

免震基礎を有する橋梁の動的応答計算

清宫理¹·渡辺勉²·安同祥³

¹早稲田大学社会環境工学科教授 (〒169-8555東京都新宿区大久保3-4-1) E-mail:k9036@waseda.jp ²早稲田大学理工学研究科建設工学専攻 (〒169-8555東京都新宿区大久保3-4-1) E-mail:w-tsutomu0422@asagi.waseda.jp ³早稲田大学理工学研究科 (〒169-8555東京都新宿区大久保3-4-1) E-mail:antongxiang@ybb.ne.jp

下部構造と基礎構造を分離して、その間(免震層)に緩衝材を充填し、下部構造と基礎構造との相対変 位と緩衝材の履歴減衰で地震エネルギーを吸収させた.この方法で、基礎構造の簡素化と免震シューの省 略が図れる.緩衝材としては粒度を調整した砂、あるいはテフロンなどを想定している.今回は免震層の 摩擦係数、バネ定数を変えて地震応答計算を行った.免震層導入により上部工の加速度や杭の断面力は低 減できるが、橋脚躯体の応答変位や残留変位が増大し、橋脚躯体にロッキング振動が生じることが判明し た.

Key Words : bridge pier, dynamic response analysis, seismic isolator, coefficient of friction

1.はじめに

軟弱地盤は地盤の水平抵抗力が小さく、軟弱地盤 に建設される橋梁基礎は、基礎自身の水平抵抗を大 きくして耐震性を高める必要が生じるため、一般的 には大規模な橋脚基礎となり、コストが嵩むことが 多い.また現在、一般的な基礎杭の免震対策として は、下部構造と基礎構造の間にピン構造や滑りを許 容するような半固定結合のものや積層ゴムなどを用 いた免震支承などが知られているが、それらの免震 層の変形量には限界があり、地震による表層地盤の 変形が大きくなる軟弱地盤に建設される基礎では対 応しきれない場合がある.そこで、下部構造と基礎 構造を分離して、その間(免震層)に緩衝材を充填 し、下部構造と基礎構造との相対変位(すべり)と 橋脚躯体のロッキング振動を許容し、さらに緩衝材 の履歴減衰を利用して地震エネルギーを吸収、逸散 させ、基礎構造の簡素化につなげることを目的とし た.また、免震層に用いる材料に、粒径を調整した 砂や礫材、それらの混合物、テフロンシート、廃棄 タイヤなどから作ったゴム粒など安価な材料を用い れば、比較的安価に免震基礎を構築できる.また、 基礎に免震構造を設置したときの橋梁の耐震性能を 道路橋示方書を参考に表-1に示すように作成した. 同示方書では基礎天端の変位を40cm、傾きを 0.025radとしているので今回もこの値を目標値とし た.

	ᆸᇱᄔᆞᄮᇔᆍᆂᆋ	レベルコ	レベル2地震動			
아이더	レハルI地展到	ラーメン橋	桁橋			
上部構造	許容応力度を超	副次的な塑性化に	力学的特性が弾性			
	えない状態	留まる状態	域を超えない状態			
支承部	許容応力度を超 えない状態		力学的特性が弾性 域を超えない状態			
橋脚	許容応力度を超	副次的な塑性化に	副次的な塑性化に			
	えない状態	留まる状態	留まる状態			
受台	許容応力度を超	力学的特性が弾性	力学的特性が弾性			
	えない状態	域を超えない状態	域を超えない状態			
免震層部	滑 る ことが な	免震層によるエネ	免震層によるエネ			
	且つロップによる受け	ルギーの吸収が確	ルギーの吸収が確			
	による受け	保でき、且つ構造	保でき、且つ構造			
	単価の半分を	系全体の安定性及	系全体の安定性及			
	超	び修復が速やかに	び修復が速やかに			
	えない状態	行える状態	行える状態			
フーチン	許容応力度を超	力学的特性が弾性	力学的特性が弾性			
グ	えない状態	域を超えない状態	域を超えない状態			
基礎	基礎は記念した。 基礎は認知した。 基礎をしたした 基礎のためで、 基礎のの 基礎の ためで、 基礎の 基礎の ための での にの にの り 度 の の の の の の の の の の の の の の の の の	副次的な塑性化に 留まる状態	副次的な塑性化に 留まる状態			

表 - 1 免震橋脚の目標とする耐震性能

2. 解析対象構造物

解析モデルは図-2に示す通りで、表層地盤は幅 150mで深さが40mで2次元モデルを作成した.橋脚は 断面が3.5m×3.0mのT型橋脚で、重量は3360kN、上

図-3 免震層と免震層の非線形モデル

表-4 地盤条件

			23	- 2 0m	2N 1			
地表か	土質	層厚	平均	単位体積	内部摩	粘着力	せん断	ポアソ
らの深さ		(m)	N値	重量	擦角	(kN/m^2)	剛性	ン比
(m)				(t/m ³)	(deg.))	(kN/m ²)	
~ 4	埋め土	4	4	1.8	23	0	29000	0.49
~ 14	粘性土	10	2	1.7	0	19.6	27000	0.49
~ 28	粘性土	14	8	1.8	0	78.4	72000	0.49
~ 32	砂質土	4	16	1.9	31	0	78000	0.49
~ 4 0	砂質土	8	50	2	42	0	174000	0.49

表-5 杭体条件と杭頭断面諸量

地表からの深さ	主鉄筋	帯鉄筋
4.0 ~ 6.4	D29 - 28本	D16 - ctc150
6.4 ~ 14.0	D29 - 28本	D16 - ctc300
14.0 ~ 34.0	D29 - 14本	D16 - ctc300
Mc (kNm)	$M_{V}(kNm)$	Mu (kNm)

2157.2

662.2

	500	
	500	
(IE	250	
₹(0	0	
感	-250	5 10 10 15 20
圮	-500	
	-750	时刻(sec)
		网。之子带等部分的

3129.4

図-6 入力地震動波形

部工慣性力は12000kNである.断面は橋軸方向が弱軸 の長方形断面である.フーチングの厚さは先端で 2.0m、幅11.4m、奥行き8.4mで、免震層はフーチン グの下に設け、厚さは0.3mである.杭は場所打ちコ ンクリート杭で、直径1.2m、長さ30mで3×4=12本で 構成されている.構造の非線形特性は、免震層 (図-3)は鉛直と水平の2方向のバネでモデル化し、 非線形特性は鉛直バネが非線形弾性モデル、水平バ ネがバイリニアモデルを用いた(バネ定数、水平: 鉛直=1:3).橋脚躯体は考慮していないが、杭のM-骨格曲線はトリリニアとし、復元力特性は武田モ

表-7 解析で求めた応答値

位置	No	応答値
上部工	1	加速度、変位(水平と鉛直)
橋脚基部	2	加速度、変位(水平と鉛直)、 鉛直応力 、せん断応力
フーチング (左側端)	3	加速度、変位(水平と鉛直)
杭頭(左端杭)	4	軸力、せん断力、曲げモーメント
杭頭(中央左)	5	軸力、せん断力、曲げモーメント

表-8 免震構造[水平バネ定数K=10000(kN/m²) 摩擦係 数 µ = 0.25]と非免震構造の応答値比較

	最大水平	^z 変位(m)	最大鉛直	ī变位(m)		
No	1	2	1	3		
Α	0.203	0.176	0.000	0.008		
В	0.273	0.148	0.035	0.095		

	最大水平加]速度(m/s ²)	最大鉛直加]速度(m/s ²)
No	1	2	1	2
Α	-7.210	-5.248	0.000	-0.741
В	-6.874	-3.857	1.819	3.220

No		4	ļ	
	軸力(kN) 引張側	軸力(kN) 圧縮側	せん断力(kN)	モーメント(kN・m)
Α	2844.1	-2488.5	-681.2	3013.1
В	2014.8	-2670.4	497.2	2069.2

No		5	5	
	軸力(kN) 引張側	軸力(kN) 圧縮側	せん断力(kN)	モーメント(kN・m)
Α	932.8	-793.2	-613.5	2932.2
В	193.1	-790.3	-426.5	2094.7

No	2	
	(kN/m ²)	(kN/m ²)
Α	561.9	-600.2
В	455.4	-703.8
	AI+++	

Aは非免震構造、Bは免震構造

	表-9 札	亢のひび害	れ、降伏	状況	
入力倍率	10%	20%	50%	80%	100%
免震構造	無被害	無被害	ひび割れ	ひび割れ	ひび割れ
非免震構造	無被害	ひび割れ	ひび割れ	ひび割れ	鉄筋降伏

デルとする.地盤はN値が4未満の軟弱地盤で、動的 変形特性にはRamberg-Osgoodモデルを用いた.地盤 条件を表-4に、杭体条件を表-5に示す.

3.解析

解析に用いたプログラムはTDAP で2次元モデ ルを作成した.入力波形は兵庫県南部地震でポート アイランドで観測された地震記録(加速度)の水平 成分である.その波形を図-6に示す.解析ケースは、 地震動の入力倍率を変えて杭の応答値を見るケー ス、バネ定数を変える、摩擦係数を変える、で ある.

4. 解析結果

解析によって求めた応答値を表-7および表-8に示 す.

図-11 フーチング左側での鉛直加速度

(1) 非免震構造との応答値比較

免震層を設けない従来通りの一体型の非免震橋脚 基礎と免震化(バネ定数K=10⁴kN/m、摩擦係数 µ=0.25)した橋脚基礎で、表-7に示した位置で応 答値を比較した.結果を表-8に示す.表-9には入力 地震動の倍率を10%、20%、50%、80%、100%と変えて 入力したときの杭のひび割れと降伏の状況を示す. 図-10は20%入力と100%入力での杭のM~ 履歴曲 線である.これらの結果から、免震層を導入するこ とによって、 最大水平応答加速度を低減できる、

杭の引張の軸力、せん断力、曲げモーメントを低 減できる、 橋脚基部の鉛直応力を低減できる、 非免震構造では杭は鉄筋降伏まで至っていたが免震 構造ではひび割れに留めることが出来る、 杭の軸 圧縮力が増加する、 橋脚基部のせん断応力が増加 する、また、図-10の杭の履歴から20%の入力では杭 は弾性応答範囲で、100%では非線形領域に入ってい ることがよくわかる.図-11には、フーチングの左 端での鉛直加速度の時刻歴応答を示す.免震化した 橋脚基礎では、橋脚躯体がロッキングによる鉛直方 向の加速度が生じている.図-12は基礎の天端での 水平変位と躯体の免震層上でのすべり変位を示す.

図-12 基礎天端変位とすべり変位

表-14 バネ定数(kN/m)の違いによる応答値比較

水平バネ定数(kN/m)	10000	100000	1000000
軸引張力(kN)	2015	1943	2319
軸圧縮力(kN)	2670	2680	2227
せん断力(kN)	497	627	653
モーメント(kNm)	2069	2633	2974

表-15 摩擦係数の違いによる応答値比較

摩擦係数	0.1	0.25	0.35	0.5
軸引張力(kN)	1925	2015	2065	2080
軸圧縮力(kN)	2534	2670	2744	2763
せん断力(kN)	444	497	514	529
モーメント(kNm)	2023	2069	2100	2104

天端での水平変位は最大で27.3cmで、残留変位は 2.87mmであり、変位の制限値である40cm以内に収ま っている.すべり変位は、最大で4.61cmで残留量が ほぼゼロとなっており、基礎天端の変位に比べて小 さく、橋脚躯体はあまりすべっていない結果となっ た.また、図-13には基礎天端における回転角を示し た.最大回転変位は0.015radで、残留回転角は 0.21mradであり、回転角の制限値である0.025rad以 内に収まっている.

(2) バネ定数の違いによる応答値比較(表-14)

免震層の摩擦係数は、μ=0.25で一定にしておいて、水平バネ定数を10⁴、10⁵、10⁶(kN/m)と変えて、 左端の杭についての杭断面力の応答値を比較した. 曲げモーメントとせん断力に関しては、バネ定数が

図-16 ロッキング角と作用モーメントの履歴ループ

小さいほど応答値が小さくなっている.軸力に関 してはロッキングが起こるバネ定数10⁴、10⁵ (kN/m)では、バネ定数が小さくても杭の軸圧縮力 が増加している.ただし今回検討の範囲のバネ定数 による応答値の差は最大でも30%と比較的小さかっ た.

(3) 摩擦係数の違いによる応答値比較(表-15)

免震層の水平バネ定数は、K=10⁴(kN/m)で一定に しておいて、摩擦係数を0.10、0.25、0.35、0.50と 変えて左端の杭についての杭断面力の応答値を比較 した.全体を見ると、摩擦係数が小さくなると応答 値も小さくなる傾向にある.ただし今回の検討では この摩擦係数の範囲での応答値の差は小さかった. これはいずれの摩擦係数でもすべりが生じていたか らだと考えられる.

(4) ロッキングとすべり

図-16には橋脚躯体のロッキング角と上部工の慣 性力作用位置での作用モーメントの履歴ループを描 いた.図-17には上部工慣性力作用位置での力と橋脚 躯体のすべり変位の履歴ループを描いた.免震層は 水平バネ定数はK=10⁴(kN/m)で摩擦係数µ=0.25のケ ースである.履歴ループ曲線で囲まれた面積を求め ると、ロッキングとすべりによる履歴減衰エネルギ ーを求めることができる.また、その履歴減衰エネ ルギーをある時間間隔ごとに足し合わせていくこと によって、履歴減衰エネルギーの総和(累積エネル ギー)を求めることができる.その累積エネルギー を時刻歴でプロットしたものが、図-18である.図-18より、この免震化した橋脚基礎では、すべりだけ ではなくロッキングによるエネルギー減衰が大きく、 約4倍ほど.すべりによるものよりロッキングによ るエネルギー吸収があった.

5.結論

今回提案した免震構造では、非免震構造の応答値 と比べて、橋脚躯体に生じる水平加速度や杭の引張 軸力、せん断力、曲げモーメントが低減できる事が わかった.しかし、杭の圧縮軸力や橋脚躯体基部の せん断応力、鉛直加速度が、非免震構造に比べて増 加してしまうことに注意が必要である.また、免震 効果は、バネ定数が小さければ小さいほど効果的で あるがバネ定数の影響は比較的小さかった.また摩 擦係数についても小さいほど効果があることがわか ったが今回の摩擦係数の範囲ではいづれの場合もす べりが生じており、頭打ちの状況であった.

今後は、 さらにすべりやすい材料で免震層を設 定したケースでも解析を行う、 橋脚の免震化が橋 梁全体に与える影響も考える、 水平動のみならず 鉛直振動の影響を調べる、などを検討していく必要 がある.なお本研究は(株)五洋建設、(株)オリ エンタルコンサルタンツと共同で実施している.

参考文献

- 守屋武海、清宮理、横井孝征:橋梁基礎用コンクリート杭の終局耐力予測で2次元有限要素法と3次元有限要素法の比較、第3回構造物の破壊過程解明に基づく地 震防災性向上に関するシンポジウム論文集、pp.219-224、2002.2
- 2) 大塚久哲、岩上憲一:一斉解析の諸条件、杭基礎の耐 震設計法に関するシンポジウム論文集・報告書、 pp.87-90、2001.9
- 3) 日本道路協会:道路橋示方書(V耐震設計編) 同解説

(2003.911受付)