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SUMMARY

The problem of the soil-structure
interaction as characterized by
the impedance functions is studied
by applying the boundary element
method. The boundary element
method is based on representing
the boundary conditions as
resulting from a set of 'sources.
The shortcoming of this numerical
practice is the requirement of a
large number of sources., which
leads to a long calculation time.
A modification is made., in the
case of a rigid foundation, by
introducing an equivalent rigid-
body displacement. By this
modification, relatively good
results are obtained with only a
small number of sources.

INTRODUCT ION

The seismic response of a
structure embedded in a soil may

be calculated by analysing the
structure and the soil-foundation
imdependently. The soil-foundation

interaction problem involves the
evaluation of the dynamic response
of the foundation when excited by
both external forces and incoming
seismic waves. The evaluation of
the response of the foundation to

external forces and moments
reduces to the problem of
determining the impedance matrix.

The evaluation of the response of
the foundation to seismic waves is
associated with the problem of

determining the driving force
vectors (the forces and moments
for keeping the foundation fixed
under seismic excitation). These

two problems are related. Once the
impedance matrix and the response

of the virgin free field to the
seismic excitation are known, the
driving force vectors <can be
decided.

The problem of determining the
impedance matrix for three-
dimensional foundation is
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considerably complex, for it must
satisfy the traction-free
condition on the surface of the
soil, the radiation condition at
the infinity and the condition on
the foundation-soil intersurface.

Plus, the soil generally is non-
homogeneous semi-infinity. It is
less likely to be solved by pure
analytical means. The finite
element methord cannot be
successful unless a fictitious
boundary is introduced and when
the size of the elements is
sufficiently small and the element
grid is sufficiently large.

An integral technique known as
the boundary element method has

recently been developed. It is
based on representing the boundary
conditions as resulting from a set
of sources. The fact that the
energy transmitting to the
infinity can be automatically
taken into account. makes the
boundary element method especially
atractive in the problenm of
calculating the impedance
functions. However, as a numerical
method, it is still aquestionable
can the boundary conditions be
efficiently represented by a
relatively smal | number of
sources?

Numerical experimentation
reveals that a large number of
sources is needed, especially when
the frequency is high. To overcome
this difficulty in the numerical
practice, a modification is made
by introducing an equivalent
rigid-body motion. The validation
of this method is presented by
comparison of the results obtained
for <cylindrical foundations with
previous results obtained by other
methods.

FORMULATION

The soil-foundation mode | is
illustrated in Fig.(1). The
foundation, assumed to be rigid
and massless., is perfectly bonded
to the soi! along the interface S.
The external generalized force Fo
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=(Fox,Foy,Foz,Mox,Moy,Mozf, acting
on the foundation, has a harmonic
time dependence of the type e'Wl.,
in which w is the frequency. The
displacement U(x) over the
interface S must satisfy the
condition

Ulx) = Tx) Uo QD]
where Uo=(on,on,Uoz,Qox,Qoy,Qozf

represents the generalized rigid-
body displacement. The matrix

100 0 (z-2) -(y-vy)
T(x)= {01 0 -(z-2) 0 (x=-x)
001 (y-y) -(x-x) 0
(2)
is a rigid-body motion influence

matrix. The traction vector V(x)=
(Vx,Vy,Vz)T on the interface S
must lead to the resultant force

Fo = JST(x)TV(x) dx (3)

Now, we represent U(x) by the
response of a set of external

loads Q acting in the free field
within the interface S, as
illustrated in Fig.(2). The

displacement Up(x) and the surface
traction Tp(x) produced by Q can
be formulated as

Up(x) = G(x) Q 4)
Tep(x) = H(x) Q (5)
where the matrices G(x) and H(x)

contain the Green's functions for
the displacement and the stress
respectively.

For a finite number of sources
the displacement-boundary
condition U(x) can be satisfied
only in an average sense as

LW(X)T( Up (x)-U(x) ddx = O (6)

where W(x) denotes the matrix
containing the weighting
functions.

Substituting Eaq. (1) and Ea.(4)
to Eq.(6), it is possible to write

Q = A Uo 7

Once the source parameters have
been obtained from Eq.(7), the
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abtained
Eq. (5)

Up(x) and Tp{(x) can be
from Ea. (4) and
respectively.

Finally, from Ea.(5), Eq(3) and

Eq. (7)., the desired force-
displacement relation can be
written in the form

Fo = K Uo (8)
where

K =jST(x)TH(x) A dx (9)
Taking H(x) as W(x), Ea. (6)
corresponds to the Euler's

equation for a function which has
an extreme value which is the work
of the wunknown tractions on the
given displacements. Imposing the
rigid-body displacement at the
interface S in a least square
sense., W(x) becomes G(x).

EQUIVALENT RIGID-BODY MOTION

Considering the fact that the
rigid-body displacement boundary
condition U(x) can hardly be well
represented by the response to a
set of concentrate loads.,
especielly at high frequencis, the
boundary element method can not be
successful unless the number of
the sources is sufficiently large.

This is the major difficulty in
applying the boundary element
method. As an example., the
displacements on the surface of a
cylinder are plotted in Fig.(3).,
in the case of offset=0.0 and 1.0

meter. It is understood that in
both cases. the displacements
produced by the external loads are
quite different from the rigid

body displacements.

It is possible to divide the
displacement Up(x) into two parts,
as illustrated in Fig.(3), Ul{x)
which corresponds to a rigid-body
displacement, and the resultant

displacement U2(x) to which the
corresponding general force is
desirable to be O.

By use of the least square

method, the "best-fitted"
approximate result can be obtained

T
Ul (x)= T(x)HJ T(x)Up(x) dx (10)
S



where H is a 6X6 matrix defined

by
H = JT(xf'T(x) dx an
s

It is worth noting that by this
process one may obtain an 'exact'
result in the discretized field.
In fact, the general force Fo in
a discretized field can be written
as -

Fo = T K Up (12)
where K is the symmetric impedance

matrix, the force-displacement
relation between the concentrated
nodal force vectors and the

displacement at each nodal. =
Assuming U2 = Up - T(TTTY T Uep.,
the corresponding force

+
T.K ¢ Up - Ul )

Fo' = -
=TK (1 -T T T up
=TT (1 - T (T K Up
=0 (13)

This means the displacement Ul
calculated by Eaq.(10) may be taken
as an equivalented rigid-body
displacement corresponding to the
general force Fo.

NUMERICAL INVESTIGATION

In order to conduct the numerical
calculation effectively, we will
discuss two variables: the sources
(location and number), and the
observations. Refer to Fig.(9).
Theoretically, an exact result can
always be obtained when taking the
number of sources and observations
to infinity. So the problem of how
to determine the source and the
observation is rather a numerical
one than an analyticale one.

For avoiding the wunneccessary
singular integration, the source
should be located within the
interface S. Increasing the offset
may smooth the displacement on the
interface S, but in the three-
dimensional problem in order to

dominate the displacement on the
interface S, the offset should be
taken as small as possible. The

only way to obtain a boundary
displacement without distortion is
to apply a large number of sources
and the offset should be small
enough.

For calculating the response to
the sources accurately, there
should be a sufficient number of

observation points. In practice.,
the mesh near the source should be
small enough, say, less than 0.5

of the offset. For the sake of
economy, the mesh far from the
source can be relatively bigger.

RESULTS AND COMPAR!|SONS
Refer to Fig.(4). Numerical
calculations are conducted in the
frequency domain for a cylinder
rigid foundation, embedded in a
lavered viscoelastic medium with a
rock at a <certain depth. The
Green's functions for ring loads,

obtained by E. Kausel, are used.
These solutions are based on a
discretization of the medium in

the direction of layering, which
results in a formulation vielding
algebraic expressions, whose

integral transformation can
readily be evaluated (no numerical
integration necessary).

The five complex impedance

functions calculated by different
methods discussed in this paper
for different modeling of the
sources are plotted in Fig.(5),

with the frequency from 0.0 to
10.0. Results are compared to
those obtained by the finite

element method with use of the so-

called transmitting boundary
method.

First, calculations are
conducted for the case shown in

Fig.(5)a, by - both the direct

boundary element method and the
indirect boundary element method.
A good agreement between the
boundary element method and the
finite element method can be seen

in Fig.(6), The only significant
differences appear at high
frequencies where the finite

element method results are lower.
The calculations for only 2
sources shown in Fig.(5)b are
conducted by the modification
method suggested in this paper and
by the indirect boundary element
method. It can be seen that after
the modification, the results
improved extremely., especially at
high frequencies. From the
numerical calculation and
comparisons, we may conclude that
by the method developed in this
paper the impedance functions can
be calculated efficiently. This
method overcomes the major
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