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Recent research shows that the Bagnold’s hypothesis breaks down when applied to equi-
librium bed load transport on beds with transverse slopes above a relatively modest value
that is well below the angle of repose. Since fluvial bar formation is strongly influenced
by the transverse slopes, the results of our previous study, using the bed load formula
based on Bagnold’s hypothesis, become questionable. Thus, in this study, we reanalyze
our previous study using the linearized version of the new bed load formula based on
the entrainment function. It is found that the new bedload formula gives better agree-
ments on bar length and bar celerity with extensive experimental data than the bed load
formula used in the previous study. However, bar celerity is still overestimated. It is
hypothesized that the linearized version of the new bed load formula is not sufficient to
simulate the bar celerity due to the steep transverse slopes of fluvial bars.
Key Words : bar formation, nonlinear analysis, amplitude expansion method, bed

load formula

1. Introduction

Fluvial bar formation has been one of the most
fruitful research topics for geomorphologists and river
engineers. It has been known for decades that fluvial
bar formation is generated by the instability between
water flow and movable beds. At present, many re-
searchers investigated fluvial bar formation in terms
of nonlinear stability analysis1)–6). In their analyses,
only bed load is considered. Thus, the accuracy of
their results depends on the accuracy of bed load for-
mula used in their analyses.

Recently, Seminara et al.7) have scrutinized the
Bagnold’s hypothesis and found that the hypothesis
breaks down when applied to equilibrium bed load
transport on beds with transverse slopes above a rel-
atively modest value that is well below the angle of
repose. Then, a new bed load formula has been pro-
posed by Parker et al.8). Since bed load on fluvial bars
is subject to a strong effect of the transverse slopes,
the results of our previous analysis5) (with the use of
the bed load formula by Kovacs and Parker9) based on
the Bagnold’s hypothesis) become uncertain. In this
study, we reanalyze the bar stability problem using
the new bed load formula8).

2. Formulation

2.1 Governing equations
Let us consider flow in a straight channel with a

constant width W̃ and non-erodible banks (Fig. 1).
The normalized St.Venant shallow water equations
are expressed as4)
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where x and y are the streamwise and lateral coordi-
nates normalized by the width respectively, U and V
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Fig. 1 Sketch of coordinate system.

are the velocity components in the x and y directions
normalized by the base flow velocity respectively, H
and Z are the flow depth and bed elevation normal-
ized by the base flow depth respectively, S is the bed
slope, F is the Froude number in the normal flow con-
dition, β is the aspect ratio, and Cfn, Un and Hn are
the friction coefficient, streamwise velocity and flow
depth in the normal flow condition, respectively.

The time variation of bed elevation can be described
by the normalized Exner sediment continuity equa-
tion, that is

∂Z

∂t
+

∂Qbx

∂x
+

∂Qby

∂y
= 0 (5)

where t is time, and Qbx and Qby are the x and y
components of the normalized total bed load trans-
port rate.

For simplicity, the linearized version of the new bed
load formula by Parker et al.8) is used in this study.
The normalized total bed load is
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and the angle between the direction of the applied
shear stress and the direction of particle velocity ψ
can be described by

tanψ = Γ0

√
Θ(1 + 2.5C

1/2
fn ln H)2

U2 + V 2
tanϕ (7)

where Θ = τco/τn, τco is the critical Shields stress for
a flat bed, and τn is the Shields stress in the normal

flow condition, Γ0 is a constant (= 0.7), and ϕ is the
transverse bed angle to the direction of the applied
shear stress. Thus,

tanϕ =
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∂z
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+ v

∂z
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) /
β
√

U2 + V 2 (8)

Therefore, the x and y components of the normalized
total bed load transport rate Qbx and Qby are

Qbx = Qb cos (θ + ψ) (9)

Qby = Qb sin (θ + ψ) (10)

where θ is the angle between the streamwise direction
x and the direction of the applied shear stress. Thus,

tan θ = V/U (11)

The following normalization has been used to derive
the above equations:
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(13)
where the tilde denotes the dimensional variables, Q̃n

is the sediment transport rate in the normal flow con-
dition, λp is the porosity, Rs is the submerged specific
gravity, D̃s is the sediment diameter, and K1 is a con-
stant (= 7.67).

2.2 Asymptotic expansion
The following perturbations are imposed to the nor-

mal flow:

(U, V, H,Z) = (1, 0, 1,−βSx)+(U1, V1,H1, Z1)

+ (U2, V2,H2, Z2) + (U3, V3,H3, Z3) (14a–d)

where the subscripts 1, 2 and 3 denote the first order
terms at O(A), the second order terms at O(A2, AA∗)
and the third order terms at O(A3, A2A∗), respec-
tively, and * denotes the complex conjugate.

Assume that the fundamental disturbance is ex-
pressed by small perturbation with the bar mode m.
The first order terms can be written as

(U1, V1,H1, Z1) = AE1Γ1 (u111, v111, h111, z111) + c.c.
(15)

where c.c. denotes the complex conjugate of the pre-
ceding term, and Em and Γm are

Em = expmikx, Γm =
{

cos mπy for U,H,Z
sinmπy for V

(16a, b)
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Fig. 2 Instability diagram. Lines denote the neutral
curves, where the linear growth rate Re[λ0]
equals to zero. The solid line is the present
result, and the dashed line is the previous re-
sult, where m = 1, S = 0.005, F = 0.7, and
Θ = 0.5.

where the origin of y is taken at the right side wall
as shown in Fig. 2, and the cases m = 1 and m > 1
correspond to single and multiple bars, respectively.

The time development of the fundamental ampli-
tude of the disturbance A can be described by the
Landau equation in the form

dA

dt
= λ0A + λ1A

2A∗ + · · · (17)

where λ0 is the linear growth rate, and λ1 is the Lan-
dau constant that characterize the nonlinear devel-
opment of the disturbance. When the real part of
the linear growth rate Re[λ0] > 0 and the real part
of the Landau constant Re[λ1] < 0, the amplitude of
the disturbance approaches the equilibrium amplitude
Ae (=

√
−Re[λ0]/Re[λ1]) asymptotically (supercriti-

cal stability).

2.3 First order expansion
We have the following equations at the first order:
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By substituting the first order perturbations (15),
the above equations are rewritten in matrix forms

Labc




uabc

vabc

habc

zabc


 = 0, a = b = c = 1 (23)

where the subscript a denotes the order of expansion,
the subscripts b and c denote terms accompanying Eb

and Γc, respectively. The matrix Labc can be written
as

Labc = [lij ] , i, j = 1, 2, 3, 4 (24a)
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where

Λ111 = λ0 (24r)

Solving (23) with the solvability condition that the
determinant of L1bc must vanish for non-trivial solu-
tion, we can obtain the linear growth rate λ0 as a
function of the parameters m, β, S, F , Θ and k.

Due to the limitation of space, solving the second
and third order expansion is omitted here. Please
refer to our previous study4) for solving the solutions.

3. Results and Discussion

(1) Instability diagram
In this study, the critical Shields stress τco is set to

be 0.035 as the previous study4). In Fig. 2, it is found
that, under the same parameters (m, β, S, F , Θ), an
unstable region (Re[λ0] > 0) in the present study is
larger than that in the previous study. The critical as-
pect ratio βc (the minimum aspect ratio that the flat
bed is unstable and evolves into the fluvial bars) be-
comes lower in the present study comparing with the
previous study (from βc = 10.5 to βc = 8.2). Kovacs
and Parker’s formula9) tends to underestimate the ef-
fect of local slope in the lateral direction while the new
bed load formula by Parker et al.8) takes into account
of the effect appropriately. Therefore, the flat bed is
stabilized particularly in the range of large wave num-
bers. In the next sections, the comparisons between
the experimental results6),10)–14) and the present and
previous analyses will be provided.
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Fig. 3 Comparison of the normalized alternate bar length between the theory and the experiments, where (a)
is the present analysis, and (b) is the previous analysis.
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Fig. 4 Comparison of the normalized multiply bar length between the theory and the experiments, where (a)
is the present analysis, and (b) is the previous analysis.

3.1 Fluvial bar length
The total of 158 experimental cases provide fluvial

bar lengths L̃exp. While the previous analysis can es-
timate L̃th for 138 cases out of total 158 cases, the
present study can estimate L̃th for a higher number
of 147 cases. As discussed in the previous section, the
new bed load formula provides a lower value of the
critical aspect ratio βc. Thus, some cases, where the
aspect ratios β are low and the previous study can-
not predict L̃th, are found to be able to be estimated
by the present study. The comparisons of the nor-
malized alternate and multiple bar lengths L between
the experiments and the analyses are shown in Figs. 3

and 4, respectively. The normalized experimental bar
length Lexp and the normalized theoretical bar length
Lth are

Lexp =
L̃exp

W
, Lth =

2π

kmax
(25a, b)

where kmax is the wave number corresponding to the
maximum linear growth rate Re[λ0].

For the quantitative evaluation of two analyses, the
following two indices, the mean discrepancy ratio MD

and the mean absolute discrepancy ratio MA, are in-
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troduced:

MD =
1
N

N∑
i=1

Lth,i − Lexp,i

Lexp,i
(26a)

MA =
1
N

N∑
i=1

����
Lth,i − Lexp,i

Lexp,i

���� (26b)

where N is the total number of data. While MD and
MA take values of -0.16 and 0.29, respectively, for the
present study, MD and MA take values of -0.06 and
0.30, respectively, for the previous study. However, if
the same number of data (N = 138 in both analyses)
are used, MD and MA of the present study become
-0.19 and 0.28, respectively.

The indices MD and MA represent the bias and the
accuracy of the analyses, respectively. It is found that
the accuracy of the present analysis using the new
bed load formula (Figs. 3a and 4a) is better than
the previous study (Figs. 3b and 4b). However, the
present analysis underestimates the bar lengths com-
paring with the previous analysis.

According to Fujita and Muramoto11), initial bar
lengths are found to increase as fluvial bars develop.
For example, in their run H-2, the initial alternate
bar length is around 2 m. However, the bar length be-
comes almost 5 m when it is fully developed. Since bar
length estimated by our analysis is computed by the
wave number kmax corresponding to the maximum lin-
ear growth rate in (25b), the discrepancy of bar length
may be due to the nonlinear interactions. In Fig. 5,
the comparison of the normalized bar length between

the experiments and the present analysis is re-plotted
according to the equilibrium amplitude squared A2

e. It
is found that the equilibrium amplitude Ae affects the
estimation of bar lengths significantly. If Ae is large,
bar lengths are found to be underestimated. There-
fore, it implies that bar length increases considerably
by the nonlinearity when Ae is large.

3.2 Fluvial bar celerity

The normalized experimental bar celerity Cb exp and
the normalized theoretical bar celerity Cb th are

Cb exp =
(1 − λp)HnC̃bexp

Qn
(27a)

Cb th =
Im[λ0] + A2

eIm[λ1]
kexp

(27a)

In Fig. 6, it is found that both present and previous
studies overestimate bar celerity greatly. However,
the present study provides better agreement with the
experimental bar celerity than the previous study.
Lanzoni14) performed a linear stability analysis and
found that his linear analysis also overestimate bar
celerity significantly. He suggested that the nonlin-
ear interactions may influence appreciably bar celer-
ity. However, our analyses show that the agreement
does not improve satisfactorily, even though the non-
linear interactions are included in (27b). Recently,
Francalanci et al.15) performed numerical simulations
to investigate bar formation using the nonlinear and
linearized versions of bed load formulae by Parker et
al.8). They found that, using the nonlinear version of
bed load formula, bar celerity is smaller than that us-
ing the linearized version. Thus, we hypothesize that
the estimation of bed celerity may be improved if the
nonlinear version of the bar load formula by Parker et
al.8) is employed.

4. Conclusion

The weakly nonlinear stability analysis of fluvial
bars using the linearized version of the new bed load
formula by Parker et al.8) is performed. From the re-
sults of the present analysis, better agreements on bar
length and bar celerity with the experimental data are
found when comparing with the previous analysis4)

using bed load formula by Kovacs and Parker9). How-
ever, the present analysis still overestimates bar celer-
ity considerably. Since bar formation is strongly in-
fluenced by steep transverse bed slopes, it is possi-
ble that using the linearized version of the new bed
load formula is maybe not good enough to predict bar
celerity. Thus, the nonlinear version of the new bed
load formula will be employed in the future.
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Fig. 6 Comparison of the normalized bar celerity between the theory and the experiments, where (a) is the
present analysis, and (b) is the previous analysis.
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