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A numerical prediction method has been proposed to predict Bingham plastic fluids
with free-surface in a two-dimensional container. Since the linear relationships between
stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the
liquid motions are described with Cauchy momentum equations rather than Navier-
Stokes equations. The profile of a liquid surface is represented with the two-dimensional
curvilinear coordinates which are generated in each computational step on the basis of
the Arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells
are transiently changed in the physical space, the geometric conservation law is applied
to the finite volume discretizations. As a result, it has been shown that the present
method enables us to predict reasonably the Bingham plastic fluids with free-surface in
a container.
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1. Introduction

In general, Newtonian fluids are used in fluid cal-

culations in hydraulic engineering. However, debris

flows, mud flows and lava flows have a characteristic

different from clear water and hence these are treated

as non-Newtonian fluids. Furthermore, it is reported

that liquefied soils have a characteristic of pseudo-

plastic fluid. Thus, it is difficult to describe various

flows in civil engineering as Newtonian fluid. In ad-

dition, since many kinds of flows in the nature have

free-surface, it is important to reveal the characteris-

tic of non-Newtonian fluid flows with free-surfaces.

In civil engineering, liquefied sand and fresh con-

crete, which are categorized as Bingham plastic flu-

ids, are often treated as the representative of non-

Newtonian fluids. Thus, the present study are focused

on the Bingham plastic fluids having free-surface.

In the past studies, the VOF techniques, the MAC

methods and ALE formulation are used to numer-

ically predict the Bingham plastic flows with free-

surface 1)，2)，3). In this paper, the ALE formulation

has been selected in order to represent the free surface

profiles correctly.

Meanwhile, in fluid flow calculations, the use of

moving coordinates is sometimes essential, e.g. in

flows with moving boundaries. Owing to the move-

ment of the coordinate system, an additional equa-

tion has to be solved in addition to the conservation

equations. This equation relates the change of the

elementary control volume to the coordinate frame

velocity and is hence called by Thomas et al. 4) the

’geometric conservation law’.

In the present study, a new computational tech-

nique is proposed to predict the Bingham plastic fluids

having free-surface. The profile of a liquid surface is

represented with the two-dimensional curvilinear co-

ordinates which are generated in each computational

step on the basis of the ALE method. Since the vol-
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umes of the fluid cells are transiently changed in the

physical space, the geometric conservation law is ap-

plied to the finite volume discretizations. In order

to confirm the applicability of the present computa-

tional technique, numerical simulations are performed

for the free-surface flows in a container

2. Numerical Procedures

2.1 Basic Equations in Moving Curvilinear

Coordinates

For incompressible non-Newtonian fluids, the set of

equations describing conservation of mass, momen-

tum and geometry in a moving coordinate frame reads

respectively.
∫

V0

ρ
∂J

∂t
dV0 +

∫

∂V0

ρJ(Um − Vm)nmdS0 = 0 (1)

∫

V0

∂(Jui)
∂t

dV0 +
∫

∂V0

J(Um − Vm)uinmdS0

= −1
ρ

∫

∂V0

J
∂ξm

∂xi
pnmdS0 +

1
ρ

∫

∂V0

J
∂ξm

∂xj
τijnmdS0

+
∫

V0

fiJ dV0 (2)

∫

V0

∂J

∂t
dV0 =

∫

∂V0

JVmnmdS0 (3)

Here, t, ρ, p, τij and fi are time, density of liquid,

pressure, deviatoric stress tensor and body force com-

ponent per unit mass in xi direction, respectively.

As indicated in Fig.1, the spatial coordinates in the

physical space are represented by xi while ξm denotes

the spatial coordinates in the computational space

which tracks the moving boundaries. J is a Jacobian

of the transformation defined by

J =
∂x1

∂ξ1

∂x2

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1
. (4)

V0 is an arbitrary spatial region of the computational

space and its size is constant regardless of the com-

putational step. nm is the component of unit normal

vector on V0. ui is velocity component in xi direc-

tion, and the contravariant velocity components Um

and Vm are derived from the velocity of the liquid and

that of the cell face in the computational space:

Um = ui
∂ξm

∂xi
(5)

Vm =
∂xi

∂t

∂ξm

∂xi
(6)

(a) Physical space.

(b) Computational space.

Fig. 1 Computational cell.

In the collocated grid system, proposed by Rhie

and Chow 5), pressure and all velocity components

are located at the cell-center points. In addition, cell-

boundary velocity components are utilized in pres-

sure calculation to prevent the velocity-pressure os-

cillation. On the other hand, the contravariant ve-

locity components Um and Vm are defined on the cell

boundaries.

Eq. (3) is called the integral form of geometric

conservation law, which represents that the volume

change of a fluid cell is identified with the sum of the

sweeping volume of each cell faces. The contravari-

ant surface velocity component Vm has to satisfy the

geometric conservation law 6). The procedure will be

outlined in the following section.

These conservation equations are discretized in the

collocated grid system and solved with a finite volume

method. On the basis of the computational method
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for incompressible fluids 7), tentative velocity compo-

nents are calculated at cell-center points with the Eu-

ler explicit method. The derived velocity components

are spatially interpolated on the cell-boundaries and

pressure computations are performed with C-HSMAC

method 8).

2.2 Free-Surface Profile and Grid Generation

The kinematic boundary condition for the free sur-

face is given by the following equation:

∂h

∂t
= us2 − us1

∂h

∂x1
(7)

where h is the free-surface height measured from a

standard position and usi is the velocity components

of free surfaces. Eq. (7) can be discretized with the

contravariant velocity components Us2 on the free-

surface as

hn+1 = hn +
JUn+1

s2 ∆ξ1

∆x1
∆t. (8)

Here, Un+1
s2 is obtained from the computational pro-

cedures in the C-HSMAC method 8).

The boundary profiles of fluids including free sur-

face are used as the boundary conditions for grid gen-

eration. Under this boundary conditions, the follow-

ing elliptic equation is employed to rearrange the in-

ternal grid points:

∂

∂ξm

�
∂xi

∂ξn

∂ξn

∂xj

�
∂ξm

∂xj
+ Pm

∂xi

∂ξm
= 0 (9)

Here, Pm is a user-defined function which allows us to

control the mesh intervals in the physical space. The

grid generation is performed at every computational

step to represent the free-surface profiles.

The boundary conditions for velocity gradients

∂us1/∂ξ2 and ∂us2/∂ξ2 on the free surface are given

by the relationships for normal stress and tangential

stress 8).

2.3 Grid Velocity and Pressure Correction

In order to obtain the contravariant boundary ve-

locity components Vm, we numerically solve Eq. (3).

Eq. (3) is discretized with respect to time as the fol-

lowing form:
�

V0

Jn+1 − Jn

∆t
dV0 =

�

∂V0

Jn+1V n+1
m nmdS0 (10)

where Jn+1 are known quantities since the internal

grid points have been rearranged. In addition, since

the internal points move only in the x2 direction in

the present study, V n
1 = 0 at any computational step.

Therefore, we can obtain V n+1
2 from Eq. (10).

Substituting Eq. (3) into Eq. (1), The mass con-

servation equation for the incompressible fluids reads
�

∂V0

Jn+1Un+1
m nmdS0 = 0. (11)

Using Eq. (11) instead of Eq. (1), the following Pois-

son equation for φ can be derived 8):
�

∂V0

Jn+1gmj ∂φ

∂ξj
nmdS0

=
ρ

∆t

�

∂V0

Jn+1Ûb,mnmdS0 (12)

with

gmj =
∂ξm

∂xk

∂ξj

∂xk
(13)

and

φ = pn+1 − pn (14)

where gmj is a contravariant of the fundamental met-

ric tensor, and Ûb,m is the initial estimation of the

contravariant velocity component.

When the numerical procedures in the C-HSMAC

method is completed, pn+1 and Un+1
m are established.

2.4 Bingham Model

In the Bingham model, the relationship between τij

and γ̇ij is represented as follows:
�

τij = τ0 + ηpγ̇ij， |τ | ≥ τ0

γ̇ij = 0， |τ | < τ0

(15)

with

γ̇ij =
∂ui

∂ξm

∂ξm

∂xj
+

∂uj

∂ξm

∂ξm

∂xi
(16)

where γ̇ij is the rate of strain tensor. τ0 and ηp repre-

sents yield stress and plastic viscosity respectively. |τ |
is its second invariant and defined as following form:

|τ | =

⎡
⎣1

2

�
1≤i,j≤dim

τ2
ij

⎤
⎦

1
2

(17)

where dim is dimension number and equals 2 in this

study. Eq. (17) means that Bingham plastic fluids ex-

hibit no deformation at all (solid-like behavior) when

the applied stress is below the yield stress, and that

they flow like Newtonian fluids above the yield stress.
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Fig. 2 Comparison with the Bingham model.

In the present analysis we decided to use the Pa-

panastasiou model 9) which has the following form:

τij =
[
ηp +

τ0

|γ̇| (1 − e−m|γ̇|)
]

γ̇ij (18)

where m is the stress growth exponent. |γ̇| is its sec-

ond invariant and defined as Eq. (17).

Fig.2 illustrates the relationship between the Bing-

ham model and the Papanastasiou model. It is as-

sumed that ηp/τ0 = 1.0(s) in Fig.2. For relatively

large values of the exponent coefficient m, this model

closely approximates the discontinuous Bingham be-

havior. The following calculations are performed us-

ing m = 1000(s).

Using shear-dependent viscosity η, τij is related to

γ̇ij as follows:

τij = ηγ̇ij (19)

Comparing Eq. (18) with Eq. (19), we obtain the

following form:

η(|γ̇|) = ηp +
τ0

|γ̇| (1 − e−m|γ̇|) (20)

η is calculated from Eq. (20) in each cell.

In the present analysis we use two dimensionless

numbers. Bingham number Bn is defined as follows:

Bn =
τ0l

ηpU
(21)

where U and l are representative velocity and length

respectively.

Reynolds number ReBI is defined as follows:

ReBI =
ρUl

ηp
(22)

3. Applicability of Prediction Method

3.1 Flow between two parallel plates

The flows between two parallel plates have been

selected as a benchmark problem to validate the pro-

posed computational method. The geometry and co-

ordinates are shown in Fig.3, where the length L and

width 2H are given by L = 7.0 and 2H = 1.0 respec-

tively. In addition, the non-slip condition is given

on the plates. The velocity boundary conditions are

u0 = 0.1 at x = 0 and ∂u/∂x = 0 at x = L. The

pressure boundary conditions are ∂p/∂x = 0 at x = 0

and p = 0 at x = L.

In order to confirm the numerical accuracy, the pro-

posed method was applied in 30 × 20 non-uniform

grid (Fig.4). The computational results at steady

state are shown in Fig.5. The predicted velocity dis-

tribution in x direction agrees reasonably with the

exact solution 10). Thus, as shown in the previous

study 11), it has been confirmed that the present com-

putational techniques are applicable.

Fig. 3 The geometry of parallel plates and co-

ordinates.

Fig. 4 Distribution of grid points.

- 748 - - 749 -



Fig. 5 Velocity distribution in x direction.

3.2 Free Oscillation

The numerical analysis of the free oscillation of the

liquids with small and large amplitudes allows us to

confirm that the numerical technique satisfies the ba-

sic specifications, such as free-surface boundary condi-

tions and grid generation based on the ALE method.

The two dimensional square container, as shown in

Fig.6, is 1.0 × 1.0, in which the non-slip condition

is given on all solid boundaries of the container. The

gravity acts downward with 10.0 and the effect of sur-

face tension is not taken into account. The initial

profile of the free surface is given by

η = A cos
(πx

l

)
(23)

where η is the liquid level on the basis of the still

water depth h, l is the width of the container. The

amplitude A equals 0.01 and the larger one is 0.1.

At first, the case of the free oscillation with a small

amplitude was examined. Fig.7 shows the time his-

tories of the liquid level at x = 0 with the small am-

plitude for three computational results; one is a non-

viscosity fluid, another is a Newton fluid (Re = 40)

and the other is a Bingham plastic fluid (Bn = 1.0

and Re = 100). As shown in this figure, no numeri-

cal damping effects are found for non-viscosity fluid,

which has a similar tendency to the previous study 8).

In addition, the adequate attenuation of the wave am-

plitudes is observed for the Newtonian fluid. On the

other hand, the wave of the Bingham plastic fluid does

not attenuate periodically and disappears within fi-

nite time. This suggests that the regions with various

values of viscosity are distributed in the container.

The characteristic of Bingham plastic fluids is quali-

tatively shown by the present method.

Besides, the numerical analysis of the free oscilla-

tion of Bingham plastic fluids with a large amplitude

was performed. The generated computational grid

distributions are shown in Fig.8 and the predicted ve-

locity vectors are presented in Fig.9. It can be seen

that the adequate mesh regeneration is maintained

and that the reasonable liquid motions are predicted

in the calculation.

Fig. 6 Geometry of container and coordinates.

Fig. 7 Time histories of η at x = 0.
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t = 0.55

t = 1.25

t = 1.80

t = 2.45

Fig. 8 Generated curvilinear coordinates by

ALE method.

t = 0.55

t = 1.25

t = 1.80

t = 2.45

Fig. 9 Computed velocity vectors and free sur-

face profile with a large amplitude.
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3.3 Lid-Driven Free-Surface Flow in a Con-

tainer

The numerical analysis of free-surface profile in a

container with moving bottom allows us to confirm

that the present method is applicable to Newtonian

fluids and Bingham plastic fluids with free surface.

Fig. 10 Geometry of container and coordinates.

In a rectangular container with the width 1.0

and the average water depth 0.5, as shown Fig.10,

the free-slip condition is given on both sides of the

container, and the moving wall velocity equals 1.0.

Reynolds number is 50, gravity force g is 10.0 and

the effect of surface tension is not taken into account.

Utilizing boundary-fitted coordinates, 15 × 15 non-

uniform cells are generated.

Fig.11 shows the free-surface profile in steady state

and the predicted velocity vectors are presented in

Fig.12. The displacement of free-surface level of

Bingham plastic fluids is smaller than that of New-

tonian fluids.

Fig. 11 Free surface profiles in steady state.

(a)Newtonian fluids.

(b)Bingham plastic fluids (Bn=1.0).

Fig. 12 Computed velocity vectors and free sur-

face profiles.

4. Conclusions

A computational method has been proposed for

free-surface Bingham plastic flows with general curvi-

linear coordinates by the ALE formulation. The

transformed governing equations are discretized with

a finite volume method in a collocated grid system.

The stress tensors are described with the formula-

tion proposed by Papanastaiou. Since the volumes

of the fluid cells are transiently changed in the physi-

cal space, the geometric conservation law is accounted

for in the discretization process.

In order to confirm the applicability of the present

computational technique, numerical simulations have

been conducted for the free oscillations and for lid-

driven free-surface flows in a container. As a result,

it has been proved that adequate solutions can be

obtained for the free-surface Bingham plastic flows in

a container. For the future works, we plan to compare

the predicted results with experimental data and to

confirm the applicability of the proposed method.
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