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SUMMARY. Provided the effects «f nonlinearity and dissipation are
small but definitely not negligible, a wide class of wave phenomena can
be investigated by means of the quasilinear parabolic equation known
as Burgers' equation, The analysis of Burgers' equation in its form
corresponding to the one-dimensional propagation of a longitudinal
plane wave in homogeneous isotropic solids constitutes the main content
of this paper. The closed system of equations forming the Dbasis for
the derivation of Burgers' equation and representing nonlinear-elastic
"rate-type" viscous media 1is considered. The importance of the
geometric nonlinearity caused by the strain-displacement relation
relative to that of the physical nonlinearity due to the stress-strain
relation is discussed. Quantitative results illustrating how the
parameters of the input (maximum amplitude and frequency) influence the
distortion of an initially sinusoidal pulse are given for aluminium. A
method for the evaluation of the parameter characterizing the
physical (or material) nonlinearity is presented. It involves the
approximation of a material's experimental stress-strain curve by the
quadratic stress-strain relation.

The results show that: (1) Consideration of nonlinearity brings
qualitatively new effects into the study of wave phenomena. (E.g., the
distortion of the wave profile, which leads to the formation of a "weak
shock".) (2) Various materials show a notably nonlinear behaviour, as
expressed, in particular, in terms of the shapes of their experimental
stress-strain curves. (3) The effect of both the physical and the
geometric nonlinearities together must be taken into account in the
study of nonlinear wave phenomena.

INTRODUCTION. Mathematical modelling of nonlinear wave phenomena has
become an important topic in various fields of science and engineering.

As far as civil (and earthquake) engineering is concerned, J.T.0den
(1972) has noted that the introduction of new materials whose response
cannot be described by classical linear theories has encouraged the

interest in nonlinear solid mechanics.

The propagation of deformation waves of moderate (small but finite)
amplitude in nonlinear viscoelastic media is discussed in this paper.
The basic model equations describing the propagation of waves of
moderate amplitude (also known as "weak shocks") are Burgers' equation
in the case of a dissipative medium and the Korteweg-de Vries equation
in the case of a dispersive medium.

The main objectives of this work are 1) to provide a minimum
theoretical background needed for the derivation and analysis of the
one-dimensional Burgers' equation in the case of viscoelastic continua
and 2) to illustrate some of the properties of Burgers' equation that
are relevant in the context of the study of wave phenomena in solids.

BASIC EQUATIONS. In the case of solids, at the basis of the derivation
of Burgers' equation lie the mathematical models (closed systems of
equations) of nonlinear viscoelastic and thermoelastic continua. Here,
the former model is analyzed with emphasis on the investigation of the

separate and combined effects of the geometric and physical
nonlinearities. The presentation follows that of Engelbrecht and Nigul
(1981). The material {or Lagrangian) coordinates are used, thus

facilitating the solution of boundary-value problems.
Consider the one-dimensional plane problem in a homogeneous isotropic
"rate-type" viscoelastic medium. Its mathematical model consists of
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(a) the strain-displacement relation (geometric nonlinearity)

E=U,+(1/2)U° U=U (X; t) (1)
and (b) the equation of motion
T,(l+U,)+TU,,=p0U.. T=ET+DT (2)

where the elastic part of +the stress is given by the stress-strain
relation (physical or material nonlinearity)

_ 2
ET—(A+2u)E+3(vl+v2+v3)E (3)

and the dissipative part is defined in accordance with the Kelvin-Voigt
model of viscosity:

pI=[z+(4/3)nlU., (4)
The above equations yield the wave equation
2
¢y [1+3(1+m)U,]U, ,+nU.,,= U.. (5)
2_ -1

Co=(A+2u)/py  m=2 (v +V,+v4) (A+20) n=[z+(4/3)n1/p, (6)
The following notation convention is adopted in this paper: the dot
denotes differentiation with respect to time t (or a time-like

variable) and the comma denotes differentiation with respect to
material coordinate X (or a space-like variable).
It is useful to write the wave equation (5) in matrix form:

V.+AV,+BV. ,=0 v=[ g' ] (7)
I
To make use of the ray method, the following relations are assumed
2
= 4+ =, = =
V=V +ev, 0(e™) A A0+A1 Ay O(¢e) B=0(¢e)
2 2 (8)
0 -c 0 -c;[3(1+m)U 0 -
A =| 0 A = c,[3(1+m)U,] _ n
0l1 o0 1=lp 0 1 B=[, gl
where € is a small parameter to be specified later.
Introducing (8) in (7), one gets for the terms of order 0(1)
= 9
VoA V4, =0 (9)

For equation (9) the ray method yields the eiconal -equation t=X/c0 y
which determines the wavefront.

We now focus our attention on the region just behind the wavefront
of a wave travelling in the X-direction by defining the new variables

£=C0t-x t=eX (10)
By (8) and (10), equation (7) yields
(IcO-AO)VO,=0 (11)
(IcO—AO)V1,+ AGV,.-B Vo, =CBV,, (12)
The solution of equation (11) is given by
1
V.=aR = . —
0 a=a(g;1) R [-l/col (13)

where R is the right eigen-vector of matrix AO and a is an amplitude
factor having a unit of velocity.
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By (10) and (13), equation (12) yields Burgers' equation

"2 e " 2 ecy " (14)
whose non-dimensional form reads
b.+sign(l+m)bb,=r_lb,, r=3|l+m|rca0/n (15)
where the following dimensionless variables have been introduced:
b(C,o)—a/aO 4 E/TC Y jll+ml(sc0) agTT, (16)

In (15) and (186), ag is the maximum amplitude of the wave and T _ is the
characteristic wavelength. ' is the fundamental parameter “of the
process, parameter known as the acoustic Reynolds number. For a given
input (a,;T.), it expresses the importance of nonlinearity (1l+m)
relative to that of dissipation (n).

The above presentation reveals the relative contribution to the
overall nonlinearity from the geometric and physical nonlinearities
determined by equations (1) and (3), respectively. In Burgers'
equation, the effect of the former is represented by unity (1), whereas
that of the latter is determined by a parameter m that is a function
of the third- and the second-order elastic coefficients (see equation
(6)).

Finally, the small parameter £ in equation (8) is given by

= 3 - -1
€ = jil+m‘M M_aO/CO G=€Tc X (17)

and the significance of Mach's number M is thus revealed.

COMPUTATIONAL _EXAMPLES. Burgers' equation (15) was solved numerically
for a sinusoidal initial condition (curve 0 in Figures 1-3).

Figure 1 shows, for the case of m=-3 and T =50, the distortion due to
the physical and geometric nonlinearities considered separately (curves
2 and 3, respectively) and together (curve 1). The linear viscoelastic
case is given for comparison (curve 4). 2

Figures 2 and 3 show, for aluminium (C, =6300 m/s, m=-9.2, n=0.7 m /s
[1]), the effects of the parameters of the input maximum amplitude aO
and characteristic wavelength TC=L=Co/f , where L is the wavelength
and f the frequency of the input (curve 0). Thus, curves 1, 2, 3 and 4
correspond to a, =5.625, 56,25, 562.5 and 5625 cm/s, respectively, with
f=0.1 MHz in Figure 2 and f=0,01 MHz in Figure 3.

1 0 1 1 Vs
m=-3,000 m=-9,200 VAR m=-9,200
7\ I'=50.000 L=6.3000cm / \ L=63.0000m
X “
[/ RO
0 0] 0
..' _1 -
0 =,50 X=25,000¢cm X=25.000¢cm
Figure 1 Figure 2 Figure 3
CALCULATION OF THE PARAMETER OF PHYSICAL NONLINEARITY. The physical
nonlinearity is defined here by equation (3), which can be recasted as
7= (A+21) (1+3nE) B (18)
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to display the characteristic parameter m, which is defined in (6).

The value of the parameter m, as well as that of the elastic modulus
EM=)A+2p , was calculated for various materials by approximating their
experimental stress-strain skeleton curves by means of equation (18).
The experimental data (the dots in the figures below) were taken from
J.W.Nunziato et al.(1974) (Fused Silica and Polymethyl Methacrylate)
and from J.G.Jackson et al.(1980) (20-40 Ottawa Sand).
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Fused Silica Polymethyl Methacrylate 20-40 Ottawa Sand

DISCUSSION AND CONCLUSIONS. The nonlinear theory discussed here is a

straightforward generalization of the corresponding linear viscoelastic
theory. The linear theory is obtained from the nonlinear one as a
limiting case when dissipative effects are large compared with those
due to nonlinearity. When wave phenomena are dealt with, however,
these effects depend strongly on the parameters of the wave itself.
Indeed, the parameter governing the propagation of nonlinear waves in
viscoelastic media is given by (see equation(15))

r=GF  G=3|1+m|/n F=t_a,
and it may change, for a given medium (G=const.), within very wide
limits depending upon the input F. There is, however, a limit imposed
by the smallness of the parameter € in Eq.(8). By (17), this means
that Mach's number must satisfy the condition lM|<<l. Since Mach's
number is related through equations (13), (7) and (1) to the maximum
uniaxial strain, equation (17) also implies +the smallness of the
product between the maximum strain and the parameter |l+m|
characterizing the overall nonlinearity.
The conclusions are given in the SUMMARY.
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