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An improvement of the FEM-FDM coupled scheme is presented for dynamic analysis of fully saturated soil

considering large deformation. In the space domain, the equilibrium equation of fluid saturated soil is discretized by
the finite element method, as well as the continuity equation is discretized by the finite difference method within a
rectangular mesh which is difference from that used by the finite clement method. The finite difference method used

in a difference mesh would not suffer from numerical problems when the initial mesh of the finite element method is
not rectangular or the mesh is heavily distorted for large deformation. The proposed method is applied to a
one-dimensional elastic consolidation problem and an embankment problem in order to verify its usefulness.
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1. Introduction

The saturated soil consists of solid grain particles and
voids that are filled with water. It can be considered as a
mixture of binary phase- deformable medium of solid
graihs and water, each of which is regarded as a
continuum and follows its own motion equations. The
general theoretical frame-work of the binary porous
medium was first developed by Biot {1]. Based on Biot’s
theory, the incremental finite element method for
dynamics was derived by Zienkiewicz et al. [2] and other
researcher {3], in which geometrical and material
non-linear behavior can be included. We notice that the
dynamics of the porous medium mixture has been applied
to liquefaction analysis of saturated soil based on large
deformation theory [4].

In References {5-6], a FEM-FDM coupled scheme
was proposed for liquefaction analysis of saturated sand
to reduce the total degrees of freedom and to avoid the
shear locking under the undrained condition. But the
finite difference method used for the spatial discretization
of the continuity equation would suffer from numerical
problems when the initial mesh is not réclangular or the
mesh is heavily distorted when large deformation occurs.
In this paper, after the FEM-FDM coupled scheme
considering large deformation is presented for dynamic
analysis of fully saturated soil, an improvement of the
FEM-FDM method is proposed to overcome this problem
and a program code is developed on the basis of LIQCA
program [5-6].
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2. Governing Equations

Based on the updated Lagrangian method and the u-p
approximation formulation, the acceleration of fluid
phase can be neglected, and the local equilibrium
equation of motion for total mixture of soil skeleton and
fluid phase is simplified as
iO—.’-'L+pb,. —pii, =0 ()
ox,

J

i is the Cauchy total stress in the combined

solid and fluid mixture, u; is the displacement of the
solid skeleton, p is the density of the assembly and

b, is the body force.

For the pore fluid, the local equilibrium equation of
motion can be written as '

d(np)

ox;
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p'b. +ny' k™', + np’i, = 0 2

where n s the porosity, p is the pore pressure (taken
positive when compressive), p:/ is the density of the
pore water, kK is Darcy permeability coefficients, }!f

is the unit weight of the fluid and w; describes the fluid
displacement relative to the skeleton of soil.
Defining the excess pore pressure p by
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Then the equation (2) can be written as
wi = —-k—f(li(ilf).*_pfull (4)
y'\n ox

According to the law of mass conservation, the local
form of the continuity equation can be obtained. For the
soil skeleton, we have

Ap(1=n)), dp*(1=nly, ) _ ‘
o + o =0 ‘ (5)
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where p* and Vv, is the density and velocity of the

solid particles.
For fluid phase, we get

dnp’) + Ao’ v, +,) =0 6)
ot ox,
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From equation (5) and equation (6), the following
equation can be obtained after some manipulation [5][8].
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where lii is the. symmetric rate of deformation tensor

and K’ the bulk modulus of the fluid phase.
From equation (4), we obtain
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where g is the gravitational constant

If the gradients of ln(n)and In{p’ )are so small
that the quadratic terms in the above expressions can be
ignored and satisfy the following

(az(lnn)j o o

2
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Then the equation (8) can be expressed by
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Finally, substituting equation (10) into equation (7), the
continuity equation in the final form can be obtained as
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It is obvious that the equations (1) and (I1) together
with the constitutive law will define a coupled set of

equations in which u«;, and p, are the only unknown

variables.

3. Constitutive Model

In this study, we employ the Jaumann stress rate as an
objective measure of stress rate for the constitutive
relation to consider the large deformation problem. It is
adopted in the present formulation

Y
O',:,. —O',:,- —O',ka)jk —a.,ka),.k (12)
where 0",.]. is the rate of stress, a),.,. is the skew
symmetric spin tensor.
A general relationship between the objective stress
rate and the deformation rate can be written as

G =Dy, b, - o, (13)

i
where p is the rate of pore pressure, 5,.,. is the

Kronecker delta and Dy,
tensor of the solid skeleton. ,

In Reference [7], an effective cyclic elastic-plastic
constitutive model was proposed by Oka et al. based on a
non-linear kinematics harding rule for saturated sand. In

the present study, this model is extent so that it can be

, is the Eulerian elastic-plastic

- applied to fit the finite strain theory.

4. Improvement of FEM-FDM Coupled Method

If it is assumed that the time increment keep small
enough in each step of dynamic analysis, then during the
step we have approximately
I+A/p_/'=tpf and
By the updated Lagrangian method, the weak
formulation of equation (1) can be obtained as

I+A1n=rn

J, otV + [ ([8dn)eE,av
=[ (T, +dT Jovaa (14)
+[ 'p('B,+dB)vdV - 'o,0E,dV

where Sii is the second Piola-Kirchhoff stress tensor

and E,.j is the Lagrangian strain tensor.
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The second Piola-Kirchhoff stress rate tensor is
assumed that approximaitely equal to the Truesdell stress
rate . tensor, then the second Piola-Kirchhoff stress rate
tensor can be expressed as

S;= 0."1' Wi L
Dukl ]kl +l//1[kl ki p§

where I/, is the 4th-order tensor in terms of the

current stress components.
The weak formulation of equation (11) is written as

_J" 'Pf ’ﬂl,'l”&)Ed’V
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Using a FEM-FDM coupled scheme in which is
proposed in References [5-6], equation (14) is discretized
in the space domain by the finite element method, and
equation (16) is discretized in the space domain by the
finite difference method in a same element mesh.

If the initial mesh were not rectangular or the mesh
were heavily distorted when the large deformation occurs,
the expressions of difference for the second term in
equation (16) do not give exact values for the partial
derivative of excess pore pressure.

For the improvement in this paper, we discretize
equation (14) by the finite element method in a mesh
which can be named by FEM_Mesh and discretize
equation (16) by the finite difference method in another
different mesh which can be named by FDM_Mesh. The
FDM_Mesh is different from the deformed mesh
FEM_Mesh and can be a rectangular grid in which is
beneficial to discretize equation (16) by the finite
difference method. Therefore the second term in equation
(16) is approximated by a expression of difference in
which the error can be of high order. The procedure of
this method is explained briefly in the following steps.

(1) Updated the coordinates of the old mesh
FEM_Mesh and FDM_Mesh (according to
displacements over the previous solution step) to
form the reference ones.

(2) A rectangular new FDM_Mesh is generated in the
region in which is covered by the reference
FEM_Mesh. ‘

sy

(3) Interpolate or extrapolate the relevant quantities
such as pore pressure, strain and stress values at
the new mesh element using the respective values
in the reference mesh element.

(4) Analysis of next set of increments.
The cycle (1)~(4) is repeated until the desired step is
reached.

Adding the Rayleigh damping and using the
Newmark’s B method for the time domain- integration,
we obtain the final formulations from equation (14) and
equation (16) for large deformation analysis of the
saturated soil using the FEM-FDM coupled method.
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Fig. 1. FEM_Mesh of One-dimensional consolidation
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Fig. 2. Vertical settiements W vs. the load level
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5. 'Numerical Examples

On the basis of LIQCA program [5-6], a program code
was developed o analyze the large deformation dynamic
response of saturated soil according to the procedure
mentioned above. A one-dimensional example and a
two-dimensional example are now presented to illustrate
the foregoing method.

The first one is the problem of the one-dimensional
elastic consolidation as shown in Fig. 1. It is analyzed as
a ten-meter deep ground, fully saturated by water,
infinitely extended in horizontal direction, and’subjected
to a step load applied at the ground surface, with drainage
allowed only through the top surface. A porosity of 0.3, a
specific permeability of 0.01 m/s, an elastic modulus of
the ground E of 1Gpa, and a zero Poisson ratio are
adopted. Gibson et al. [9] developed an analytical theory
in which accounted for -finite strain for this
one-dimensional problem. The final displacements in
which are obtained from the developed program and the
theoretical solution are drawn vs. the applied load in Fig.
2.

The second example regards the elastic-plastic large
deformation response of an embankment (See Fig. 3.)
subjected to the horizontal and vertical strong motion
record at Port Island during Hyogoken-Nambu
earthquake. The responses at node A are shown in Fig. 4.
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Fig. 3. FEM_Mesh of the embankment
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Fig. 4. Vertical response at point A

6. Conclusions

In this paper, the improvement of FEM-FDM coupled
scheme is presented for the saturated soil analysis related
to large deformation, and a program code is developed
based on the LIQCA program. In the space domain, the
continuity equation is discretized by the finite difference
method within a rectangular mesh in which is difference
from that used to discretize the equilibrium equation by
the finite element method.

Good agreement was found between the analytical
solution of a one-dimensional finite strain elastic
consolidation and the numerical solution. The FEM-FDM
coupled analysis was also applied for an embankment
problem.
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