数値波動水路を用いた離岸堤の津波防災効果に関する研究

Study on detached breakwaters' effect on tsunami disaster mitigation by numerical wave flume

半沢 稔*・松本 朗**・田中 仁*** Minoru Hanzawa, Akira Matsumoto and Hitoshi Tanaka

*正会員 工修 (株)不動テトラ ブロック環境事業本部(〒103-0016 東京都中央区日本橋小網町7-2)
 **正会員 工修 (株)不動テトラ 総合技術研究所(〒300-0006 土浦市東中貫町2-7)
 ***フェロー 工博 東北大学教授 大学院工学研究科(〒980-8579 仙台市青葉区荒巻字青葉6-6-06)

In recent years, the risk of occurrence of tsunamis generated by near shore earthquakes, such as, Tokai, Tonankai, Nankai and off-Miyagi is considered to be higher than before as well as off shore tsunami traveling long distance, e.g. the Chilean tsunami in 2010. In order to mitigate tsunami disasters in sea coast areas, the effectiveness of detached breakwaters made with wave dissipating concrete blocks such as Tetrapods should be properly estimated. A numerical wave flume has been developed for advanced maritime structure designs. In our study, the applicability of numerical wave flume named CADMAS-SURF for detached breakwater effectiveness on solitary tsunami wave reduction will be discussed comparing with hydraulic model test data. **Key Words:** numerical wave flume, solitary wave, tsunami disaster mitigation, coastal structure $\neq -\mathcal{D} - \mathcal{K}$; 数值波動水路, 孤立波, 津波防災, 海岸構造物

1. はじめに

海域施設の設計は従来,水理模型実験かそれに基づく設 計公式によってきている.しかし,水理模型実験には海底 地形の水槽内への再現や,種々構造物模型の作成,更には 様々な項目の測定などに多大な費用,時間を要する.また, 設計公式もそれが導出される過程で実施された実験条件 の範囲に公式の使用が限定されるなどの問題がある.更に, 近年では構造物の被災挙動をも考慮した信頼設計をベー スにした性能設計など,より多くの情報を必要とした高度 な設計手法が望まれている.

こうした状況を背景に、また、近年の数値計算手法の進展並びに、計算機の能力向上を踏まえて、海域施設の設計にも数値計算を利用して効率的にまた、精度良く行うことを目指した取組がされつつある.数値波動水路¹¹ は波や流れといった海域での水理現象を数値計算によって再現するものであり、防波堤の波力や反射、護岸からの越波量など、主として台風や冬季季節風等による風波を対象とした現象に関してはその適用に関する研究が精力的に進められている(例えば、磯部ら^{2),3)}、合田・松本⁴⁾、有光ら⁵⁾、小竹ら⁶⁾ など).

海岸構造物が直面するのは上記の風波だけでなく津波 も重要な外力である.実際,1993年北海道南西沖地震津波 や,1983年日本海中部地震津波により海岸堤防や護岸等に 被災が発生している(例えば,田中ら⁷⁾,谷本ら⁸⁾など). こうしたことを背景に津波に対しても、従来から多くの研 究がなされており,例えば,海岸施設に作用する津波波力 については,水谷・今村⁹⁾,朝倉ら¹⁰⁾,加藤ら¹¹⁾など の研究がある.これらは,海岸堤防を対象としたものであ るが,水理模型実験に基づくものであり,それら研究の成 果の適用にはおのずと限界があるものと考えられる.また, 多くの海岸で設置されている離岸堤の効果について研究 された事例はほとんどない.2004年12月26日に発生したイ ンド洋大津波においては,モルディブ共和国の首都のある マレ島では周囲に設置された離岸堤が津波被害を軽減し たとされている^{12),13)}が,その効果を定量的に議論でき るまでには至っていない.

近年,東海,南海,東南海,宮城沖など,近海地震による津波発生リスクの高まりが指摘されている.また,2010 年2月28日に来襲したチリ地震津波のような遠地津波をも 考慮すれば,離岸堤が津波来襲時にどの程度の効果を発揮 するかを的確に把握することは,背後域の防災にとって必 要不可欠であることは論を待たない.

以上より本研究では、津波防災の観点から海岸堤防への 津波波力を取り上げ、離岸堤の効果をより汎用的に検討可 能とすることを目的に、数値波動水路の適用性について、 水理実験による検証を踏まえた研究を行ったものである.

2. 数值波動水路

2.1 基礎方程式

本研究で使用した数値波動水路は、CADMAS-SURF (SUper Roller Flume for Computer Aided Design of MAritime Structureの略称)と呼ばれるものであり、以下に示すよう に2次元非圧縮性流体の連続式および、Navier-Stokes方程 式を基礎方程式として構築されている.

$$\frac{\partial \gamma_x u}{\partial x} + \frac{\partial \gamma_z w}{\partial z} = 0 \tag{1}$$

$$\lambda_{v} \frac{\partial u}{\partial t} + \frac{\partial \lambda_{x} u u}{\partial x} + \frac{\partial \lambda_{z} w u}{\partial z} = -\frac{\gamma_{v}}{\rho} \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left\{ \gamma_{x} V_{e} \left(2 \frac{\partial u}{\partial x} \right) \right\} + \frac{\partial}{\partial z} \left\{ \gamma_{z} V_{e} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right\} - R_{x}$$
(2)

$$\lambda_{v} \frac{\partial w}{\partial t} + \frac{\partial \lambda_{x} u w}{\partial x} + \frac{\partial \lambda_{z} w w}{\partial z} = -\frac{\gamma_{v}}{\rho} \frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left\{ \gamma_{x} v_{e} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right\} + \frac{\partial}{\partial z} \left\{ \gamma_{z} v_{e} \left(2 \frac{\partial w}{\partial z} \right) \right\} - R_{z} - \gamma_{v} g \quad (3)$$

ここに、t は時間、x、z は水平および鉛直座標、u、wは水平および鉛直流速、 v_e は分子動粘性係数と渦動粘性 係数の和、 γ_v は空隙率であり、 γ_x 、 γ_z は水平および鉛 直方向面積透過率、p は圧力、 ρ は流体密度、g は重力加 速度である.

係数 λ_v , λ_x , λ_z は 以下のように与えられる.

$$\lambda_{\nu} = \gamma_{\nu} + (1 - \gamma_{\nu})C_{M}$$

$$\lambda_{x} = \gamma_{x} + (1 - \gamma_{x})C_{M}$$

$$\lambda_{z} = \gamma_{z} + (1 - \gamma_{z})C_{M}$$
(4)

ここに、CM は慣性力係数である.

また,水平および鉛直方向抗力 R_x , R_z は以下のように 与えられる.

$$R_{x} = \frac{1}{2} \frac{C_{D}}{\Delta x} (1 - \gamma_{x}) u \sqrt{u^{2} + w^{2}}$$

$$R_{z} = \frac{1}{2} \frac{C_{D}}{\Delta z} (1 - \gamma_{z}) w \sqrt{u^{2} + w^{2}}$$
(5)

ここに、 C_D は抗力係数、 Δx 、 Δz は水平および鉛直方向 計算格子間隔である.

2.2 自由表面

自由表面の取り扱いには汎用性の高いVOF(Volume of Fluid)法(Hirt and Nicholas¹⁴⁾)を用いている. VOF関数 F の移流方程式を以下に示す.

$$\gamma_{v} \frac{\partial F}{\partial t} + \frac{\partial \gamma_{x} uF}{\partial x} + \frac{\partial \gamma_{z} wF}{\partial z} = 0$$
(6)

3. 水理模型実験

3.1 造波方法

本研究では津波の一形態として,以下で表現される孤立 波を対象とした.

$$\eta(x,t) = H \operatorname{sech}^{2} \kappa(x - ct)$$
(7)

$$c = \sqrt{g(h+H)} \tag{8}$$

$$u = \sqrt{\frac{g}{h}}\eta \tag{9}$$
$$w = 0$$

ここに,

$$\kappa = \sqrt{\frac{3H}{4h^3}} \tag{10}$$

であり、また、H は波高、c は波速、h は水深である.

(7)式で表現される孤立波を造波するには、造波板のスト ローク(必要移動距離) *S*はGoring and Raichlen¹⁵⁾に従 い以下の(11)式で与えられる.

$$S = \sqrt{\frac{16Hh}{3}} \tag{11}$$

また,時刻 t における造波板位置 X は以下のように与 えられる.

$$X(t) = \frac{H}{\kappa h} \tanh \kappa (ct - X(t))$$
(12)

式 (12) は右辺に未知量 X(t) を含み、しかも X(t) について非線形なため、解析解を求めることができない、ニュートン・ラフソン法を用いて解くと、時刻 t=i+1 における造波板の位置 X_{i+1} は、時刻 t=iのときの値 X_i を使って式 (13) のように求められる.

$$X_{i+1} = X_i - \frac{X_i - \frac{H}{\kappa h} \tanh \kappa (ct - X_i)}{1 + \frac{H}{h} \operatorname{sech}^2 \left[\kappa (ct - X_i) \right]}$$
(13)

孤立波の波長は無限大であるから,理論的には式(12) で tanh $\kappa(ct-X(t))$ が -1となる極限での時刻を考えなければ ならないが, Goring and Raichlen¹⁵⁾ に倣い tanh $\kappa(ct-X(t))$ が -0.999となる時刻として式 (14) から t_0 を求めた. この t_0 を初期値として,式(13)より逐次(t_i, X_i)を計算し造波板の 位置を制御した.

$$t_0 = \frac{\tanh^{-1}(-0.999)}{\kappa c} = -\frac{3.80}{\kappa c}$$
(14)

3.2 海底地形および構造物

数値計算の検証のため、以下に示す要領で水理実験を行った. 図-1に水槽内の配置を示す. 水槽の左端 (x=0 m) の位置にピストンタイプの造波板が設置してある. $x = 3.75 \sim 4.25$ m に 1/5 勾配斜面, そこからx = 13.25mまで 1/30勾配斜面とした. そこから14.75 mまで水平床とし、更に陸側は1/20の斜面を形成した. この地形は日本沿岸の一般的な海底地形を代表するものとして設定したものである.

水槽内の水位波形を計測するため、図-1に示すように x=2.25m~14.25mまでの13箇所(St.1~13)に波高 計を設置した.

図-1 実験水槽内配置

構造物としては離岸堤と海岸堤防を対象とした.離岸堤 は消波ブロックの代表格であるテトラポッド(質量 59g) により形成した.断面図を図-2に示す.離岸堤は天端中 心位置がx=11.25 m (St.9)となるように設置した.離岸 堤の天端幅はブロック3個並び相当とし,天端高はクリア ランス(静水面から天端までの高さ)を潮位(沖水深)に よらず4cmとした.これは,通常の波浪に対するテトラ ポッドの安定限界波高Hの1/2程度に相当するものであ り,一般的な離岸堤の設計手法に準拠したものである.

海岸堤防はx =13.75 m (波高計 St.12) の位置に設置し, 図-3に示すように7箇所に波圧計(容量:1.96N/cm²) を取り付け津波による波圧測定を行った.

図-4は水槽内の離岸堤並びに,海岸堤防の構造物および,近傍に配置した波高計の状況を写真にて示したものである.図-5離岸堤の設置状況を示したものである.前述のように離岸堤はテトラポッドにて形成しており,空隙率(離岸堤全体に占めるブロック以外の体積割合)は50%である.

図-4 水槽内構造物配置状況写真

図-5 離岸堤設置状況写真

表-1に実験ケースを示す. Case 1 は離岸堤および海岸 堤防の構造物がない場合(通過波状況と称する)であり, 孤立波津波の伝播や水位の変化状況を計測するものであ る. Case 2 は離岸堤を設置(海岸堤防はなし)した場合で あり,離岸堤による津波の減衰状況を検討するものである. Case 3 および4 は海岸堤防を設置した場合であり,海岸堤 防に働く波力を測定したものである. Case 3 は離岸堤が ない場合, Case 4 は離岸堤を設置したケースであり,離岸 堤による海岸堤防への波力低減状況を検討するものであ る. また,それぞれのケースでサフィックスは潮位の高低 を想定したケースを示している.サフィックス-1 は高潮 位で沖水深が 0.43m の場合, -2 は低潮位で沖水深が 0.40m の場合に対応している. 波高は全てのケースでSt.1 の値を H_0 =5.3 cmとした.

Case	沖水深	構造物		測定項目	
	h ₀ (m)	離岸堤	海岸堤防	水位変化	堤防波圧
1-1	0.43		_	0	-
1-2	0.40		_	0	-
2-1	0.43	0	—	0	-
2-2	0.40	0	—	0	-
3-1	0.43		0	0	0
3-2	0.40		0	0	0
4-1	0.43	0	0	0	0
4-2	0.40	0	0	0	0

表-1 水理実験ケース

4. 数値計算

前述のように水理実験において、津波波形として式(7) ~ (14)に従って孤立波を造波する.数値計算においても同様の方法で造波を行った.すなわち、式(7)と(9)から定まる時々刻々の水位と流速を、造波境界(x=0m)で発生させた.このとき水理実験と同様に時刻の初期値は式(14)から定まる値とした.なお造波機背後の4m区間($x=-5 \sim -1m$)にはスポンジ層を設け反射を防ぐようにしている.

計算において空間格子間隔は Δx =1.0cm, Δz =1.0cmとした. 既往の研究¹⁾ では適切な水平格子間隔を波長 *L* との比率で与えており*L*/ Δz =80以上としている.本研究では、式(14)で定まる時刻を基準とした場合の波長 *L* は、高潮位の場合10.85m,低潮位の場合9.74mであり、上に述べた基準を満たしている.鉛直方向格子間隔は波高 *H* との比率で与えられており、*H*/ Δx =10以上とされている.ただし、波の非線形性が弱く波高が砕波限界波高よりもかなり小さい場合は*H*/ Δx =5以上でよいとされている.本研究では沖側一水深部の孤立波の波高は前述のように*H*₀=5.3cmであり、ここでは*H*/ Δx =5以上が満足されている.

時間間隔は自動時間刻みを用いており、以下のCFL条件 から定まる時間刻み幅 Δt_c に対して安全係数 α を用いて式 (16)のように決定した¹⁾.安全係数 α の値は予備計算 の結果を参考に0.2とした.

$$\Delta t_c \le \min\left(\frac{\Delta x}{u}, \frac{\Delta z}{w}\right) \tag{15}$$

$$\Delta t = \alpha \Delta t_c \tag{16}$$

離岸堤(テトラポッド)の空隙率は前述のように $\gamma_{\nu}=0.5$ である. 抗力係数 C_D および慣性力係数 C_M はについては 榊山・今井¹⁶⁾ を参考に $C_D=0.9$, $C_M=1.5$ とした.

シミュレーションにおいても図-1~図-3に示した 実験水槽内の状況を再現し、表-1に示した検討ケースに 対応した計算を行い、各位置での水位や海岸堤防前面にお ける波圧を出力している.

5. 結果および考察

5.1 水位変化

(1) Case 1 - 1

図-6はCase 1 – 1における各ポイントの水位変化の 時系列を示したものである.このケースは沖の水深は 43cm,陸側水平部分の水深は 3cm である.波高は,沖 側一様水深部(波高計 St.1)で $H_0 = 5.3$ cm である.(a) が実験結果,(b)が計算結果である.

図-6(a),(b)を比較してみると,斜面を伝播するに従って,浅水変形により波高が増大していく過程が, St.10(x=12.25m)の砕波限界付近まで,数値計算におい てよく再現できていることがわかる.地形が水平となった St.12(x=13.75m:海岸堤防設置位置)ではやや数値計算 の方が大きめの値となっているが,波形の全体形状は非常 に良く再現できていることがわかる.

(2) Case 1 - 2

Case 1-2は水位を 3cm 下げたケースであり,沖水深 は 40cm,陸側水平部分の水深は 0cm である.図-7は 図-6と同様に各ポイントでの水位変化の時系列である. Case 1-1よりは水深が浅くなった分砕波位置が沖側に 移動しており,St.10(x=12.25m)で既に砕波している. 数値計算この状況をよく再現できているが,砕波後の波形 についてはその一致度はやや下がる傾向が見られる.

(a) 実験結果

(3) Case 2-1

図-8はCase 2-1の水位変化時系列である.離岸堤設 置位置より沖側ではCase 1-1と同様の波浪変形が見ら れるが,離岸堤背後では離岸堤による波高減衰の状況が計 算によって良く再現されていることがわかる.また,離岸 堤よりも沖側では離岸堤からの反射波による水位変化も 見られ,この点も大まかには再現されている.

(4) Case 2-2

図-9はCase 2-2について水位変化の時系列を見た ものである. Case 2-1 同様に離岸堤より沖側でのCase 1 -2と同様な波高変化が見られること,離岸堤による波高 減衰および,反射波の発生も計算結果と実験結果の整合は 良好である.

数値計算では後半の時間帯において全体的に水位が低下する結果となっている.この現象は実験結果においても見られているが、数値計算の方が程度が大きい.これらの原因および、改善については今後の課題である.

なお、こうした課題はあるものの、津波防災の観点で考 えると、後述のように例えば、海岸堤防の耐波設計上は進 行状態での波の挙動がクリティカルであり、現状のシミュ レーションレベルでも活用可能と考えられる.

図-9 水位変化時系列 (Case $2-2: H_0 = 5.3 \text{ cm}$)

(5) 波高の再現性

以上で水位変化について全体的に数値計算が実験の状況を再現していることを確認した.先に触れたように津波防災の観点,例えば,離岸堤のブロックの安定性や,海岸堤防に作用する津波波力を考えるに際しては,波高値が重要である.

図-10および図-11は、それぞれ通過波状態(Case -1)と離岸堤あり(Case-2)の場合について、全ポイントにおける波高を実験値(Hexp)と計算値(Hcal)の比率をとってみたものである.通過波状態では潮位の大小に関わらず、斜面沖側から砕波に至るまでは計算値は実験値 と非常によく合っていることがわかる. 砕波後も潮位が低い場合(Case1-2)ではやや計算値が小さめであるがおおむね 10% 程度の誤差である.一方,潮位が高い場合

(Case1-1)ではバラつきが大きい.これは、空気を巻き込むような形態での砕波現象の再現性に課題を残しているのかもしれない.

図-11は離岸堤のある場合であるが、潮位の大小によ らず、離岸堤より沖側は計算結果が実験結果を良く再現し ていることが確認される。離岸堤を通過した後は、全体的 に計算値は実験値よりも大きく、岸に近づくほどその傾向 は強い.これは離岸堤の効果により減衰した小さな波高が 対象であり、計算精度の影響が波高の小さい領域ほど顕著 に出た結果ではないかと思われる.

波が斜面上を伝播して浅水変形により波峰が尖り砕波 に近づく場合や,砕波後に波高が減衰した場合には,前述 した鉛直格子間隔の基準が満足されない.このことが計算 精度低下の原因の一つであると思われる.本研究では計算 時間の制約から先に述べた格子間隔を使用したが,格子間 隔を小さくする事による波高の再現性の変化については 今後の課題としたい.

5.2 海岸堤防に作用する波圧

(1) 波圧時系列

図-12はCase 3-1 (離岸堤なし・潮位大)における 海岸堤防に作用する波圧の内,波圧強度の大きな位置とい う観点から,静水面での波圧を実験および,数値計算それ ぞれに時系列として示したものである.最大値は若干の差 が生じているが、衝撃的な波圧波形であることや、第2ピークの発生状況などからすれば、計算結果は実験を良く表現できていると考えられる.

図-13は同様に潮位が低い場合の例である.このケー スでも波圧強度が大きいということで、海岸堤防最下端位 置での値を示している.最大値は非常に良く合っている. また、波形も計算結果の方がやや波圧の低減が早いようで あるが、実質部分で考えれば再現性は良いものと考えられ る.

(2) 波圧最大値

前項では2例ではあるが時系列としての計算による再 現性を見た.先に水位変化の検討においても触れたように, 海岸堤防の耐津波安定性や構造強度面を考えた場合,設計 上考慮すべきは波圧の最大値である.そこで以降,海岸堤 防各点に作用する波圧最大値について見ていく.

図-14は離岸堤なし(Case 3)における海岸堤防の最 大波圧分布について実験結果と計算結果を比較したもの である. 波圧については実験を2回繰り返して行っている ので,個々のデータをそのままプロットしてある.潮位が 高い場合(a)では波圧分布の全体的な形状は,計算結果 と実験結果の整合性は高い.ただし,実験結果では静水面 位置でピークとなるのに対して,計算ではやや上にピーク が発生している.潮位が低い場合(b)でも堤防下側では 計算値と実験値は非常に良く合っている.しかし,上側で は実験値の方が大きめである.

図-15は同様に離岸堤あり(Case 4)の場合について 見たものである.潮位が高い場合(a)は実験では静水面 やや上でピークが見られているが,計算では最下端でピー クとなっている.しかし,静水面以下の波圧値の整合性は 高い.潮位が低い場合(b)では離岸堤なしと同様に,海 岸堤防の上側で実験値の方が大きい傾向である.

なお、実験、計算ともに、潮位が高い方が海岸堤防前面 での波高が大きいことから、波圧発生位置もより高くなる が、堤防最下端に生じる波圧レベルには大きな差がないこ

(3) 離岸堤の効果

図-16は潮位別に離岸堤のありなしによる,海岸堤防 への作用波圧の比較をしてみたものである.潮位によらず, 海岸堤防最下端あるいは付近の波圧最大値が離岸堤設置 により設置しない場合の 60% ~ 70% に低減されてい る.これは,離岸堤の波高減衰効果によるものであるのは 言うまでもない.また,水塊の到達高さも下がることから, 波圧発生位置も離岸堤がない場合の 60% ~ 70% にな っており,全体波力としてはおよそ 40% ~ 45% に低減 されるものと見積もられる.

6. まとめ

本研究では、津波の一形態である孤立波を対象にして、 離岸堤の持つ津波防災効果を、海岸堤防に作用する波圧の 面から検討するにあたり、数値波動水路の適用を試みたも のである、以下に得られた結論を示す.

(1)水位変化および波高変化については、砕波前および 離岸堤到達前について、計算結果は実験結果をよく再現で きた.砕波後やより浅い領域での整合性には課題がある.

(2) 波高の整合性には課題はあるものの,海岸堤防に作用する波圧に関しては,計算結果は実験結果の傾向を良く 表現できることがわかった.

(3)離岸堤による波高減衰並びに、海岸堤防への作用波 圧低減効果が計算および実験ともに確認された.全体波力 でみた場合、離岸堤による低減率は40% ~ 45% と見積も られた.

(4)以上より,数値波動水路の津波防災への適用可能性 が確認できた.

今後は波高レベルや波の形態をも種々変えた検討も行い,数値波動水路を用いた津波防災に向けた検討手法提案 に向け更に研究を継続して行く所存である.

参考文献

- (財)沿岸開発技術研究センター:数値波動水路の 研究開発,沿岸開発技術ライブラリー, No.12, 296p., 2001.
- 2) 磯部雅彦,余錫平,梅村幸一郎,高橋重雄:数値波 動水路の開発に関する研究,海岸工学論文集,第 46巻,pp.36-40,1999.
- 3) 磯部雅彦,高橋重雄,余錫平,榊山勉,藤間功司, 川崎浩司,蒋勤,秋山実,大山洋志:数値波動水路 の耐波設計への適用に関する研究-VOF 法基本プ ログラムの作成-,海洋開発論文集,第15巻, pp.321-326,1999.

- 合田良實,松本朗:捨石防波堤全体に作用する波力 ならびに堤体内部への波圧伝播の数値計算,海洋開 発論文集,第19巻, pp.529-534, 2003.
- 有光剛,安岡恒人,川崎浩司:越波排水路を有する 低天端護岸における越波現象に対する数値波動水 路の適用性,海岸工学論文集,第54巻,pp.726-730, 2007.
- 小竹康夫,小淵康義,高橋重雄:直立消波堤に作用 する波圧算定への数値波動水路の適用性検討,海岸 工学論文集,第54巻, pp.816-820, 2007.
- 田中茂信,伊藤弘之,山本幸次:北海道南西沖地震 による津波被害について,海岸,vol.33, No.2, pp.12-17, 1993.
- 谷本勝利,高山知司,村上和男,村田繁,鶴谷広一, 高橋重雄,森川雅行,吉本靖俊,中野晋,平石哲也: 1983年日本海中部地震津波の実態と二・三の考察, 港湾技研資料, No.470, 299p., 1983
- 水谷将,今村文彦:構造物に作用する段波波力の実 験,海岸工学論文集,第47巻,pp.946-950,2000.
- 朝倉良介,岩瀬浩二,池谷毅,高尾誠,金戸俊道, 藤井直樹,大森政則:護岸を越流した津波による波 力に関する実験的研究,海岸工学論文集,第47巻, pp.911-915,2000.
- 11) 加藤史訓, 稲垣茂樹, 福濱方哉:津波により海岸堤 防に作用する波力に関する大型模型実験,海岸工学 論文集,第52巻, pp.756-750, 2005.
- 12) 大谷英夫,藤間功司,鴫原良典,富田孝史,本多和 彦,信岡直道,越村俊一,折下定夫,辰巳正弘,半 沢稔,藤井裕之:インド洋大津波によるモルディブ 共和国マレ島・空港島の浸水特性とそれに及ぼす護 岸・離岸堤の影響,海岸工学論文集,第 52 巻, pp.1376-1380, 2005.
- 13) Fujima, K., Shigihara,Y., Tomita, T., Honda, K., Nobuoka, H., Hanzawa, M., Fujii, H., Ohtani, H., Orishimo, S., Tatsumi, M. and Koshimura, S. : Survey results of Indian Ocean Tsunami in the Maldives, Coastal Engineering Journal, Vol. 48, No.2, pp.81-97, JSCE, 2006.
- Hirt, C. and Nichols, B.D. : Volume of Fluid (VOF) Method for dynamics of boundaries, Journal of Computational Physics, Vol. 39, pp.201-205, 1981.
- Goring, D. and Raichlen, F. : The generation of long waves in the laboratory, Proceedings of International Conference on Coastal Engineering, pp763-783, 1980.
- 16) 榊山勉, 今井澄雄: 消波護岸の越波に関する数値シ ミュレーション, 海岸工学論文集, 第 43 巻, pp.696-700, 1996.

(2010年3月9日 受付)