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A new method for fracture analysis of reinforced concrete structures is proposed. The concrete is
modeled as an assembly of distinct elements made by dividing the concrete virtually. These elements are
connected by distributed springs in both normal and tangential directions. The reinforcement bars are
modeled as continuous springs connecting elements together. Local failure of concrete is modeled by
failure of springs connecting elements when reaching critical stress. The accuracy of the method is
verified by comparing with experimental results. The results showed good agreement in determining the

load-deformation relations, failure load and the initiation, location and propagation of cracks.

Key Words: nonlinear analysis, fracture analysis, reinforced concrete structures

1. INTRODUCTION

A new method for nonlinear analysis of
reinforced concrete structures is proposed. The
concrete is modeled as an assembly of distinct
elements made by dividing the concrete virtually.
These elements are connected by distributed springs
in both normal and tangential directions that totally
represent stresses, strains and local failure inside the
elements. Reinforcement bars are modeled as
continuous springs connecting elements together.
Cracking of concrete is modeled by failure of
springs connecting elements when reaching critical
principal stress. = We developed the element
formulation and the computer code and verified the
accuracy of the method by comparing with two
experiments. In. these experiments, the results
showed good agreement in determining the failure
load, the load-deflection relations and the initiation,
location and propagation of cracks.

2. ELEMENT FORMULATION

The two elements shown in Fig.1 are assumed to
be connected by pairs of normal and shear springs
located at contact points which are distributed
around the element edges. Referring to Fig.1, each
pair of springs totally represent stresses and
deformations of a certain area of the studied
elements. The total stiffness matrix is determined
by summing the stiffness matrices of individual
springs around each element.
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Failure of springs is modeled by assuming zero
stiffness for the spring being considered.
Consequently, the developed stiffness matrix is an
average stiffness matrix for the element according
to the stress situation around the element. In the 2-
dimensional model, three degrees of freedom are
considered for each element and deformations are
assumed to be small. This leads to a relatively
small stiffness matrix which is only of size (6X6).
The stiffness matrix is developed for an arbitrary
contact point with one pair of normal and shear
springs as shown in Fig.2. Two types of springs
were defined. The first is concrete springs while
the other is reinforcement springs. In this
formulation, the element stiffness matrix depends
on the contact location (distance L and the angles 0
and ) and the stiffness of normal and shear springs
which are determined according to the contact point
type and the stress and strain at the contact point
location.

3. EFFECTS OF ELEMENT SIZE AND
THE NUMBER OF SPRINGS

To illustrate the effects of element size, a series of
analyses were made for the laterally loaded cantilever
shown in Fig.3. Elastic analyses were performed
using our proposed method for the different cases
shown in the figure. The results were compared with
those obtained from elastic theory of structures. The
percentage of error in maximum displacement and the
CPU time (CPU: DEC ALPHA 300 MHz) are also
shown in the figure. To study the effects of the
number of connecting springs, two different analyses
~ were performed using 20 and 10 springs connecting
each pair of adjacent element faces. From the figure, it
is evident that increasing the number of base elements
leads to decreasing the error but increasing the CPU
time. The error reduces to less than 1% when the
number of elements at the base increase to S or more.
Although the CPU time in case of 10 springs is almost
half of that in case of 20 springs, its results congruent
with those of 20 springs.
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Fig.3 Relation between the number of base elements,
percentage of error and CPU time

It should be also noted that in the previous
analysis using rigid elements, like RBSM", the
results obtained were of poor accuracy. This may
be due to: '

* The spring stiffness not being determined in a
proper way to simulate the element deformation,

* The use of relatively large sized elements, and

* The use of relatively small number of springs
between edges which leads to an inaccurate
failure mechanism.

4. SIMULATION OF TWO-STORIED
RC WALL STRUCTURE SUBJECTED
TO MONOTONIC LOADING

To verify the accuracy of the model, the
simulation results were compared with the
experimental results of a two-storied RC wall. The
shape of the wall, reinforcement and loading
location are shown in Fig.4. Reference (2) gives
more details on the columns, beams and wall
reinforcement, or the material properties. The wall
is modeled using 1,845 square elements. The
number of springs between each two adjacent faces
is 10. Reinforcement locations are defined by their
nearest spring coordinates. For vertical
reinforcement, x-coordinate is defined at the steel
bar location while for horizontal reinforcement, y-
coordinate is defined.

Fig4 shows a comparison between measured
and calculated load-rotation relations. First, to
discuss the effects of load increment in failure
analysis, three models of different load increments,
calculated by dividing the estimated failure load by
50, 250 and 500, with the constant number (10) of
springs were used. Next, to study the effects of the
number of connecting springs between faces,
additional simulations were carried out using the
case of 250 load increments with 5 and 2 springs
between faces and the results were compared with
that with 10 springs. The failure load calculated in
all cases were within the range from 64 to 70 tf
while the measured one was 67 tf. The calculated
failure load using the FEM was 64 tf, In general,
the calculated failure loads are very close to the
measured ones. The results of 50, 250 and 500
increments are almost congruent till at least 95% of
failure load. It should be emphasized that the CPU
time of analysis of 500 increments is 10 times that
of 50 increments. To avoid long CPU time, load
increments can be reduced after about 90% of
expected failure load. Moreover, it can be noticed
easily from Fig.4 that the agreement between
experimental and numerical results is fairly good
for 250 increments with 10 or 5 connecting springs.
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Fig.4 Relation between load and base rotation for 2-storied RC wall

Surprisingly, for the case of 250 increments with
only 2 springs connecting each two adjacent faces,
the results are also reliable till reaching failure of
the structure. It is noted also that using few number
of load increments leads to the results in slightly
higher failure load (70 tf) while using a few number
of connecting springs gives slightly lower one (64
tf). This means that our model gives reliable results
even when using a few number of connecting
springs or few number of load increments.

Although increasing the number of springs leads
to increasing the calculation time required for
assembling the global stiffness matrix, the time
required for the solution of equations, which is
dominant of CPU time when the number of
elements is large, does not change. Because the
number of degrees of freedom is independent of the
number of springs used. This means that we can
use larger number of springs between edges without
significant change of the CPU time of analysis.
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Fig.5 Relation between load and the number of failed springs

Fig.S5 shows the relation between load and the
number of failed springs for each increment.
Cumulative curves also show the total number of
failed springs till that increment. It should be noted
that although the number of increments in both
cases are different, both cumulative curves close
each other. This gives good indication that the
solution is generally stable. Excessive cracking
begins to appear when the applied load is about 28
tf. At the same load, behavior of the structure
begins to be highly nonlinear.

Fig.6 shows the deformed shape during the
application of load in case of 500 load increments
with 10 springs. The location of cracks and crack
propagation can be easily observed. The location of
cracks and crack propagation are very similar to
those obtained from the experiment. This means
that the proposed mode! can be applied for fracture
behavior of RC structures, such as, failure load and
deformation, crack generation, crack location and
crack propagation, etc.

It should be emphasized that although the shape
of elements used in the analysis are squares, it does
not affect the crack generation or crack propagation
in the material. Diagonal cracks, as shown in Fig.6,
coincide well with those obtained from the
experiment. In the analysis using rigid elements,
like RBSMY, shapes and distributions of elements
were decided based on the assumption that cracks
were generated and propagated in previously
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Fig.6 Deformed shape and crack locations of 2-storied RC wall structure (Scale Factor=30)
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5. SIMULATION OF RC FRAME
STRUCTURE

The third verification example is an RC frame
structure. Dimensions, loading conditions and
reinforcement details” are shown in Fig.7. This
frame is modeled using 1,880 elements with 10
connecting springs. The maximum load is applied
in 200 increments at the shown location. All
reinforcement details, including location and
diameters of stirrups, were taken into account.
Fig.7 shows also the relation between load and
deformation calculated from our simulation model
and measured from the experiment. It can be
noticed that excellent agreement between the two
results has been achieved. Fig.8 shows the
deformed shape and crack location at the final stage
of our result and experiment. Good agreement
between the measured and calculated crack
locations, crack inclination and crack length can
also be obtained.

6. CONCLUSIONS

Through numerical simulations of reinforced
concrete structures, it is confirmed that the new
proposed model is capable of simulating the
fracture behavior of concrete structures. The results
of load and displacements in monotonic loading
almost coincide with the experimental results by at
least 95% accuracy. The expected failure mode is
also very close to the measured one. Through this
new model, stresses, strains, load-deformation
relations, initiation and propagation of cracks can
be calculated with high accuracy and relatively
simple techniques. In addition, all reinforcement
details, such as bar location and shear reinforcement
details, can be taken into account without any
additional complications, like in case of FEM, to the

analysis. Also, it is very easy to follow the
mechanical behavior of steel and concrete at any
point.
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Fig.7 Relation between load and maximum displacement
of RC frame

Although the shape of the element used was
square, it did not affect the crack propagation in the
material. This method does not require complicated
techniques for the representation of cracking or
special elements, such as joint elements, to follow
the crack propagation. Although the effects of
Poisson’s ratio is not taken into account in the
model, the results obtained by the proposed method
agree well with experimental results. It means that
the model can be applied to fracture behavior cause
of which is not strongly related to the Poisson’s
ratio. This model can be easily combined with the
EDEM to simulate the total behavior of structure till
complete failure. The proposed model is expected
to give high accuracy to wide applications where
FEM can not give reliable accuracy.
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Fig.8 Crack pattern of RC frame

-1016—



