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INTRODUCTION

When a strong earthquake occurs in a large city, it is imperative to assess the damage quickly. A quick
assessment alerts emergency service agencies. It also gives city gas companies valuable information to
decide whether to cut off the gas supply to avoid secondary disasters like the spread of fire. Neural networks
present anew approach to obtaining quick assessment. Neural networks have been found to be an excellent
technique in finding a relationship between the input and output values even though that relationship is
complex and unknown. Neural networks have been used recently in the field of earthquake engineering
[1,2] because of its versatility and robustness in seeking complex relationships by itself. However, the
effectiveness of neural networks depends largely on the "quality” of the data to be used for training the
network. Since the number of data available for training the network is still quite small, the network may
not be able to predict “correctly” for certain cases. To overcome this problem, this study uses simulated
data so that the network may be trained for the whole range of expected values that will be handled.
SIMULATION OF STRONG GROUND MOTION

In order not to introduce too much complexity at this time, the Kanai-Tajimi (K-T) power spectra
representation is used in this study because of its simplicity. Lai [3] has studied the statistical characteristics
(e.g., mean and coefficient of variation) of the K-T parameters based on actual earthquakes. The K-T
parameters that need to be specified are the intensity, S, the K-T frequency, @, and the K-T damping, /.
In this study, the values of the parameters determined by Lai [3] are used as typical values. To complete
the description of the simulated earthquake, a trapezoidal envelope function with a 2.5 srise and decay time
is used, again for simplicity. To have a well-distributed set of strong ground motion data, the parameters
for the simulation are randomly selected from the range of values given in Table 1, assuming a uniform
distribution for the parameters. To have a well-trained network that can generalize well, a large number
of training data must be used. In this study, 500 ground
motion time series are generated. Figure 1 shows the
distribution of the maximum acceleration and velocity
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Table 1. Parameters for earthquake simulation

for the set of simulated earthquakes. Parameter | LowerLimit | Upper Limit
STRUCTURE / DAMAGE MODELS total time 75s 20.0's
To estimate the damage due to strong ground motion, S, 1.0 cm?/s* 500.0 cm?/ 8
a step-by-step nonlinear analysis procedure is applied w, 4.0 rad/s 40.0 rad/s
using two single-degree-of-freedom models representing (0.64 Hz) (6.34 Hz)
two types of wooden framed structures commonly found hy 0.15 0.60
in Japan. The models have bilinear stiffness with the 120
secondary stiffness taken as 20% of the initial stiffness. »
The damping ratio is taken to be 0.05 and the restoring ?,’ 100
force at yielding is \g, % T
e - +
Q,=mg-C,  whereC, =025/NT . 8
The first model (Wooden 1) represents ordinary wooden _; 60 '
framed houses with two stories and a fundamental period g 40 -
of T=0.55 s. The second model (Wooden 2) represents §D )
fire-resisting wooden framed houses with two stories and 20 1 1
a fundamental period of T=0.35 s. The damage to the &, ¥
structures is then given in terms of the ductility factor. 0 )
0 500 1000 1500

NEURAL NETWORK MODEL

The main objective in the construction of the neural
network model is to estimate the damage of the structure
(in terms of the ductility factor) from indices of the strong
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peak ground acceleration (cm/s/s)

Figure 1. Distribution of peak ground acceleration

and velocity for the simulated earthquakes




ground motion only. Therefore, in an earthquake, sensors
can measure the indices of the ground motion and then the
neural network can immediately generate a damage esti-
mate.

The indices used as input to the network should be

Xw
LR

simple and easy to obtain. The indices should also S5
identify the characteristics of the ground motion in a “',,‘.:‘:‘\'04
general way. In this study, the indices include the peak 3’,&‘\4‘#{\\‘

ground acceleration (PGA), peak ground velocity (PGV),
and peak ground displacement (PGD). The Spectral
Intensity (SI) is considered because it was found to be a
good index of damage and because its value can be
immediately estimated using a new type of sensor [4]. To
account for the averaged "intensity " of the ground motion the root square of the acceleration is used.
Finally, the time duration of the ground motion, T , as defined by Trifunac and Brady [5] is used.

The neural network model used is a feed-forward back-propagation network having one hidden layer
with four processing elements (PEs) fully connected to the input and output layers and bias (Figure 2). Two
logistic activation functions, namely the sigmoid and the hyperbolic tangent functions, and three learning
rules are tried and compared. These are the: 1) Normalized Cumulative Delta Rule (NCDR) [6]; 2)
Extended Delta-Bar-Delta Rule (EDBD) [7]; and 3) Directed Random Search (DRS) [8]. Strictly speaking,
DRS is not a back propagation algorithm but is tried for comparison purposes and because it is not affected
by any local minimum of the error function. For a more detailed discussion of the algorithms, please see
the references cited. Before training the network, the input and output values are scaled based on the
minimum and maximum values of the training data to prevent the saturation of the transfer functions of the
PEs. The input values are scaled from -1.0 to 1.0. The output values are scaled from 0.2 to (.8 when using
the sigmoid transfer function or from -0.8 to 0.8 when using the hyperbolic tangent transfer function.
RESULTS AND DISCUSSION
Performance of learning algorithms: Preliminary computations using the three learning algorithms above
show that NCDR learns fastest at the start of the learning process although the results are comparable with
EDBD at the later part of the learning process (Figure 3). This may be attributed to the use of a smallerepoch
size (the number of training examples presented to the network before updating the weights) for NCDR
which results in more weight updates per one pass of the training set. The EDBD uses an epoch size equal
to the training sample size. The DRS performed poorly mainly because of the large number of training
examples. Itis also noted that the choice of learning rates for the NCDR have a great effect on the learning
curve especially at the later part of the learning process.

pga pgv pgd si root Td bias
square

Figure 2. Neural network structure

—O0—— drs(sigmoid) —®— drs (tanH)

Therefore, for subsequent computations, EDBD is used —a—  edbd (sigmoid) —A&—  edbd (tanH)
because the learning rates are adjusted automatically ——o—  bp(sigmoid) —®— bp (tanH)
and the learning process is less sensitive to the selection

of parameters.

For the three algorithms, the performance of the 067
networks using the sigmoid transfer function is poor ]
compared to the networks using the hyperbolic tangent 0.5 1

transfer function.
Damage Estimation: Since the relationship between

root-mean-square error

the strong ground motion indices and the ductility 047

factor is complex and nonlinear, the network cannot

predict the output precisely. The learning process, 0.3 —T T T T
however, minimizes the errors associated with the 0 200 400 600 800 1000
training data. In this respect, it is similar to a multiva- Learn count (x 1,000)

riate regression, although an a priori functional formis Figure 3. Performance curves of the three leaming
not required. Figure 4 shows the distribution of the algorithms
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output based on the analysis vs. the network for the two struc- Structure Model - Wooden 1

tural models using EDBD. 74 ¥
Sensitivity Analysis: Although neural networks can find a i 6 - *
relationship between the input and output values internally, it is g +
not always easy to interpret the resulting weight state. Alter- <5 ﬂ L 4
natively, it is possible to compute the sensitivity of the output 2 47 n
value with respect to one of its input by taking the partial u‘i 31 +
derivative. For a network with only one hidden layer having M 2 29
PEs and N input PEs, the standard back-propagation equations E’, 1 -J
for the output values of the hidden layer PEs and the outer layer 0 —— T
PEs are 01 2 3 4 5 6 7
N M Duectility Factor (Network)
= h ), o _ o
om? - fhi (El 0)_}1: X+ ej)’ ouy, = foh (121 mﬁj oul? * 9k Structure Model - Wooden 2
1= = 8
where @ is the connection weight of the jth PE from the ith PE @ 7 . +
of the input layer, x;is the ith scaled input, Gjis the bias term for TE 6
the jth PE and f; and f;,, are the transfer functions. The super- ? 57 *
scripts define the variables for the outer layer and the hidden § 41 4
layer. The partial derivative of the output with respect to the = 39
input is then = 27 ¢+
Q
a7

M N
! h
5—2—(011@:) = f;)h (JE (J)EJ . fhi (Z (Djll X + 91) +e;) . 0 - T T T T T
n =1 i=1 01 2 3 4 5 6 7 8
) Ductility Factor (Network)

M (N . .
T\ oy fy| 2 ofix+8 ) of
j=1 i=1

It can be seen from the above equation that the partial derivative depends not only on the weights and
biases but also on the current values of the input variables, x;. Thus itis difficult to generalize on the trend
of the output value with respect to a change in a single input value. As an alternative, the distribution of
the partial derivatives for the entire training set can be used to qualitatively describe the sensitivity of the
output value. Figure 5 shows the histograms of the partial derivatives. Itcan be seen that the output is more
sensitive to the PGA, SI, and root square and least sensitive to the time duration of motion.

Estimation using actual earthquakes: To test the performance of the network in actual earthquakes, the time
history of a limited number of actual earthquakes is used. Two horizontal components of the El Centro

Figure 4. Distribution of Ductility Factor
from analysis and from neural network
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Figure 5. Distribution of partial derivatives of the scaled output with respect to the scaled input (for Wooden 1)
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Table 2. Ground motion indices of actual earthquakes 8

EQ dir PGA PGV PGD SI  rootsqr Td )
(cm/s/s) (cm/s) (cm) (cm/s) (cm?/sy'” (s) Z 6 .
ElCentro NS 3402 343 78 390 3302 244 g
EW 2094 332 143 288 2786 242 = .
Taft NS 1517 124 65 179 1800 265 g 47 { -
EW 1760 149 52 193 1878 257 = R
Niigata NS 1510 474 307 321 1862 216 Z 21
EW 1565 529 218 305 1616 245 E ow
Kushio NS 8169 673 93 752 13207 244 o ¥

(KUS) EW 9210 600 59 717 14741 190
Kushiro NS 1965 11.0 27 13.8 200.0 18.1
(NEM) EwW 2164 9.6 2.1 12.1 2131 174

0 2 4 6 8
Ductility Factor (Network)

Figure 6. Damage estimation using actual
earthquakes for both structure models

(1964), Taft (1952), Niigata (1964), and Kushiro (1993) earthquakes
are used. For the Kushiro earthquake, two sets of acceleration time
histories taken in two locations (JMA Kushiro and Nemuro
stations) are used. Figure 6 shows the estimation of the neural
networks for both structure models. The figure shows good
prediction by the neural network except for two data points which
belong to the time history at JMA Kushiro station for structure
model Wooden 2. Figure 7 shows the response acceleration
spectra for this time history. It can be seen that the structure
Wooden 2 (T=0.35 s) will experience resonance while structure
Wooden 1 (T=0.55 s) will have lower amplification. Therefore, it
isrecommended to include another input parameter that will detect
the effect of resonance.
CONCLUSIONS ) .
. .. Figure 7. Response acceleration spectra
The use of neural networks for quick prediction of damage to . ) :
. .. for the time history of Kushiro earth-
specific structures from earthquake ground motion is demon- quake (JMA Kushiro sta.)
strated. To train the network, simulated ground motions are used
to have a well-distributed training set. After training, the damage estimation of the neural network is found
to be in good agreement with the analytical results in which the network is trained. A sensitivity analysis
identifies that the peak ground acceleration, the Spectral Intensity, and the root square of the time history
have the most effect on the results of the network while the time duration has the least effect. The network
is used to estimate the damage using actual earthquakes and is found to give good results. However, poor
results are obtained in one case where resonance of the structure is apparent. Therefore it is recommended
that another input variable which can "identify" the resonance effect be added in training the network.
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