入力する全応力解析との比較から, 深部の地質による増幅が表層地盤の振動に基本 的に重要な役割を果たすこと,ひいては液状化 現象の進展にも重要な役割を果たすこと,後続 部のサイクリックモビリティーを発現させなが ら完全液状化へ向かう過程は,長周期成分のさ らなる増幅に重要な役割を果たすことがわかっ た.

謝辞:本研究では,港湾地域強震観測の境港の記録 及び防災科学技術研究所のKiK-net美保関の観測記録 を使用させていただきました.また,財団法人沿岸 開発技術研究センターのFLIP研究会の特別会員(森) として,FLIP ver.4.2.8を使用させていただきました. 記して感謝いたします.

#### 参考文献

1) 森伸一郎: .液状化被害(その3), 平成12年鳥取県西部

地震災害緊急調查団報告, 地盤工学会, pp.78-82, 2000.

- 2) 森伸一郎,阿部雅弘,服部加奈子:2000年鳥取県西部 地震における境港市の埋立地の地震応答,土木学会第 26回地震工学研究発表会講演論文集,pp.349-352,2001.
- 三輪 滋,池田隆明,綾部孝之,沼田淳紀:2000年鳥 取県西部地震における境港市の地盤の地震時挙動,構 造工学論文集,Vol.48A,pp.445-455,2002.
- 4) 森伸一郎,曽我部 繁之,阿部 雅弘:境港での液状化 地盤の地震時挙動における液状化の影響分析,第11回 日本地震工学シンポジウム論文集,pp. 825-830, 2002.
- 5) Mori, S. and Sogabe, S.: Influence of liquefaction on seismic ground motion at a liquefied site, *Proceedings of* the 12th Panamerican Conference for Soil Mechanics and Geotechnical Engineering and the 39th US Rock Mechanics Symposium, Soil and Rock America 2003, June 22-26, 2003, MIT, Cambridge, MA, USA, Vol. 2, pp. 2855-2861, 2003.
- 吉川 大智,盛川 仁,赤松 純平,野口 竜也,西田 良 平:余震,微動,重力を用いた弓ヶ浜半島における2 次元基盤構造の推定,地震第2輯,第5巻,pp. 61-73, 2002.
- 国土交通省港湾技術研究所:港湾地域強震観測ホーム ページ, <u>http://www.phri.go.jp/jishin/index.html</u>
- 8) 科学技術庁防災研究所基盤強震観測網(KiK-net) ホ ム ペ - ジ, http://www.kik.bosai.go.jp/kik/
- Iai, S., Matsunaga, Y. and Kameoka, T.: Strain space plasticity model for cyclic mobility, *Soils and Foundations*, Japanese Geotechnical Society, Vol., 32, No. 2, pp. 1-15, 1992.
- 10) 善功企, 山崎浩之, 佐藤秦:事前混合処理工法による 処理土の強度・変形特性, 港研報告, 第29巻, 第2号, pp.85-118, 1990.
- 11) 運輸省港湾局監修:埋立地の液状化ハンドブック,沿岸 開発技術研究センター, p.285, 1993.
- 清田 芳治, 萩原 庸嘉, 田村 英雄: 珪砂6号の動的変形特 性に関する研究, 第30回土質工学研究発表会講演集, pp. 851-852, 1995.
- 日本道路協会:道路橋示方書・同解説 (V耐震設計編), 1996.

(2003.7.10 受付)

# EFFECT OF AMPLIFICATION IN DEEP GEOLOGY ON GROUND MOTION AT A LIQUEFIED SITE IN SAKAI-MINATO

## Shinichiro MORI and Shigeyuki SOGABE

This paper presents a case study on a strong ground motion record dominated by longer-period components at a liquefied site in Sakai-Minato during the Western Tottori earthquake in 2000, and elucidates the cause of the predominance both in the effect of liquefaction of subsurface soil and in the amplification through deep geological structures. Nonlinear effective-stress dynamic analyses are carried out. The result of the effective stress analysis shows good agreement between the observed and the analyzed surface ground motions. Comparisons between different cases show the amplification in deep geology contributes to predominance of longer-period components rather than the effect of liquefaction.