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The pile-soil system is idealized by a finite irregular region joined to a regular semi-infinite far field. A hybrid of
Finite Element and Thin-Layer Element methods are used for the dynamic analysis. The former is to develop the
dynamic stiffness matrix of the irregular zone for both linear and non-linear formulation in time domain. The latter is
to develop the dynamic stiffness matrix for the regular zone in frequency domain and a transformation to time domain
is performed using recursive method. The whole system is later assembled for interaction analysis using incremental

and time-integration schemes.
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1. INTRODUCTION:

Because of the semi-infinite nature of soil, new solution
techniques have been developed accounting correctly for the
energy dissipated or introduced into the system because of wave
propagation, which includes the effects of non-linear behavior
of the soil. Many attempts in this way were made and
considerable amount of work has been done in recent years to
obtain improved solutions of the above mentioned problems
with a particular interest in the seismic design of structures
accounting for dynamic soil-structure interaction.

In this study we are concerned specifically with Pile-Soil
interaction problems based on the substructure method.
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Fig. 1 Model concept and system coordinates
of analyzed system

In the substructure approach the impedance is combined with
the structural model to perform a dynamic analysis for a given
free field loaded from a site response analysis, or for a dynamic
load directly applied to the structure. The difficulty to obtain
rigorous solutions for an embedded structure with complicated
shapes in layered half space make it necessary to resort to a
hybrid of Thin Layer Element and Finite Element methods to
model the total soil-substructure system. As the regular
unbounded soil on the exterior of the interaction horizon up to
the infinity behaves linearly, it can be analyzed in the frequency
domain. Applying Thin Layer Element Method (TLEM) results
in the Dynamic Stiffness matrix in the frequency domain that

must be transformed into time domain using a recursive method.
The imregular substructure domain is analyzed using linear and
non-linear Finite Element Method (FEM) in cylindrical
coordinates. The total dynamic system with a non-linear .
structure can be analyzed and three sets of numerical simulated
results are presented.

2. FORMULATION OF THE OUTER LAYERED
ZONE:

(1) The Thin Layer Element Method:
(3) General wave equation:

The soil is composed of horizontal layers that are
homogeneous, isotropic and linearly viscoelastic with material
damping mdependent from frequency. The vertical boundaries
to the irregular region represent the far field as a semi-analytic
energy transmitting boundary (3].

The three-dimensional wave equation in cylindrical
coordinates for an isotropic homogeneous elastic media can be
written as:
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(b) Analytical model and general assumptmns

The displacements are expanded in the tangential direction
using analytical functions and can be written as:
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u, = Z::ov;”(r,z)cosme +v7(r,z)sinm@

u, = Z"NFov;”(r,z)cosmo+13;"(r,z)sinm0 (3)

ug = Zﬁwvg'(r,z)cosmo —-vg(r,z)sinmé
where the subscript m is the harmonic number and N the total
number of harmonics required to represent the load. If the load
is symmetric about the @ axis, the subscripted v is dropped
out from the above equations. And we assume that only the
Zeroth and First harmonic modes are necessary in the analysis
to describe the loading. The forces are similarly expanded to
tangential direction.

The general solution of the above for a harmonic excitation

with a frequency @ can be written as:

vj=Wu|F; @)

where ¥ j= {v,,vz,vg}r is the displacement vector expanded
to radial direction for a nodal connection of a layer j with the

irregular zone. F'; are functions of depth. And the expansion
matrix is written as follows:

HO (k) 0 mH B (k)1 7
[Vg] ;= 0 kH D (ler) 0 where
mH P (k) r 0 H®) (kr)

H ,(,,2) (kr) is the Hankel function of order m of the second kind.

H ,(,,2), (kr) is the first derivative of H ,(,,2) (fr) with respect to r.
k is the wave number.
(2) Equation Of Motion
The equation of motion of the complete n-layered far field
of analysis system can be written as:

(A1 &+ i[B] k + [G] - »* [M] ){&} =0 )

Since the eigenvalue problem of Eq. (5) is independent of the
order m of the Fourier expansion to radial direction, it can be
shown that any arbitrary three-dimensional harmonic
displacement field in a layered soil can be expressed as a
superposition of Love and Rayleigh waves. Hence is always
possible to express the displacements in the far field in terms of
eigenfunctions corresponding to the natural modes of wave
propagation in the layered half space [8].
where {8} is a vector of 3n components assembled from the
displacements {&°} of the Rayleigh wave and {¢} of the Love
wave. The detailed form of the matrices of Eq. (5) can be found
in Ref. [2].

(3) Formulation Of The Energy Transmitting Boundary

Using Eq. (3) and (4), the complete force system acting on
the cylindrical vertical boundary r=r, can take the form:

{R,} = [S(@)] %} (6)
[S(®)]= r, (i [AIIW][K][V] +[DI+E]) 0

where [W] is a 3nx3n matrix which the columns are formed
from the weighted eigenvectors {v,}, and [K] is a 3nx3n

matrix which has the eigenvalue & at its diagonals. The detailed
forms of the matrices of Eq. (5) are to be found in Ref. [2].

3. TRANSFORMATION TO TIME DOMAIN

(1) Rigorous Formulation

The transformation of the dynamic stiffness matrix of Eq. (7)
from frequency to time domain can be done using direct or
recursive methods. The former is generally done through
Fourier transformation of the dynamic stiffness coefficients
from the frequency to the corresponding ones in time domain.

_‘1_ +c0 iat
S(t) = " .f_wS(w)e dw o ®)

The above formulation costs high in computation time and
memory since it requires a rigorous numerical solution because
for every time step a Fourier transformation (FFT) is necessary.
In addition to this concept of evaluating the interaction forces in
the frequency domain, the amplitudes of the displacements can
be calculated recursively using only the amplitudes of the N
previous time step. The Fourier transform is thus avoided. The
recursive evaluation is, in principle, rigorous. This scheme will
lead to a significant reduction in the computational effort and
storage requirement when interpolation in the frequency domain
is applied.

(2) Interaction Forces In Time Domain
(a) Derivation

The recursive evaluation of the dynamic stiffness matrix in
time domain [S(#)] of Eq. (8) can be done starting from the
dynamic stiffness matrix in frequency domain [S(w)]. Each
dynamic stiffness coefficient in frequency domain S(w)of
{S(®)] can be approximated as a ratio of two-polynomials in i®
[11] using a curve fitting technique based on the least-square
method:
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Fig. 2 Regular part of Dynamic Stiffness Coefficient

To integrate a rational function as Eq. (9) it is usually
necessary to write it as a sum of partial fraction of the form:
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wheres; are the roots of Q(iw) and 4;'s are the Tesidues at the
poles. Applying Discrete Fourier Transformation:

S =3 4t (11)

Eq. (11) represents the regular part of the dynamic stiffness
coefficient in time domain derived from frequency domain
using ratio of polynormals (Fig. 3). The singular paxt is added
later in the total recursive equation.
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Fig. 3 Dynamic Stiffness Coefficient in Time Domain

(b) Recursive equation
Discretizing Eq. (11) and applying a Z-Transformation at
time corresponding to the Nyquist frequency Nf;:

-l -(N-1)
ba +b12 + +bN_lz_N (12)

1- alz—l

S(2)=

——ayz

Identifying the coefficients of the terms involving z the
recursive equation of interaction forces acting from the far-field
are thus obtained.

R =Y R (13)
RIm= 3N alrRIm_ +acy Bl U, (14)

where m is equal to the dimension of the dynamic stiffness
- matrix [S(@)], U, being the displacement vector of time

(n—-i)At.

4. FORMULATION OF THE INNER ZONE

(1) Linear Finite Element Formulation
(a) Stiffness and mass matrices

The inner irregular zone can be modeled for the linear finite
element analysis by a quadrilateral solid elements
interconnected at a total of N points. The locations of nodal
points are defined in the 2-D plane by the coordinates (7.z).
Expansion to the 3-D space is done using Fourier expansion in
the tangential direction of Eq. (3) and the corresponding shape
functions. The element Static Stiffness Matrix and the Mass
Matrix are expressed as follows:

r= I_ll j’il[B]T [S1.[B]rdetJdédn (15)

MY = || [} AN NI detdgdn a6)

where [B] is the strain-displacement transformation matrix and

[S],is the linear material property matrix and [J] is the 2-D

Jacobian matrix. The interpolation matrix [V] is defined as:
[N}=([N),--[N]s) And [N); = d?'ag(ni,

n(&,m) =LA+ &&E)L+m7)
;i = [1’1’—1’_1];771' = [_l’lalr_l]

nm)  (17)

where

(s)

Total stiffness and mass matrices are symmetric and banded.
(b) Equations of equilibrium of dynamic system

The equation of motion governing the linear dynamic
response of a system of finite element at time (n+1)Af can be
written as:

[Klup +[Clpyy +[M Jidpyy = {Rpii} 19

A direct integration method is used for the solution of the
above equation. In the numerical implementation, the Newmark
and 6-Wilson integration schemes are used for a step-by-step
solution of Eq. (19)."

(2) Materially Non-Linear Finite Element Formulation
(a) Introduction and model concept

For the Materially Non-Linear only analysis, the non-linear
effect lies in the nonlinear stress-strain relation. The
displacements and strains are assumed to be infinitesimally
small, as in the linear analysis. The finite irregular region is
constructed from an eight-node 3-D brick element. To minimize
the computational load, all initial analysis is carried out in local
Cartesian coordinates. A transformation to global cylindrical
coordinates is performed only on the elements joined to the
outer half-space region.

(c) Stiffness matrix and mass matrix '

In the finite element formulation of elastoplastic problems,
the incremental elastoplastic stiffness matrix for one typical
element is given by:

K$ = [[ [ [BY [S1,,[By detJdgimd¢ 20)

where [B] is the strain-displacement transformation ‘matrix
composed of derivatives of shape functions and [S],, is the

constitutive elastoplastic matrix, which is constructed using the
flow approach to describe the elastoplastic material (1}, and [J]
is the 3-D Jacobian matrix .

The element mass matrix is similarly written for the 3-D
formulation as:

MY = [[[[, AN [N} detJdgdnd¢ @1
[N1= ([N}, +[N) ; [N); = diag(rn,n;,m)
and  m(£n.0) = FA+EOA+ 7ML+ EE)
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The stiffness and the mass matrices are symmetric and
banded.
(d) Imcremental equations of equilibrium of dynamic

system and solution schemes

The equilibrium of the finite element system at time (n+1)At
in nonlinear analysis requires that an iteration be performed.
Using the modified Newton-Raphson iteration scheme the
equation of motion can be written as:

(M) +CH +1Kr 1,00 = Ry - FH Q2)

where {F} is the intemal forces for the regular finite element
zone due to the external and recursive forces of interaction of
regular and irregular zones.

{R} is the external loading .

[K]r 1s the tangent stiffness matrix.

[C] is the constant damping matrix.

[M] is the mass matrix of the finite irregular region.

S. ANALYSIS OF TOTAL SYSTEM OF PILE-SOIL
INTERACTION.

(1) Final Equation Of Motion

The final equation of motion for the pile-soil system is
written directly by adding the interaction forces of the layered
far-field to the irregular zone. It can be written as follows:

(K} = P@) +RO-F()-Myii ~Cris (23)

where
[E ] is the effective stiffness matrix
P(1); is the external load force vector

F;(¢t) is the vector of internal forces of the finite element zone

R,’,(t) is the vector of nodal recursive forces acting on the

vertical boundary between layered zone and irregular zone
(2) Numerical Implementation

Three models are considered (Fig. 4), the first describes a
system with a core irregular zone , two cases are studied when
the core region is homogenous and when it’s non homogenous ,
the second model describes the layered zone connected directly
to the pile . A harmonic force is applied on the head of the pile
in r direction.

Model 2 Model 3
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6. CONCLUSION:

The efficient of the combined method of finite element and
thin layer element in three-dimension formulation of a half
space with imegularities, can be successfully applied to soil-
structure problems. Since the thin layer formulation is only
performed in frequency domain, an accurate method is needed
to transform the dynamic stiffness matrix to Time domain. The
recursive procedure requires lesser computer storage and
solution time and there is a drastic reduction of the degrees of
freedom compared to using direct methods.
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