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This paper aims to explain that the closure of fixed principal axes engaged in the physics of 
sand heaps is too simplistic to characterize stress distributions along the supporting base. New 
analytic stress solutions based on this closure with Levy’s hypothesis on hoop stress in 
conical sand heaps were rigorously derived. It was found that the analytic stress solutions are 
in fair agreement with the published experimental data. Moreover, this study indicates that the 
equations of the original work contain an error and, therefore, the corresponding numeric 
solutions are not correct. The present study disproves the outcome of the original work and 
may turn this stress closure from a realistic to an ideal hypothesis. This theoretical finding 
leads to the conclusion that the memory of sand heaps is no longer perfect. 
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1. Introduction 

Solving mechanics problems using analytic solutions 
enables us to obtain all stresses at the highest accuracy and to 
ease the process of verification and validation. Analytic 
solutions can be explicitly expressed in symbolic expressions, 
not necessarily in closed-form solutions which are expressed in 
terms of a bounded number of certain functions and operators. 
Analytic solutions can be derived for some problems with few 
unknowns and simple boundary conditions; accordingly, we 
will find the analytic stress solutions in conical sand heaps 
under the certain assumptions.  

Since the 1900s, numerous researches focused on the 
counter-intuitive observation of a pressure dip at the base 
underneath the apex of granular materials. The significance of 
this puzzling phenomenon was remarked on in a New Scientist 
article by Watson (1991)1). He posed an intriguing question: 
“Which apple is being crushed the most in a pile of apples?” (as 
depicted in Fig.1). This scientific article was based on the 
unexpected pattern of stress distribution revealed by Smid & 
Novosad (1981)2), Czech scientists who used pressure sensors 
to measure the stresses acting along the rigid base of granular 
heaps and reported that it is not the center of the base that feels 
the greatest downward pressure, but instead a ring of particles a 

certain distance away from the center. The remarkable 
appearance of a pressure dip has attracted much curiosity from 
physicists and mathematicians. Many works devoted to the 
arching theory using continuum mechanics, as well as computer 
models using the discrete/distinct element method, were 
introduced in an attempt to clarify the mechanism of self-weight 
transmission (e.g. Edwards & Oakeshott (1989)3), Liffman et al. 
(1992, 1994)4, 5), Bouchaud et al. (1995)6), Hemmingsson 
(1996)7)). However they found that this seemingly simple 
problem is not so easy to tackle. This problem is rooted in a 
facet of stress indeterminacy and stress history. 

Feel the greatest 
downward forces?

Fig.1 Perplexing pile of apples in a supermarket presented in 
New Scientist (Watson, 1991) 
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Fig.2 The sand pile puzzle where the greatest pressure is not at 
the center of the base appeared in Science (Watson, 1996) 

Among them, the explanation of the pressure dip by 
Wittmer et al. (1996)8) emerges as the most outstanding closure 
of stress relation in a sand heap. This group of physicists from 
the U.K. and France published their hypothesis on fixed 
principal axes (FPA) in Nature and was given renown in an 
article in Science (Watson, 1996)9). They proposed that the 
major compressive stresses in a pile of sand lie along fixed 
parallel straight lines buried during deposition, angled in the 
middle between the angle of repose and the gravitating direction. 
These stress lines transfer the heap’s own weight away from the 
center, causing a central pressure dip as outlined in Fig.2.  

This simple approach can be cast within the existing 
framework of classical continuum mechanics to suitably 
reproduce the experimental data reported 15 years before by 
Smid & Novosad (1981). A detailed explanation of their 
approach and weight transmission mechanism is given in 
Wittmer et al. (1997)10). The closure of FPA substantially 
impacts on a wide range of theories in physics and mechanics, 
looking at the number of citations. Despite acceptance or 
rejection of the success of their respectable works on sand heaps 
with perfect memory in the direction of the principal stress, both 
papers have been later referred to in several papers, up to 200 
times, in ISI Journals. Stress distribution in sand heaps became 
a trendy research topic in the late 1900s and early 2000s (e.g. 
Bouchaud et al. (1997)11), Brockbank et al. (1997)12),
Cantelaube & Goddard (1997)13), Savage (1997, 1998)14, 15),
Cates et al. (1998, 1999)16, 17), Narayan & Nagel (1999)18),
Vanel et al. (1999)19), Didwania et al. (2000)20), Hill & Cox 
(2000)21) and Wiesner (2000)22)).

The authors tackled this problem by linking it with the 
derivation of coefficient of earth pressure at-rest (Pipatpongsa et 
al. (2009, 2010)23, 24)). We found that no article has yet 
examined the analytic solutions using the FPA closure in 
conical heap except for numerical solutions appearing in the 
original work; this work reflects our effort on this derivation. 

2. Theoretical Review 
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Fig.3 Geometry of a sand heap and the reference cylindrical 
coordinate system with state of stresses in the positive plane 

The basic equations to the problem were briefly reviewed 
based on the original work of Wittmer et al. (1996, 1997)8, 10)

which were also restated in Bouchaud et al. (1997)11) and 
reviewed in Michalowski (2005)25) and Pipatpongsa et al. 
(2009)23). A particle is considered to be a non-deformable object 
under their hypothesis. It is beyond the scope of this study to 
discuss the assumptions used in their analyses but some critical 
comments against the FPA closure can be found in Savage 
(1997)14) and Narayan & Nagel (1999)18) with corresponding 
explanations addressed in Cates et al. (1999)17).

 Gravitating granular heaps, poured by noncohesive 
particles, are formed on the rigid base at their angle of repose. 
Two common geometries of the heap are planar and conical 
shapes. Let us concentrate on conical heaps with the geometry 
shown in Fig.3. A conical sand heap has a rotational symmetry 
about the central axis; therefore, a cylindrical coordinate system 
(x, ,z) is convenient to employ, where x is the radial distance 
measured from the center line,  is the angular position 
measured on the horizontal plane around the central axis and z
is the axial position measured from its apex. The state of 
stresses acting on the positive plane of a sectional element is 
also shown in Fig.3. Four stress components are horizontal 
stress x, vertical stress z, shear stress xz and hoop stress .
Considering a conical heap of infinite depth under self-weight 
loading with constant unit weight , all stress components must 
satisfy the following equilibrium conditions: 

0x x z xz x x           (1) 

x xz z z xz x            (2) 

The original work defined a scaling distance s in Eq.(3) to 
normalize a half-width base of the heap. Therefore, s=1 refers to 
the slope face while s=0 refers to the central axis as marked in 
Fig.3. The spatial derivatives of s are obtained in Eqs.(4)-(5). 

tans x z , tanx s z , z s s z    (3), (4), (5) 

Scaling stresses with respect to a quantity like geostatic 
pressure z were also introduced in the original work, 
equivalent to the radial stress field employed by Sokolovskii 
(1965)26) in the problem of planar sand heaps. 

- 344 -



,x xx z z s , ,z zx z z s      (6), (7) 

,xz xzx z z s , ,x z z s      (8), (9) 

   Therefore, stress fields are assumed to be independently 
characterized by the depth of interest z and relative location s.
Correspondingly, scaling stress variables x, z, xz and  for 
each stress component are introduced in Eqs.(6)-(9) as a 
function of s only. Hence, the spatial derivatives of stress 
required in Eqs.(1)-(2) can be taken: 

x x x xz , z z z z zz    (10), (11) 

x xz x xzz , z xz xz z xzz    (12), (13) 

Upon substitution of the above equations into Eqs.(1)-(2), 
the following system of differential equations is formulated: 

tan 1
1tan

x x z xz x xz

zx xz z z xz

sz
zsz

   (14) 

Partial derivatives of stresses with respect to the rectangular 
coordinate x and z via the chain rule differentiation can be given, 
where primes denote derivatives with respect to s:

'x x x x s , 'z z z z s     (15), (16) 

'x xz xz x s , 'z xz xz z s     (17), (18) 

The substitution of the above equations back into Eq.(14) 
with minor manipulation yields two equilibrium conditions 
under scaling stresses. 

' tan ' tan 0x xz xz xs s        (19) 

' tan ' tan 1xz z z xzs s         (20) 

The above two equations have four unknowns therefore 
two additional equations are required. One equation is fulfilled 
by the hypothesis of hoop stress based on Levy (referred to in 
Sokolovskii (1965)26), Bouchaud et al. (1995) 6), Wittmer et 
al.(1996)8) and Nedderman (2005)27)).  

x  hence x           (21) 

Actually, the contact force depends on how each contact is 
formed which obviously varies on the shape of the grain; 
therefore it is noted that, Eq.(21) is valid for uniform materials, 
but not valid for heterogeneous materials.  

Another equation is provided by the closure of FPA given 
below where the fixed angle of major principal stress (see 
Fig.2) is =( /2+ )/2, simply obtained from Mohr’s circle. 

2
tan 2 xz

x z
 hence 2 tanx z xz       (22) 

The original work also investigated the Haar-von Karman 
hypothesis of hoop stress, but we will ignore it in this study. 

3. Analytical Methods 

Since the present analysis is primarily based on continuum 
mechanics, the analytical stresses would differ to the actual 
stresses because the effects of grain size distribution, angularity, 
the properties of individual grains and particle crushing along 
the base are not considered. These effects to the analysis could 
be partially resolved by using the appropriate bulk density, 
= (z/H) or = (s), as a function of depth or location. However, 

the present study aims to derive the analytic solution from the 
same fundamental equations used in the original studies, and 
the difficulty lies in working out the mathematics.  

A set of three dimensionless functions x(s), z(s) and xz(s),
each determined on a common interval of s, is a solution of the 
system of first-order linear equations if this set and its 
derivatives satisfy Eqs.(19)-(22) identically, and satisfy the 
boundary conditions given at a particular value of s.

3.1 Primary and Auxiliary Boundary Conditions 
At the slope face where s=1, all stresses vanish to zero; 

therefore, all scaling stresses are also zero at this boundary. We 
regard the following set of equations as the primary boundary 
conditions for the system of differential equations.  

1 0x s , 1 0z s , 1 0xz s        (23), (24), (25) 

One may notice that the above equations correctly satisfy 
Eq.(22), so one of them can be ignored. Substituting = x due 
to Levy’s hypothesis, we can rearrange Eqs.(19)-(22) in terms 
of the first derivative of each scaling stress variable.  

' ( ' ) tanx xz xzs           (26) 

' ' tan tan 1z xz z xz s s         (27) 

2 2

2 2

' ' ' 2 tan

tan 1 tan

1 2 tan

xz z x

xz zs s

s s s

        (28) 

Eq.(28) is expanded by substituting 'x obtained from 
Eq.(26) and 'z obtained from Eq.(27). Concerning Eqs.(24) 
and (25), substituting s=1, z|s=1=0 and xz|s=1=0 into Eq.(28), 
the auxiliary boundary condition 'xz|s=1 results as follows: 

1' sin cosxz s           (29) 

Substiting of Eq.(29) back into Eqs.(26)-(27) with s=1,
using Eqs.(24)-(25) gives other auxiliary boundary conditions.  

2
1' cosx s , 2

1' cos 2z s    (30), (31) 

3.2 Fundamental Form of the Differential Equations 
The scaling stress variable xz and its derivatives 'xz appear 

in Eq.(19). Let us start by solving xz from Eq.(19).: 
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' ' tanxz xz xs , '' '' tanxz x s     (32), (33) 

Substituting xz in Eq.(32) into Eq.(19) will remove xz 
from Eq.(19) with an increasing order of differentiation. Again, 

z and its derivatives 'z appear in Eq.(20). In order to remove z

from the original equation, let us solve for z from Eq.(20). 

1 ' tan ' tanz xz z xzs s         (34) 

Substituting z in Eq.(34) into Eq.(20) can remove z and 
'z but obtain ''z in a similar manner to Eq.(33). 

2' '' '' tanxz xz xz zs s s          (35) 

One might observe that the resulting euqtions, Eqs.(33)-(35), 
can be identically obtained by taking the differentiation 
according to s, of Eqs.(19)-(20) respectively. Thus, we can 
regard a further differentiation as a variable removal method 
which will be generalized later to a systematic technique. We 
shall remove the term ''xz from the system of differential 
equations in Eq.(35) by substituting Eq.(33) into Eq.(35):  

2' '' tan '' tanxz xz x zs s         (36) 

We find that substitution of 'xz in Eq.(36) back to Eq.(32) 
will remove both xz and 'xz from the equations. 

3' tan '' tan '' tan 0x x zs s         (37) 

So far, Eq.(22) has not yet been involved in the system; 
therefore, we can rearrange Eq.(22) in terms of z as follows: 

2 tanz x xz           (38) 

Substituting of z from Eq.(38) into Eq.(37) yields the 
following differential equation: 

2 3' tan tan tan '' 2 '' 0x x xzs s s      (39) 

Finally, ''xz can be removed from Eq.(39) by substituting it 
with Eq.(33), then the differential equation only in terms of x

can be rearranged into Eq.(40): 
22 2 2'' ' sin 1 sin 0x x s s s (40)

Therefore, the variable x is completely separated from the 
coupled differential equations shown in Eqs.(19)-(22) by 
suitable steps of substitution and rearrangement. The authors 
realize that a lengthy manipulation from Eqs.(32)-(40) to seek 
the substantial form of the differential equations may be tedious 
and time consuming. As a consequence, the systematic 
technique of variable separation for a linear system of coupled 
differential equations is introduced in Appendix A. With this 
technique, two second-order differential equations for z and xz,
unconstrained from other variables, can be systematically 
manipulated as explained in Appendix A. 

2

22 2 2

' sin
'' 0

1 sin
xz xz

xz
s

s s s
         (41) 

2

2
22 2

2

sin 1 1 '
'' 0

1 sin
1 sin

2 sin

z z
z

s

s s
s s s

s s

  (42) 

Now the ordinary linear differential equations shown in 
Eqs.(40)-(42) subject to the primary and auxiliary boundary 
conditions can be solved numerically using either the 
Runge-Kutta method or Newton’s method. However, more 
advanced handling of these equations can derive analytic 
solutions which will be presented in the next section. 

3.3 Particular Solutions of the Differential Equations 
We can see that Eq. (40) and Eq.(41) are homogeneous 

differential equations while Eq.(42) is a nonhomogeneous 
equation. Fortunately, Eq.(40) has only 'x and ''x; x does not 
appear in the expression. Due to its less complicated terms, we 
shall start by considering Eq.(40) with the expression 
rearranged to Eq.(43), so that 'x can be simply integrated 
through the order-reduction method.

22 2 2'
' sin 1 sinx
x

d
s s s

ds
(43)

It is obvious that Eq.(43) has singular points at s=sin /(1+ 
sin ) and s=0; therefore, the function of 'x is discontinuous in a 
domain of s and a singular solution is required in addition to a 
general solution. We can figure out that 'x equaled to a constant 
value is a trivial solution for Eq.(43). Let us disregard it at this 
moment and consider a  solution as a general solution. 
As long as 'x 0, 'x can be solved by integrating the 
following partial fractions, where cx is a constant of integration 
and |Cx|=exp(cx) is taken as an equivalent constant: 

1 sin
2

1 sin
2

1 sin
sin 2

1 sin
1 sin

sin 2
1 sin

1 1 sin
2 sin 1 sin'

1 1 sin 1'
2 sin 1 sin

sinln
1 sin

ln '
sinln ln ln

1 sin

ln

x
x

x

x

x

x

sd
ds c

ss

s

s s C

C s

s s

 (44) 

Owing to the multiplicativeness of the absolute function, 'x
can be solved from Eq.(44), provided 'x 0, s>sin /(1+sin )
and s 0.

sin 1 sin 1
sin sin'

1 sin 1 sin
x

x
C

s s
s

(45)
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The arbitrary constant Cx is determined from the auxiliary 
boundary condition 'x =-cos2  , as shown in Eq.(30). 

sin 31 sin cos cosxC           (46) 

Consequently, a particular solution of  can be obtained by 
integrating an integrand 'x with the primary boundary condition 

=0, as shown in Eq.(23).  

1 1

sin 1sin
1 sin

sin 11 sin
1 sin

'

1

s
x x xs

s
x x

dt

t
C dt

t t

        (47) 

Eq.(47) cannot be integrated to the closed form or explicit 
terms of elementary functions due to a term involving a 
hypergeometric function so we leave it as a symbolic 
expression which can be solved by means of series methods 
and numerical methods. In addition, we notice that Eq.(47) 
gives a real range of  for a domain of sin /(1+sin ) s 1 due 
to the appearance of a square root appeared in Eq.(45). This 
reflects the limited range of a nontrivial solution. For the sake of 
completeness of the solution in an applied domain of 0 s 1, a 
trivial solution in which 'x=c'x=constant is considered to satisfy 
the other domain of 0 s sin /(1+sin ).

0' 'x xs s c  where sin 1 sins         (48) 

Despite the singularity arising in the nontrivial solution in 
Eq.(45) at the point s=sin /(1+ sin ), the one-sided limit for 
s  sin /(1+ sin ) from the positive direction and the one-sided 
limit from the negative direction can be taken: 

lim ' 0x
s s

, lim ' 'x x
s s

c         (49), (50) 

The singularity is removable if the limits of both sides as 
expressed above, are identical; therefore, we shall continuously 
link the 'x of both trivial and nontrivial solutions by equating 
Eq.(49) and Eq.(50) so that c'x=0. Since ' s=sin /(1+sin )=0,
substituting c'x=0 in Eq.(48) gives Eq.(51). 

0' ' 0x xs s s s             (51) 

Integrating Eq.(51) according to s results in a constant x

throughout a domain of the trivial solution because 'x 0. We 
shall merge x of both trivial and nontrivial solutions to satisfy 
the condition of stress continuity. In other words, x in Eq.(47) 
at s=sin /(1+sin ) provides a new boundary condition for 
Eq.(51). We can then obtain the trivial solution of x as follows: 

sin 1sin
1 sin

sin 10 1 sin
1 sin

1s
x x xs s s s

t
C dt

t t
      (52) 

One might notice that the present solution of x satisfies two 
conditions of tangency applied to Eqs.(50) and (52), where a 
general (nontrivial) solution is seamlessly connected with a 

singular (trivial) solution; hence, x is smooth throughout the 
applied domain of s. As mentioned earlier, Eq.(43) also has the 
singular point under the apex of sand heaps where s=0. This 
undefined solution is now removed by replacing it with the 
trivial solution which suggests that x is constant for a domain 
of 0 s sin /(1+sin ).  

Because Eq.(41) is also a homogeneous differential 
equation, we can follow an identical procedure in solving for xz.
Rather than manipulating Eq.(41) by repeating long sequences 
similar to Eq.(44)-(52), we shall seek a solution of xz from 
Eq.(19) based on the derived expression of x for a shorter 
derivation. We will check the obtained solution with Eq.(41) 
later because both methods should give the same result. 
Multiplying Eq.(19) throughout by the integration factor 1/s2,
provided s 0, will arrange the differential equation into a 
solvable form. 

2 2

2

' tan ' 0

' tan
x xz xz

xz x

s s s

d s ds s
      (53) 

Eq.(53) can be integrated using the derived form of 'x and 
the primary boundary condition =0, as shown in Eq.(25). 
A particular solution of xz cannot be obtained in closed form 
because an integrand is associated with 'x . 

2
1

1

2
1 1

2
1

tan '

tan '

tan '

s s
xz x

s
xz xz xs

s
xz x

d t t dt

s s t dt

s t dt

          (54) 

A particular solution of xz also suffers at a singular point 
because a term involves 'x as obtained in Eq.(45). This 
identically leads Eq.(54) to a nontrivial solution in a domain of 
sin /(1+sin ) s 1.  

sin 1sin
1 sin

3 sin 11 sin
1 sin

1tan
s

xz x

t
C s dt

t t
        (55) 

We can find a trivial solution of xz in a domain of 
0 s sin /(1+sin ) by considering Eq.(19) again with 'x 0
according to Eq.(51). We can determine xz as follows and find 
that xz is linearly dependent with s where cxz is a constant of 
integration and |Cxz|=exp(cxz) is taken as an equivalent constant. 

' 0

1 1

ln ln ln

xz xz

xz xz

xz xz xz

xz xz

xz xz

s
d ds s

d s ds c

s C
C s

         (56) 

Consequently, the following conditions are required to 
merge nontrivial and trivial solutions at s=sin /(1+ sin ), so that 
the profile of xz along s is smooth. 
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0 1lim limxz xzs s s ss s s s
         (57) 

0 1lim ' lim 'xz xzs s s ss s s s
         (58) 

Using Eqs.(54) and (56), Cxz can be solved from Eq.(57): 

2
1

sin 1sin
1 sin

3 sin 11 sin
1 sin

tan '

1tan

s
xz x

s
x

C t dt

t
C dt

t t

        (59) 

Therefore, Eq.(56) can be expressed by the following equation. 
2

0 1
tan '

s
xz x xzs s s ss t dt s s      (60) 

Let us find 'xz in a nontrivial range by differentiating Eq.(54): 
2

1
' tan ' '

s
xz x xs t dt                   (61) 

From the above equation, ' s=sin /(1+sin )=Cxz because 
' s=sin /(1+sin )=0 due to Eq.(51). Comparison with 'xz in a 

trivial range obtained by differentiating Eq.(56) satisfies 
Eq.(58); hence, two conditions of tangency are satisfied, 
confirming xz is smooth throughout the applied domain of s.

Let us check the nontrivial solution of xz with Eq.(41). The 
further differentiation of Eq.(61) can obtain ''x z, using Eq.(40). 

2

22 2 2

'' tan sin'' tan '
1 sin

x
xz xs s s s

      (62) 

By substituting Eq.(62), Eq.(61) and Eq.(54) for ''xz, 'xz 
and xz, respectively, we find that Eq.(41) is reduced to zero, 
satisfying the system of equation. Similarly, Eq.(41), with the 
substitution of the trivial solution of xz based on Eq.(56), also 
satisfies the system of equations. Finally, the particular solution 
of z can be simply rearranged from Eq.(22), using Eq.(47) and 
Eq.(54) for the nontrivial and trivial solutions using Eq.(52) 
and Eq.(56). Both solutions of z certainly satisfy two 
conditions of tangency, so z is smooth throughout the applied 
domain of s. Also, we can check that both non-trivial and trivial 
solutions of z automatically satisfy Eq.(42).  

Thus far, the solutions of the differential equations rooted in 
the system of equation are analytically derived in symbolic 
terms of the definite integral. For convenience, the order of 
integral range will be changed because the upper limit s is less 
than the lower limit. Defining f(t) in an interval s t 1, we can 
reorder the ranges of limit in the following ways: 
1

1

( ) ( )
s

s

f t dt f t dt  hence 
1

( ) ( )
s

d f t dt f s
ds

     (63) 

1 1

0 1( ) ( ) ( )
s

s s s s
s s s

f t dt f t dt f t dt         (64) 

Furthermore, we will encapsulate terms of symbolic 
integration to particular functions in the next section. 

4. Numerical Results 

Consistent with Eqs.(45)-(46), we can write ' =-I(s)s2cos2

by introducing a particular function I(s) with the expression: 
sin sin 11 sin sin

cos 1 sin
3 sin 1sin

1 sin

sin 1

3 sin 1

cos

1 sin1

1 sin

s
I s

s s

s s
s s s

        (65) 

It is clear that ' s=1=-cos2  satisfies the auxiliary boundary 
condition since I(1)=1. Next, we can define functions A(s) and 
J(s) as the area integral and second moment of area of the 
function I(s) by the following equations: 

1

s
A s I t dt ,

1
2

s

J s t I t dt    (66), (67) 

Both functions A(s) and J(s) are defined in symbolic 
expressions due to the difficulty of finding the closed-form 
integration for the given integrands. Nonetheless, we can 
simply approximate the definite integrals by numerical 
integration using quadrature rules. For illustration purposes, 
using =30o, the curve of I(s) is shown in Fig.4 where the real 
range of I(s) can be plotted for s sin /(1+sin ). The area 
integral A(s) and the second moment of area J(s) under the 
curve I(s) delimited by s=1 are shown in Fig.5 and Fig.6, 
respectively, in the applied domain of s between sin /(1+sin )
and 1. The dependence of J(s) on I(s) and A(s) is further 
considered in Appendix B. Typically, I(s), A(s) and J(s) are 
positive in a domain of sin /(1+sin ) s 1, but these functions 
are undefined in a domain of 0  s<sin /(1+sin ).  

According to Eq.(66), we can combine Eq.(54) and Eq.(60) 
into a conditional function in the applied domain of 
s=xtan /z. It is clear that s=1=0 satisfies the primary boundary 
condition since A(1)=0. And in addition, s=0=0 satisfies the 
condition of zero shear stress along the center line. 

sin cos   if  0
sin cos   if  1

xz
xz

sA s s s
sA s s sz

        (68) 

In the same manner, we can combine Eq.(47) and Eq.(52) 
according to Eq.(67), into a conditional function  in the 
applied domain of s. It is clear that s=1=0 satisfies the primary 
boundary condition since J(1)=0.  

2

2

cos   if  0

cos   if  1
x

x
J s s s

z J s s s
        (69) 

Finally, we can formulate a conditional function 
according to Eq.(22), using Eqs.(68)-(69): 

2 2

2 2

cos 2 sin   if 0

cos 2 sin   if 1
z

z
J s sA s s s

z J s sA s s s
(70)
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It is noted that a friction angle  is assumed to be uniform 
in this study, however,  depends on the position and 
orientation of particles which is related to construction history. 
Minimal contact between particles results in less friction; hence, 
sands along the slope boundary have a smaller friction angle 
comparison to the other parts. The appropriate = (s), which is 
considered as a function of position (Michalowski, 2004)28), can 
be selected to enhance the present analytical method for 
investigating a variety of construction sequences of a sand heap. 
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5. Verification and Validation 

Analytic solutions for scaling stress variables ,  and 
derived in Eqs.(68)-(70) basically satisfy the equilibrium 
conditions, as proven in Appendix B. Moreover, the analytic 
solutions are verified with numerical results using Newton’s 
method and validated with published experimental data. 

5.1 Verification by Newton’s method 
Following the numerical approach suggested in 

Pipatpongsa et al. (2008)29), the solutions for scaling stress 
variables are determined by the mid-point scheme. The scaling 
distance s, ranging from 0 to 1, is discretized into 20 equal 
intervals. Appropriate initial guessed values are trialed until the 
solutions are converged. The numerical solutions for ,  and 

are compared with those obtained from analytic solutions. 
As shown in Fig.7, stress distributions in a half-width section of 
a conical heap with =33o have been correctly verified. 

5.2 Validation with published experimental data 
Smid & Novosad (1981)2) measured the vertical and shear 

stresses underneath the base of conical heaps during the pouring 
of quartz sand and granulated NPK-1 fertilizer from a bunker at 
a constant rate onto the 2 2 m2 rigid steel plates. The platform 
was equipped with 13 pressure cells which can simultaneously 
and independently measure the normal and shear components 
of the acting stresses. Their experiments showed that under the 
apex of the heap, the vertical pressure attains a significant 
depression and the shear stress at the center is almost zero due 
to the balance of the frictional forces. The final heights and the 
averaged radii were measured after the formation. The final 
shape of the heaps gave the angles of repose: 32.6 o for sand and 
the fertilizer was 33.7o for. The average bulk weight of the sand 
was 1567 kg/m3 and that of fertilizer was 1054 kg/m3.
Measurements were recorded for six stages of deposition, when 
the apex reached a certain heights of H, at 0.2, 0.3, 0.4, 0.5, 0.55 
and 0.6 meters. 
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theory based on the closure of FPA with Levy’s assumption 

Wittmer et al. (1996)8) presented these data featuring 
normalized stresses z/ H and xz/ H versus normalized 
half-width distance xtan /H, as shown in Fig. 8. One can 
observe that the shapes of normalized stress distributions do not 
tend to change with the height of the heap, for both sand and 
fertilizer, even though the heights of the heap reached 
differences of up to to three times; therefore, the results of their 
investigation appear to justify the scaling stress hypothesis 
employed in the analysis. There are no experimental results on 
horizontal stress; therefore, normalized stresses z/ H and 

xz/ H obtained from the measurement are compared with z 

and zx obtained from the analytic solutions under the closure of 
FPA with Levy’s assumption, using =33o as approximation 
for sand and fertilizer. Despite the original work reporting an 
acceptable result with experimental data, we found significant 
differences near the apex of the heap. Under Levy’s hypothesis, 
the numerical results reported by Wittmer et al.8) are 
superimposed to our analytic solutions. We observed that our 
solutions and Wittmer et al.’s solutions are obviously different 
near the apex but almost the same near the toe of the heaps. 
Even though our analytic solutions passed verification by both 
algebraic and numerical methods, this surprising difference 
leads us to verify our solutions again by the weight-balanced 
condition. The volume, weight and radius of the conical heaps, 
as well as the vertical reaction, were obtained as follow.  

2 3V R H , W V , cotR H     (71), (72), (73) 

2 1
3 2

0 0

2 cot
R

z z z

d x
F dx H s sds

dx
    (74) 

where cotx sH  according to Eq.(3) using z=H

   The error determined by weight balance (Fz-W)/W is used to 
verify the results. We found there is no error in our solution but 
the numerical results reported in Wittmer et al.8, 10) contain an 
error of about 5.1%. Thus, the original work’s result is not 
accurate as it gives the force to be larger than the weight; Fz>W.

6. Discussion of Error in the Original Work 

The error found in the original work clearly points out that 
its numerical solutions do not strictly satisfy the equilibrium 
conditions. Though the original work contains a slight error of 
about 5.1%, this error obviously appeared near the center line 
because the area of the inner ring about the center is 
comparatively smaller than that of the outer ring. We found that 
the predicted pressure distribution of the original work is 
somewhat overestimated. Moreover, the vertical pressure 
profile bowed towards the center should not be a curve but a 
straight line due to the trivial solution described in Eq.(70).  

The authors found that the error came from the equilibrium 
equations, in terms of scaling variables, because Wittmer et al. 
(1997)10) wrongly derived these equations through Eq.(75) 
instead of the correctly derived Eqs.(19)-(20). 

' tan ' 0
' tan ' 1

x xz xz x

xz z z xz

s
s

        (75) 

We believe that such an error is due neither to a kind of typo 
nor to numerical inaccuracy because the original work really 
employed Eq.(75) in their analyses (Wittmer et al.8, 10)). We 
solved the stress distributions with the Newton’s method by 
employing Eq.(75) and can reproduce the same results reported 
in the original work as shown in Fig. 8. This outcome reflects 
the inferiority of numerical solutions to analytic solutions in the 
absence of verification. The analytic solutions limited to planar 
heaps were confirmed by different groups of researchers using 
different approaches (i.e. Cantelaube & Goddard (1997)13) and 
Didwania et al. (2000)20)) because the geometry of a wedge is 
simpler than that of a cone; therefore, this study does not 
disprove the closure of FPA but points out the erroneous 
equations for a conical shape. Despite wrong solutions in the 
original work, the closure of FPA is still influential in describing 
the phenomenon of pressure dips. Many systematic 
experiments were encouraged (e.g. Brockbank et al. (1997)12),
Vanel et al. (1999)19)) to examine the phenomenon. Current 
researches into the simulation of sand heaps still address the 
closure of FPA (e.g. Tejchman & Wu (2008)30)).

7. Conclusion

New analytic stress distributions in conical sand heaps under 
the closure of FPA with Levy’s hypothesis on hoop stress were 
derived by introducing the particular symbolic functions. The 
study covered the technique to separate variables from a 
differential equation system. The obtained solutions were 
algebraically and numerically proved. In addition, an error in 
the original work was identified. The inconsistency with 
experimental data leads to the conclusion that the memory of 
sand heaps is no longer perfect upon having principal axes fixed. 
One might turn the FPA closure into an ideal hypothesis.
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Appendices

Appendix A: Separation of variables in a linear system of 
differential equations

The usual method (e.g. the standard textbook31)) for solving 
a linear system of differential equations is to eliminate variables 
until we obtain the single linear equation, similar to the way we 
reduce variables in linear algebra. Let us define a differential 
operator Dn=dn/dsn where n denotes the order of differentiation. 
Hence, Eqs.(19)-(22) can be rewritten into the following 
system of equations which are equaled to zero. 

1 tan 1x xzE s D sD          (76) 

2 1 tan 1 1z xzE s sD D s         (77) 

3 2 tanx z xzE s          (78) 

The coefficients of x , z and xz are polynomial operators 
in the above system of three linear differential equations. We 
can see that these coefficients are not constant due to the 
appearance of s; therefore, the method of reducing the equation 
using an equivalent triangular system would be unfavorable 
because mathematical skill with trial and error is required. We 
will show that a linear system of differential equations with 
variable coefficient can be reduced with less effort by means of 
the variable separation technique.  

This systematic process begins by determining the 
determinant of the system. We can find from Eq.(79) that the 
determinant is of the second order in this problem. Hence, the 
general solution of the system can be achieved and must contain 
only two arbitrary constants.  

2 2 2

2

tan 0 1
0 1 tan 1
1 1 2 tan

1 2 tan
0

2 1 tan 2 1

D sD
sD D s

s s D

s s D

        (79) 

Therefore, the order of the differential equations E1, E2 and 
E3 is raised to the second order by further differentiation. Let us 
add these higher-order equations, which are also equaled to zero, 
to the system of differential equations. 

2 2
4 1 tan x xzE s dE ds D sD         (80) 

5 2

2 2 1 2tanz xz

E s dE ds

sD D s D s
       (81) 

6 3 2 tanx z xzE s dE ds D D D         (82) 

2 2 3 3 2
7 1 tan x xzE s d E ds D sD D    (83) 

2 2
8 2

3 2

3 1 2 2 3tan 2 2

z

xz

E s d E ds

sD D

D s D s D s

    (84) 

2 2 2 2 2
9 3 2 tanx z xzE s d E ds D D D   (85) 

Eqs.(83) and (84) can be ignored because the highest 
order of differential equations is three, which is greater than the 
required order. However, we will leave these equations to show 
that they do not need to be considered. Now, a linear 
combination  (s) is defined as a summation of Ei(s), each 
multiplied by an arbitrary coefficient ai where i=1 to 9. Since all 
of Ei=0, (s) is also zero. Let us rearrange  (s) in terms of 
polynomial operators. 

9

1

2

i i
i

x z xz

s a E s

a A B C
        (86) 

The polynomial operators A, B and C contain differential 
terms involving x , z  and xz as described respectively below. 

3 2
7 4 9

1 6 3

tan tan
( )

tanx x

a D a a D
A

a a D a
     (87) 

3 2
8 5 8 9

2 6 2 3

( )z z

a s D a s a a D
B

a s a D a a
      (88) 

3
7 8

4 5 7 2
1

8 9

1
1 2 5

2
6 8

1
1 2 3

2 3
5 8

tan

tan

tan 2 tan

( ) tan tan

2 tan 2 tan

tan 2 tan

tan 2 tan

xz xz

a s a D

a s a a
D

a s a

C a s a a s
D

a a s

a a s a

a s a s

   (89) 

The coefficients ai are superfluous constants of combination 
which will be imposed corresponding to the preferred 
separation of variables. A certain combination in  (s) can be 
freed of x and z  if the polynomial operators A and B are zero. 
We can satisfy this requirement by imposing the coefficients of 
each differential operator to zero respectively as given below. 

7

4 9

1 6

3

tan 0
tan 0
tan 0

0

a
a a
a a

a

,

8

5 8 9

2 6

2 3

0
0
0
0

a s
a s a a

a s a
a a

(90), (91) 

Simultaneously solving the algebraic systems of the eight 
equations shown in Eqs.(90)-(91) with the nine unknowns for 
a1 to a9, we can calculate the required constants in proportion to 
a4, provided that a4 0.
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1 2 3 6 7 8

5 4

9 4

0
tan

tan

a a a a a a
a a s
a a

         (92) 

Substituting the coefficients obtained from Eq.(92) into 
Eq.(86), we obtain a certain combination of  (s) relating to xz.

2 2 2

4
3 2 2

1 2 tan ''

tan ' tan

xz

xz xz

s s sas
s s

        (93) 

Because (s)=0 and a4 0, an arbitrary a4 can be removed 
from Eq.(93) and rearranged to the standard form of a 
homogeneous second-order ordinary differential equation 
(ODE), which is undefined at s=0 and s=sin /(1+sin ).

2

22 2

sin'' ' 0
1 sin

xz
xz xz ss s s

        (94) 

Likewise, a certain combination in  (s) can be freed of x

and xz if the polynomial operators A and C are zero. We can 
satisfy this requirement by imposing the coefficients of each 
differential operator to zero as given below for C( xz)=0 (the 
required condition for A( x)=0 is already given in Eq.(90)). 

7 8

4 5 7

8 9

1 2 5
2

6 8

1 2 3
2 3

5 8

tan
tan

0tan 2 tan
0tan tan
0

2 tan 2 tan
0

tan 2 tan

tan 2 tan

a s a
a s a a
a s a

a s a a s

a a s

a a s a

a s a s

        (95) 

Simultaneously solving the algebraic systems of the eight 
equations in Eqs.(90) and (95) with the nine unknowns for a1

to a9, we can get the required constants in proportion to a4 0.

3 7 8

2 2
1 4

2 2
2 4

2
5 4

2 2
6 4

9 4

0

2 tan tan

tan 2 tan tan

2 tan tan

tan 2 tan tan

tan

a a a

a a s s s

a a s s s

a a s

a a s s s

a a

        (96) 

Substituting the coefficients obtained from Eq.(96) into 
Eq.(86), we obtain a certain combination of  (s) relating to z.

2 2

4 2 2

2

1 2 tan ''

tan 2 tan 1 'tan
1tan

z

z

z

s s
as s s

s s

  (97) 

Because (s)=0 and a4 0, an arbitrary a4 can be removed 
from Eq.(93) and rearranged to the standard form of a 

nonhomogeneous second-order ODE, which is undefined at 
s=0 and s=sin /(1+sin ) in the applied domain of s.

2 2

22 2 2

2 2

22 2 2

2 2

22 2 2

sin 2 sin 1 '
''

1 sin 1 sin

sin 2 sin
0

1 sin 1 sin

sin 2 sin

1 sin 1 sin

z
z

z

s s s

s s s s s

s s

s s s s s

s s

s s s s s

 (98) 

A certain combination in  (s) can be freed as well of xz

and z if the polynomial operators B and C are zero. We can 
satisfy this requirement by imposing B=0 and C=0 (the required 
conditions for B and C are already given in Eq.(91) and 
Eq.(95), respectively). Simultaneously solving algebraic 
systems of the eight equations in Eqs.(91) and (95) with the 
nine unknowns a1 to a9, we can calculate the required constants 
in proportion to a5 0.

2 3 6 7 8
2

1 5

4 5

9 5

0

tan
1 2 tan

a a a a a

a a s
a a s s
a a s

                (99) 

Substituting the coefficients obtained from Eq.(99) into 
Eq.(86), we obtain a certain combination of  (s) relating to x.

2 2

5
2 2

1 2 tan ''

tan '

x

x

s s sa
s

s
          (100) 

Because (s)=0 and a5 0, a5 is removed from Eq.(100). 
Using tan2 =sin2 /(1-sin2 )), the standard form of a 
second-order homogeneous ODE similar to Eq.(40), which is 
undefined at s=0 and s=sin /(1+sin ) in the applied domain of s
can be rearranged; therefore, the manipulation addressed in 
Eqs.(97)-(100) are equivalent to Eqs.(32)-(39). 

According to Eqs.(92), (96) and (99), it is clear that a7=0
and a8=0 under all conditions because the required order is two, 
as indicated by Eq.(79). So Eqs.(83) and (84) are not involved 
in the system and can be ignored as mentioned earlier. Because 
the separated form of x has the simplest term, we should start 
with Eq.(40), which requires at least two boundary conditions. 
According to Eqs.(26)-(28), we can see that only two primary 
conditions, z|s=1=0 and xz|s=1=0, are necessary to determine 
three auxiliary boundary conditions. Even if we do not know 
the primary condition x|s=1=0, it can be determined from the 
stress relation shown in Eq.(22) using the other two primary 
conditions. Instead of using Eqs.(98) and (94) once a 
particular solution of x is determined, those of z and xz can be 
subsequently solved using Eqs.(19) and (20). So, the method 
described here can help point out the simplest form to start with. 
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Appendix B: Verification with the equilibrium conditions 

The equilibrium conditions are the basic requirement that 
internal stresses in the body must satisfy whether the body 
behaves elastically or plastically. Because stresses in 
equilibrium are expressed in partial differentiation with respect 
to a coordinate system, let us consider the derivatives of the 
particular functions I(s), A(s) and J(s) with respect to scaling 
distance s according to Eqs.(65)-(67) as follows: 

2 2 2

22 2

2 4 3 sin 2
'

1 sin

s s s
I s I s

s s s
       (101) 

'A s I s , 2'J s s I s           (102), (103) 

Since the three scaling stress variables are expressed as 
conditional functions based on Eqs.(68)-(70), their derivatives 
with respect to s are also expressed in conditional functions. 

sin cos                  if  0
'

sin cos  if  1xz
A s s s

A s sI s s s
    (104) 

2 2

0                        if  0
'

cos   if  1x

s s

s I s s s
        (105) 

2

2 2

2

2 sin                          if  0

cos'
  if  1

2sin
z

A s s s

s I s
s s

A s sI s

   (106) 

Axi-symmetric condition with a hoop stress = x  based
on Levy’s hypothesis are employed in this verification. Partial 
differentiation of stress components appearing in the 
equilibrium conditions under cylindrical coordinate system is 
obtained by chain rule via Eqs.(3)-(13) and Eqs.(104)-(106).  

2

' tan
0                               if  0

sin cos    if  1

x x x

s s

s I s s s
       (107) 

2

'

0                             if  0

sin cos    if  1

z xz xz xzs

s s

s I s s s
       (108) 

2

3 2

2 2

'

cos                        if  0

cos
  if  1

2 sin

z z z zs

J s s s

J s s I s
s s

s I s

  (109) 

2

2

' tan

sin                   if  0

sin   if  1

x xz xz

A s s s

A s sI s s s
     (110) 

2

2

sin    if  0

sin    if  1xz
A s s s

x
A s s s

       (111) 

Two different solutions in accordance with a domain of s
are verified with each equilibrium condition. We find that along 
the x-direction, Eqs.(107)-(108) satisfies Eq.(1) for the whole 
domain of s. Along the z direction, Eq.(2) is replaced with 
Eqs.(109)-(110) for nontrivial solutions as follows.  

2 2

22 2

2 sin cos

1 sin

A s J s

s s s I s
(112)

The term s(s2-(1-s)2sin2 )I(s) appears in the above equation. 
Because I(1)=1, this term of expression can be extended and 
rearranged by the following expressions according to the 
method of integration by parts for a domain of 
sin /(1+sin ) s 1.
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1
22 2

1
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22 21

1
2 2 2

1
2 2 2

1
2 2 2

1 sin

1 1 sin

1 sin '

1
1 sin

2 4 3 sin 2

1

3 4 1 sin 3

1 2sin cos

1 2

s

s

s

s

s

s

s s s I s

s s s I s

s s s I s ds

d s s s
I s ds

ds

s s s I s ds

s s s I s ds

s I s ds

2 2sin cosA s J s

    (113) 

The result of Eq.(113) indicates that we can alternatively 
determine J(s) from A(s) and I(s), instead of computing the 
integration as defined in Eq.(67). 

2

22 2

2

1 2 sin

1 sin

cos

A s

s s s I s
J s (114)

By replacing the term of Eq.(113) on the left-hand side of 
Eq.(112), the equilibrium condition along the z-direction is 
satisfied for a domain of sin /(1+sin ) s 1. We have another 
equations for a domain of 0 s  sin /(1+sin ) by a similar way. 

2 22 sin cosA s J s         (115) 

2 21 2 sin cosJ s A s         (116) 
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