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The inertial and viscous flow phases of viscous Newtonian fluid are studied in this paper

by a mathematical integral model. Based on the dam-break flow of finite extent, the

governing equations which are comprised of the depth-averaged continuity, momentum

and energy equations are transformed from partial differential equation form to ordinary

differential equation form that can be solved easily. The characteristics of the inertial and

viscous flow phases are reproduced by the integral model. It is shown that the integral

model is not only capable of reproducing the flow characteristic of viscous Newtonian

fluid but also the transition of the flow phases.
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1. Introduction

Studies of shallow flow of viscous fluid have shown
that flow phases exhibit unique characteristics.1),2).
Some of the more common methods to study the char-
acteristics of flow phases are dam-break flow model,
sudden release of finite volume of higher density fluid
into a much lower density ambient fluid and also con-
stant inflow of higher density fluid into a lower density
fluid environment.

The study of the characteristics of the flow phases is
important as it provides an insight to the rheological
properties of the fluid. For example, Hosoda2) investi-
gated the rheological characteristics of fresh concrete
by analyzing the characteristics of flow phases of vis-
cous fluid.

The authors have previously used the dam-break
flow of finite extent model to investigate the charac-
teristics of flow phases3),4). It was shown that in the
case of viscous fluid, two flow phases exist, which de-
fine the inertial and viscous flow phases. As soon as
the flow is initiated by the instantaneous release of
the dam gate, the flow enters the inertial flow phase
where the flow is governed by the inertia force of the
motion. If the viscosity of the fluid is significant, the
inertial flow phase will be followed by the viscous flow
phase. The dominance of viscous flow phase depends
on the viscosity of the fluid. In the viscous flow phase,
the flow is governed by the viscous-pressure balance.
These characteristics of flow phases were presented in
the form of proportionality of hm and L to time t.

hm is the depth at the upstream end-wall of the dam
and L is the position of the wave front as shown in
Fig.1. In the case of viscous Newtonian fluid, it was
found that in the inertial flow phase, hm ∝ t−1 and
L ∝ t while in the viscous flow phase, hm ∝ t−1/5 and
L ∝ t1/5. These characteristics were derived by con-
sidering each flow phase independently. Assumption
for each flow phase was made. For example, in the
viscous flow phase, the inertial term can be neglected
and vice-versa.

The purpose of this study is to reproduce the char-
acteristics of the flow phases by using the integral
method. The integral method is chosen as it can re-
produce the characteristics of flow phases in a contin-
uous piece-wise solution. This continuous piece-wise
solution can depict the flow phases from the moment
the flow is initiated by the release of the dam gate to
sufficiently long time. Besides, the continuous piece-
wise solution can show the transition between the flow
phases. This is seen as an advantage over the method
used in the authors’ previous study where transition
of flow phases could not be reproduced.

2. Governing Equations

A one-dimensional depth-averaged continuity and
momentum equations representing the motion of dam-
break flow of finite extent shown in Fig.1 can be ex-
pressed as follows,
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Fig. 1 Schemetic of dam-break flow model

Continuity equation,

∂h

∂t
+

∂hU

∂x
= 0 (1)

Momentum equation,

∂hU

∂t
+

∂βhU2

∂x
+ gh

∂h

∂x
= −

3ν

h
U (2)

where g is the gravitational acceleration, ν is the kine-
matic viscosity, β is the momentum coefficient and
the other parameters are described in the schematic
of dam-break flow in Fig.1.

In the case of viscous fluid, it is assumed that
the depth h and velocity U exhibit self-similarity1),2).
Therefore, h and U are expressible in similarity form
as follows,

h = hm(t)p (ξ) (3)

U = Um(t)q (ξ) (4)

with

ξ = x/L (5)

Um(t) is the representative velocity, hm(t) is the rep-
resentative depth, which is also the depth at the up-
stream end-wall. L is the position of the wave front
measured from the origin of the coordinate system
x = 0. p(ξ) and q(ξ) are shape functions (also known
as similarity functions) for h and U respectively. For
simplicity, hm(t) and Um(t) are written as hm and Um

respectively, while p(ξ) and q(ξ) are written as p and
q.
The shape functions p and q satisfy the following
boundary conditions,

p (ξ = 1) = 0, p (ξ = 0) = 1

q (ξ = 0) = 0 (6)

The unknown variables L, Um and hm cannot be
solved by using only the momentum and continu-
ity equations because there are only two independent
equations available to solve three unknown variables.
We therefore proposed to consider the conservation of
energy in the system. The energy equations for the

system can be written as follows,
Energy equation,

∂

∂t

(

hU2

2

)

+
∂

∂x

(

hU
U2

2

)

+ U
∂

∂x

[

(β − 1)hU2
]

+g
∂

∂x

(

h2U
)

+ g
∂

∂t

(

h2

2

)

= −3ν
U2

h
(7)

With the continuity, momentum and energy equa-
tions, the three unknown variables (L, Um and hm)
can therefore be solved.

3. Integral model

The governing equations are spatially integrated for
the whole flow domain from x = 0 to x = L. The
integration of the governing equations is as follows,

3.1 Integration of continuity equation

∫ L

0

(

∂h

∂t
+

∂hU

∂x

)

dx = 0 (8)

where

∫ L

0

∂h

∂t
dx =

d

dt

∫ L

0

h dx− [h]L
dL

dt

=
d

dt

∫ L

0

hdx (9)

and

∫ L

0

∂hU

∂x
dx = [hU ]L − [hU ]0 = 0 (10)

Therefore, the integration of the continuity equation
for the whole domain yields,

d

dt

∫ L

0

h dx = 0

···

∫ L

0

h dx = volume = h0L0 = vol (11)

h0 and L0 are the initial width and height of the dam
as shown in Fig.1. The sign vol represents the total
volume of the fluid in the dam. By substituting the
expression of h = hmp into Eq.(11),

∫ L

0

h dx =

∫ 1

0

hmpL dξ ··· dξ = dx/L

hmL

∫ 1

0

p dξ = vol

hmLA1 = vol (12)

where

A1 =

∫ 1

0

p dξ (13)
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3.2 Integration of momentum equation

Integration of the momentum equation with the
substitution of h = hmp, U = Umq and transforma-
tion to ξ coordinate system is as follows,

∫ L

0

(∂hU

∂t
+

∂βhU2

∂x
+ gh

∂h

∂x
+

3ν

h
U
)

dx = 0 (14)

The integral form of the momentum equation can be
written as follows,

d

dt
(hmUmL)A2 − g

h2
m

2
+ 3ν

UmL

hm
A3 = 0 (15)

where A2 and A3 are defined as follows,

A2 =

∫ 1

0

pq dξ (16)

A3 =

∫ 1

0

q

p
dξ (17)

3.3 Integration of energy equation

The integration of the energy equation with the
substitution of h = hmp, U = Umq and transforma-
tion to ξ coordinate system is as follows,

∫ L

0

{

∂

∂t

(

hU2

2

)

+
∂

∂x

(

hU
U2

2

)

+U
∂

∂x

[

(β − 1)hU2
]

+ g
∂

∂x

(

h2U
)

+g
∂

∂t

(

h2

2

)

+ 3ν
U2

h

}

dx = 0 (18)

The integral form of the energy equation can be
summarized as follows,

d

dt

(

1

2
hmU2

mL

)

A4 + g
d

dt

(

h2
mL

2

)

A5

+3ν
U2
mL

hm
A6 = 0 (19)

where A4, A5 and A6 are,

A4 =

∫ 1

0

pq2 dξ (20)

A5 =

∫ 1

0

p2dξ (21)

A6 =

∫ 1

0

p2

q
dξ (22)

The coefficients A1 to A6 which involve the integra-
tion of shape functions p and q are determined in a
later section.

3.4 Solution of integral model

By transforming the governing equations which are
in partial differential form into ordinary differential
form, as in Eq.(12) , Eq.(15) and Eq.(19), the param-
eters hm, Um, and L can be solved by using the Euler

method as follows,
From Eq.(12), we have

hmL =
vol

A1
where vol = h0L0 (23)

By substituting Eq.(23) into the momentum equation
in Eq.(15), we have,

···
dUm

dt
=

A1

A2vol

(

g
h2
m

2
− 3νA3

UmL

hm

)

(24)

By using Eq.(23), the expression for dhm

dt can be ob-
tained from the energy equation in Eq.(19) as follows,

volA4

A1
Um

dUm

dt
+ g

volA5

2A1

dhm

dt
+ 3ν

U2
mL

hm
A6 = 0

(25)

Therefore,

dhm

dt
= −

2A1

volA5g

[

volA4

A1
Um

dUm

dt
+ 3ν

U2
mL

hm
A6

]

(26)

where the term dUm

dt is determined from Eq.(24). If
[hm]n, [Um]n and [L]n are the values of hm, Um and
L at time step n, then values at time step n + 1 can
be calculated from Eq.(23), Eq.(24) and Eq.(26) as
follows,
From Eq.(24),

[Um]n+1 = [Um]n +dt
A1

A2vol

{

g

2

[

h2
m

]n

−3νA3

[

UmL

hm

]n
}

(27)

From Eq.(26),

[hm]n+1 = [hm]n −dt
2A1

volA5G

{

volA4

A1
[Um]n

[

dUm

dt

]n

+3ν

[

U2
mL

hm

]n

A6

}

(28)

From Eq.(23),

[L]n+1 =
vol

A1[hm]n+1
(29)

where dt is the time increment in each n steps.

3.5 Determination of shape functions

Hosoda et al2) derived the flow characteristics of
viscous Newtonian fluid by assuming similarity form
of the depth and velocity of flow as in Eq.(3) and
Eq.(4). By substituting the similarity form of h and
U , the momentum equation in Eq.(2) can be ex-
pressed as follows,

∂

∂t
[hmpUmq] +

∂

∂x

[

βhmpUm
2q2

]

+ghm
2 p

L

∂p

∂x
= −3ν

Umq

hmp
(30)
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For viscous flow phase, it is assumed that pressure and
viscous force are in balance. Therefore, by neglecting
the inertia term, the pressure and viscous terms can
be equated as follows (with transformation to ξ coor-
dinate system),

g
hm

2

L
p
∂p

∂ξ
= −3ν

Umq

hmp
(31)

The function of hm, Um and L can be expressed in
the following power-law form2),

hm = αho

(

√

g/hot
)a

Um = λ
√

gho

(

√

g/hot
)b

L = γLo

(

√

g/hot
)c

(32)

where α, λ, γ, a, b, c are dimensionless coefficients. To
non-dimensionalize the equations, the dimensionless
form of t is introduced and defined as follows,

t =

√

ho

g
t′ (33)

By substituting the assumptions in Eq.(32) and def-
inition of the dimensionless form of t in Eq.(33),
Eq.(31) can be written in dimensionless form as fol-
lows,

g
α2

γ

h2
o

Lo
(t′)

2a−c
p
dp

dξ
= −3ν

β

α

√

g

ho
(t′)

b−a q

p
(34)

In order to satisfy dimensional homogeneity, Eq.(34)
can be reduced to the following form,

g
α2

γ

h2
o

Lo
p
dp

dξ
= −3ν

β

α

√

g

ho

q

p
(35)

By rearranging the coefficients, Eq.(35) can be rewrit-
ten as follows,

A

3

d

dξ

(

p3
)

= −q whereA =
α3h2

oLo

√
gho

3βγν
(36)

Similarly, by substituting the similarity form of h and
U , the continuity equation, Eq.(1) can be expressed
in the following form 2),

p(ξ)
dhm

dt
−

ξ

L
hm

dp(ξ)

dξ

dL

dt

hmVm

L
q
dp

dξ
+

hmVm

L
p
dq

dξ
= 0 (37)

By substituting the power-law form of hm, Um and L
in Eq.(32), the dimensionless form of Eq.(37) can be
written as follows,

αhoat
′a−1

√

g

ho
p− αhoct

′a−1ξ

√

g

ho

dp

dξ

+
αβ

γLo
ho

√

ghoq
dp

dξ
t′a+b−c +

αβ

γLo
ho

√

ghop
dq

dξ
t′a+b−c

= 0 (38)

With a = −1/5, b = −4/5 and c = 1/5 for viscous
Newtonian fluid2), Eq.(38) can be reduced to the fol-
lowing form,

−
1

5

√

g

ho

[

d

dξ
(pξ)

]

+
β

γLo

[

d(pq)

dξ

]

= 0 (39)

Integrating Eq.(39) yields,

−
1

5

√

g

ho
· pξ +

β

γLo

√

gho pq + C = 0 (40)

where C is a constant. At ξ = 1, p = 0, therefore, C =
0. The shape function q can therefore be determined
from Eq.(40) as follows,

q = Eξ where E =
1

5

γLo

βho
(41)

By substituting Eq.(41) into Eq.(36), and integrat-
ing it from ξ = 0 to ξ, the shape function p can be
determined as follows,

A

3

d

dξ

(

p3
)

= −Eξ

∫ ξ

0

A

3

d

dξ

(

p3
)

dξ = −

∫ ξ

0

Eξ dξ

p =
3

√

1−
3E

2A
ξ2 (42)

The governing equations in Eq.(1), Eq.(2) and Eq.(7)
are transformed into the ordinary differential form as
in Eq.(23), Eq.(24) and Eq.(26) where the solution
of Um, hm and L can be determined from Eq.(27),
Eq.(28) and Eq.(29).

3.6 Initial conditions of calculation

The initial conditions used in the integral model are
as follows,

hm = ho = 0.5m

L = Lo = 0.5m

Um = 0.0ms−1 (43)

In the case of inviscid fluid, the value of ν = 0.0m2s−1

is used. For viscous Newtonian fluid, four values of
kinematic viscosity are used, ν = 0.00005m2s−1, ν =
0.0005m2s−1, ν = 0.005m2s−1 and ν = 0.05m2s−1.
Time step dt is set as 0.0001 s in the calculation. The
value of coefficient α, λ and γ in the shape function p
and q are set to unity for simplicity.

3.7 Results

(1) Inviscid fluid

The author previously used depth at the upstream
end wall, hm as parameter to describe the character-
istic of inertial flow phase3) where,

hm ∝ t−1 (44)
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Fig. 2 Temporal variation of wave front L in the case
of inviscid fluid
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Fig. 3 Temporal variation of depth at the upstream
end-wall hm in the case of inviscid fluid

The propagation of wave front L for inertial flow phase
can be presented by the Ritter’s solution for dam-
break flow of infinite extent 3),4), where

L ∝ t (45)

The attenuation of wave front L and depth at the
upstream end-wall hm for the solution of inviscid fluid
with the integral model are plotted in Fig.2 and Fig.3
respectively. It can be seen from both Fig.2 and Fig.3
that the inertia region can be reproduced well in both
the attenuation of depth at the upstream end-wall and
the wave front by using the solution of the integral
model.

(2) Viscous Newtonian fluid

The viscous flow phase characteristics for Newto-
nian fluid can be represented by the following charac-
teristics of the attenuation of depth at the upstream
end-wall, hm and wave front propagation, L 3).

hm ∝ t−
1

5 (46)

L ∝ t
1

5 (47)

The results for viscous fluid are shown in Fig.4 to
Fig.11, with different kinematic viscosity. In the

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

L 
(m

)

t (s)

initial condition of dam= 0.5m by 0.5m
integral model with υ=0.00005m2s-1

slope, m=1
slope, m=1/5

Fig. 4 Temporal variation of wave front L in the case
of viscous fluid with kinematic viscosity ν =
0.00005m2s−1
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Fig. 5 Temporal variation of depth at the upstream
end-wall hm in the case of viscous fluid with
kinematic viscosity ν = 0.00005m2s−1

case of low viscosity such as for the case of ν =
0.00005m2s−1 and ν = 0.0005m2s−1, it can be seen
from Fig.4 to Fig. 7 that the inertia flow phase is
dominant in the flow. The viscous flow phase char-
acteristic is hardly detectable as the viscosity is not
dominant due to low viscosity.

However, when kinematic viscosity is increased to
ν = 0.005m2s−1, the viscous flow phase characteris-
tic can be observed clearly in both attenuation of the
depth at the upstream end-wall hm and wave front L
as shown in Fig.8 and Fig.9. It can be seen from both
figures that the transition of the flow phases is not
abrupt. The viscous flow phase characteristic slowly
developed after the inertia flow phase and fully dom-
inates the flow almost at the same time for the atten-
uation of the depth at the upstream end-wall hm and
the wave front L.

In an extreme case where the kinematic viscos-
ity is increased to ν = 0.05m2s−1 as in Fig.10 and
Fig.11, the inertial flow phase cannot be observed.
It is thought that for highly viscous fluid, pure in-
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Fig. 6 Temporal variation of wave front L in the case
of viscous fluid with kinematic viscosity ν =
0.0005m2s−1
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Fig. 7 Temporal variation of depth at the upstream
end-wall hm in the case of viscous fluid with
kinematic viscosity ν = 0.0005m2s−1

ertial flow phase does not exist. The flow enters a
self-similar inertial phase (also known as inviscid self-
similar phase)5) instead of a pure inertial phase. This
self-similar inertial phase is characterized by the fol-
low relations,

hm ∝ t−
2

3 (48)

L ∝ t
2

3 (49)

After a short self-similar inertial phase, the viscous
flow phase almost immediately dominates the flow as
shown in both Fig.10 and Fig.11.

4. Conclusion

In this study, the inertial and viscous flow char-
acteristics are reproduced by a mathematical inte-
gral model. By transforming the governing equations
which are comprised of the depth-averaged continuity,
momentum and energy equations into ordinary differ-
ential equation form, the solution for the attenuation
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Fig. 8 Temporal variation of wave front L in the case
of viscous fluid with kinematic viscosity ν =
0.005m2s−1
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Fig. 9 Temporal variation of depth at the upstream
end-wall hm in the case of viscous fluid with
kinematic viscosity ν = 0.005m2s−1

of depth at the upstream end-wall, hm and propaga-
tion of wave front L are obtained.

In the case of viscous fluid, the depth at the up-
stream end-wall hm and wave front L are assumed
to be expressible in similarity form. The shape func-
tions p and q (also known as similarity functions) are
derived based on earlier studies by Hosoda et al2).

In the case of inviscid fluid, the inertial flow phase
characteristic is satisfactorily reproduced. Although
the shape functions p and q are derived based on vis-
cous fluid, it is shown that the integral model can still
reproduced the characteristic of inertial flow phase in
the case of inviscid fluid.

In the case of viscous fluid, two flow phases are
reproduced by the integral model. It is shown that
for low viscosity fluid, the viscous flow phase is not
dominant, preceded by a dominant inertial flow phase.
As the fluid viscosity is increased, the viscous flow
phase dominance increases. It is worth to note that in
the case of highly viscous flow, an initial region known
as the self-similar inertial phase or inviscid self-similar
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Fig. 10 Temporal variation of wave front L in the
case of viscous fluid with kinematic viscosity
ν = 0.05m2s−1
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Fig. 11 Temporal variation of depth at the upstream
end-wall hm in the case of viscous fluid with
kinematic viscosity ν = 0.05m2s−1

phase is reproduced by the integral model.

The integral model developed in this study is shown
to be capable of producing a continuous piece-wise so-
lution describing the flow phases characteristic from
the moment the flow is initiated until sufficiently long
time. The development of an integral model is vital
as an alternative to further clarify the existence and
characteristic of flow phases. The capability of the
integral model to reproduce a smooth piece-wise so-
lution bridging the inertial and viscous flow phases is
worth noting.

The author plans to extend the integral model
to reproduce the flow phases characteristic of non-
Newtonian fluid and investigate its rheological prop-
erties using the findings in this study.
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