An Experimental and Analytical Study on Buckling Properties of RC Columns Subjected to Cyclic Flexural Deformation

> 鈴木森晶*・水野英二** Moriaki SUZUKI and Eiji MIZUNO

* 正会員 博士(工学) 愛知工業大学准教授 工学部都市環境学科(〒470-0392 豊田市八草町八千草1247) ** 正会員 Ph.D. 中部大学教授 工学部都市建設工学科(〒487-8501 春日井市松本町1200)

The present paper deals with the experimental and analytical study on the buckling properties of rebar inside the reinforced concrete (RC) columns subjected to cyclic flexural deformation. The experimental results from the cyclic loading test on RC column specimens with the different lateral hoop ratios have been examined with respect to the buckling behavior of rebar in the progressive failure zone (i.e., plastic hinge zone). Also, the buckling behavior of rebar has been numerically investigated from the finite deformation analyses of rebar under cyclic axial compression. The buckling properties have been incorporated into the finite element program FEAP, and then the numerical results have been compared with the experimental data to check the validity of buckling model of rebar. It turns out that the finite element analyses on the post-peak behavior of RC columns can be effectively performed by taking account of the buckling model of rebar at a structural level.

Key Words: RC column, rebar, lateral hoop, buckling properties, stress-strain, cyclic loading test, FEM analysis キーワード:鉄筋コンクリート柱, 主鉄筋, 横拘束筋, 座屈特性, 応カーひずみ, 繰り返し載荷実 験, 有限要素解析

1. はじめに

横拘束筋間隔と配筋量が鉄筋コンクリート (RC) 構造 物の変形性能に大きな影響を与える. さらに, 主鉄筋 (ま たは軸方向鉄筋)のはらみ出し(以下,座屈とも称する) が RC 構造物のポストピーク域での変形性能などの挙動 に大きな影響を与えることが分かっている^{1)~4)}.しかし、 主鉄筋の座屈現象は、横拘束筋間隔、コンクリート強度、 さらには載荷パターンなどの条件で異なるため、そのメ カニズムは明確になっていないのが現状である. それゆ え,筆者らは,「軸圧縮力」および「横拘束筋間隔」⁵⁾, 「横拘束筋間隔」および「載荷パターン」の, さらには「コ ンクリート強度」⁷⁾を要因として,一方向曲げおよび繰り 返し曲げを受ける RC 柱供試体の載荷実験をそれぞれ実 施してきた. しかしながら, 主鉄筋の座屈挙動に関する 詳細な観察は、かぶりコンクリートが剥落した後に限ら れ、はらみ出し前後の主鉄筋の挙動を十分に観察するこ とが困難であった.

本研究では、繰り返し載荷下での RC 柱基部における 主鉄筋の座屈発生直後の性状も含めた詳細な観察・検討 を行うため、かぶりコンクリートの有る RC 柱供試体と 無いRC 柱供試体 (200×200×1000 mm:4 体ずつ計8 体) を作製し、一定の軸圧縮力下での一方向繰り返し曲げ載 荷実験を実施した.ここでは、特に、載荷方向反転後の 主鉄筋の座屈挙動に着目し、「横拘束筋間隔」および「か ぶりコンクリート」の要因が、座屈発生・進展などの挙 動に与える影響を実験データにより詳細に検討した.ま た、荷重一変位履歴曲線上の座屈発生点の特徴などを考 察することにより、繰り返し力を受ける RC 柱の鉄筋座 屈の発生メカニズムを考察・検討した.

これらの考察結果を基に、「横拘束筋間隔」および「繰り返し変形による主鉄筋の初期不整(はらみ出しの程度)」を要因とした、軸圧縮力を受ける鉄筋のFEM解析を実施し、鉄筋の圧縮耐力低減率と実験挙動との関連について考察を行った.さらに、座屈挙動の解析結果を有限要素解析プログラムの構成モデル(鋼材の修正二曲面モデルなど)に採り入れて、繰り返し曲げ力を受けるRC柱のポストピーク領域における繰り返し挙動解析を実施した.これら解析結果と実験結果とを比較することにより、かぶりコンクリートが剥離し、主鉄筋が座屈した後の圧縮耐力低減特性のモデル化に関して、その妥当性を検証した.

2. 実験概要

2.1 供試体および材料特性

実験には、文献 7) と同様、断面寸法 200×200 mm, 柱有効高さ 1000 mm, せん断スパン比 5 を有する曲げ破 壊先行型の RC 柱供試体を用いた. 主鉄筋には D10

(SD295A)を8本、横拘束筋にはD6(SD295A)を、間隔s=65,90,105,120mmでそれぞれ配筋した.s=90mmを有する供試体の配筋を図-1に示す.打設コンクリートには、設計基準強度 f'ak=40 MPaの普通強度コンクリートを用いた.本研究では、特に RC 柱基部の主鉄筋の座屈性状に着目し、主鉄筋の座屈挙動を観察するため、文献7)で筆者らが行った実験と同様の供試体4体、基部から400mm区間をかぶりコンクリート無しとした供試体4体を加えた、計8体を作製した.作製した供試体および材料定数の一覧を表-1に示す.なお、かぶり無しコンクリート供試体を作製する際にはコンクリートを打設する前に型枠内に発泡スチロールを設置し、かぶり無し区間の鉄筋がすべて露出するようにした.

2.2 載荷装置ならびに載荷パターン

本研究では、文献7)と同様な載荷装置を用い、一定軸 力(軸力比5%:かぶり有り:87.9kN、かぶり無し:75.5 kN)下での一方向繰り返し載荷実験を実施した(写真-1 参照).本実験では、文献7)で用いた載荷パターン1,2

	コンクリート	主鉄筋(D10)		横拘束筋((D6)				
傾拘束肋 間隔 s (mm)	設計基準 圧縮強度 40 MPa	降伏強度 (MPa)	引張強度 (MPa)	降伏強度 (MPa)	引張強度 (MPa)			
65 90 105 120	かぶり有 39.7 かぶり無 33.4	328	452	326	423			

とは異なった、2 種類の載荷パターンを設定した(**図**-2 参照). かぶり有り供試体の場合には、載荷パターン3:0 $\rightarrow 8 \rightarrow -8 \rightarrow 8 \rightarrow -16 \rightarrow 16 \rightarrow -16$ (× δ_y)を、 かぶり無し供試体の場合には、載荷パターン4:0 $\rightarrow 8 \rightarrow -8 \rightarrow 16 \rightarrow -16 \rightarrow 16$ (× δ_y)を採用した. ここで、 δ_y は部材降伏時の柱頭での水平変位である. 部材降伏時 の変位 δ_v および降伏荷重 P_v を**表**-2 に示す.

写真-1 実験載荷装置概要

表—2	隆伏変位お	よ7、隆伏荷重
1 4	PHINX 1200	$\sigma \cup + \sigma \cup \pm$

楼均古校	かぶり有り		かぶり無し		
ĺ	(明)7月) (明)区。	降伏変位	降伏荷重	降伏変位	降伏荷重
间阴骨 S (mm)	δ_y	Py	δ _y	Py	
	(11111)	(mm)	(kN)	(mm)	(kN)
	65	8.31	20.5	7.88	13.5
	90	8.65	20.2	7.49	14.2
	105	8.24	20.4	7.60	14.5
	120	8.05	22.0	7.34	12.9

3. 実験結果および考察

3.1 荷重一変位関係

すべての水平荷重-水平変位関係を図-3 および図-4 に示す. 図中, 圧縮側面の主鉄筋座屈開始時点を■と□ で示し, 引張側面の主鉄筋座屈開始時点を●と◇で示す. 黒塗り記号は第1ループ, 白抜き記号は第2ループでの 座屈開始時点を示す.

かぶりの有無による座屈発生メカニズムの詳細な説明 は後述するが、かぶりの有無で異なる履歴が見られた. つまり、かぶりが有る場合は、 $0 \rightarrow 8 \delta_y \rightarrow -8 \delta_y \rightarrow 8 \delta_y の$ 載荷で \blacksquare の位置にて圧縮側面に最初の座屈が観察され、 続いて、 $8 \delta_y \rightarrow -8 \delta_y の載荷で◆に示す位置で引張側面に$ $座屈が観察された. 一方、かぶりが無い場合は、<math>0 \rightarrow 8 \delta_y$ $\rightarrow -8 \delta_y の載荷で◆に示す位置で引張側面に最初の座屈$ $が観察され、続いて、<math>-8 \delta_y \rightarrow 16 \delta_y の載荷で \blacksquareに示す位$ 置で圧縮側面に座屈が観察された. また、横拘束筋間隔s= 120 mm のかぶり有り供試体の場合には、一部のかぶりコンクリートが早く剥離したため、1 本の主鉄筋の座屈(図-3(d)の▲記号)が早い段階で生じた.

1サイクル目の載荷にて座屈が発生した後の挙動を「か ぶりの有・無」の供試体で比較すると、かぶり有りの場 合は、かぶりコンクリートが十分に剥離していないため に、鉄筋の座屈挙動がある程度制限される.それゆえ、 目立ったピンチング現象が見られない.座屈発生後、内 部コンクリートと引張を受ける側の鉄筋の強度が発揮さ れるため耐力が上昇し、最大耐力に至る挙動を呈する. 一方、かぶり無しの場合は、かぶりコンクリートがない ために座屈が広範囲にまで進展し、耐力が急激に低下する.しかし、内部コンクリートおよび引張を受ける側の 鉄筋が抵抗するため、再び耐力が向上し、最大耐力に達 した後に耐力低下を呈する.

また、2 サイクル目の載荷における座屈発生個所におい ても、履歴曲線の湾曲に違いが見られる.かぶり有りの 場合(図-3 参照)、例えば、−16 δ_y→16 δ_yの載荷では、 過去の最大耐力点 A を目指すことなく耐力が低下してい る.一方、かぶり無しの場合(図-4 参照)、横拘束筋間 隔が短い場合には、同じ載荷である 16 δ_y→−16 δ_y で、 過去の最大耐力点である点 B を目指すような挙動を示し ている.どちらも主鉄筋が座屈を生じた後の履歴である が、これは内部コンクリートの強度劣化の違いによるも のと考えられる.すなわち、かぶりが有る場合の二回目 の座屈発生点(シンボル□)までの吸収エネルギー量の 方が、かぶりが無い場合の二回目の座屈発生点(シンボ ル◇)までの吸収エネルギー量よりも大きいため、その 分だけコアコンクリートの強度劣化がより顕著になる.

3.2 吸収エネルギー量について

吸収エネルギーー累積変位関係を図-5に示す.ここで、 吸収エネルギーとは、柱頂部に作用する荷重により柱に 入力される外力エネルギーの総和であり、一方、累積変 位量とは、柱頂部の変位量の軌跡である.なお、図中、 累積変位量は柱頂部の降伏変位δyで無次元化してあり、 吸収エネルギー量は実数値である.図-5から分かるよう に、いずれの供試体もかぶり有り供試体の方がかぶりコ ンクリートが剥落するのに必要なエネルギー分だけ概ね

高い値となっている.また、横拘束筋間隔 s が大きくな るに従い、吸収エネルギーは小さくなる.破壊状況を比 較すると、かぶり有り供試体の場合は基部コンクリート の破壊領域が広く、コアコンクリートの損傷が顕著であ った.一方、かぶり無し供試体の場合は、破壊領域が基 部コンクリートの一部に限定され、コアコンクリートの 損傷も少なかった.

3.3 主鉄筋の座屈性状

ここでは、実験にて観察された主鉄筋の座屈状況、特 に、座屈長さL(定義を図ー6に示す)について考察する. 横拘束筋間隔 s = 65~120 mm を有する供試体の載荷方向 東面と西面を**写真-2~写真-5**に示す.ここでは、載荷 履歴-16 $\delta_y \rightarrow 16 \delta_y$ における、かぶり有り供試体西面の 主鉄筋 No.3, 4, 5 (定義を図-7 に示す)の座屈発生後 の状況を**写真-2~5**の(a)に示す.また、載荷履歴 16 $\delta_y \rightarrow$ -16δ_yにおける,かぶり無し供試体東面の主鉄筋 No.1, 7,8の座屈発生後の状況を**写真-2~5**の(b)に示す.

写真から分かるように、かぶりの有無で座屈形状が異 なり、座屈長Lに違いがあった.かぶり有り供試体の場 合には、柱基部固定端とその直上の横拘束筋との間で主 鉄筋が座屈する形状(各写真(a)を参照)が観察されたが、 かぶり無しの供試体では、横拘束筋を越えて座屈範囲が 広がっている(各写真(b)参照).これは、かぶりコンク リートが無いため横拘束筋だけでは主鉄筋が十分に拘束 されず、座屈範囲が広がったと考えられる.かぶり無し の場合は、座屈形状がS字型の形状を呈した場合もあっ た.この座屈形状はかぶり無しの場合にのみ生じ、横拘 束筋間隔は異なるものの、s = 65 mm および90 mm にも 同様な座屈が観察された.さらに、かぶり有りとかぶり 無しの場合では座屈長に違いが観察された.すなわち、 かぶり有りの場合は、座屈長が横拘束筋間隔とほぼ同じ

図-6 座屈長の定義

図-7 主鉄筋断面

長さ(L=110 mm 程度)となっているが、かぶり無しの 場合は、座屈長が横拘束筋間隔の約2倍程度(L=230 mm 程度)となった.なお、横拘束筋間隔s = 65 mmおよび 90 mmの場合にも座屈長は多少のばらつきはあるが、同 様な傾向が見られた.これらの座屈形状および座屈長の 違いは、かぶりコンクリートの拘束作用に起因する.

3.4 鉄筋の座屈メカニズム

ここでは、横拘束筋間隔 s=90 mm を有する「かぶり有 り・無し」供試体の水平荷重-水平変位関係(図-3,図 -4),損傷進展状況(写真-6,写真-7)および座屈発 生の模式図(図-8,図-9)に基づいて、主鉄筋の座屈 発生メカニズムについて考察する.

写真-6および写真-7は、いずれも西面が圧縮側面(写 真右側),東面が引張側面(写真左側)となっている. こ こで,圧縮(引張)側面とは、初期載荷($0 \rightarrow 8 \delta_y$)にお いて,圧縮(引張)領域となる面である.

繰り返し曲げを受ける RC 柱の基部で主鉄筋が座屈を 生じ始めるためには、一般に、(1) 基部破壊域でのかぶ りコンクリートが剥離する、(2) 主鉄筋が塑性域で引張 状態にある、(3) 載荷方向が反転して、主鉄筋が圧縮側 に負荷される、プロセスが必要となる.

例えば,かぶり有り供試体の場合には,十分大きな繰 り返し変形を受けて圧縮側のかぶりコンクリートが剥落 した後に、引張鉄筋が圧縮側に載荷を受ける過程で座屈 が発生する (図-8). すなわち,荷重-変位曲線 (図-3(b))における $-8\delta_v \rightarrow 8\delta_v$ の載荷での \blacksquare で示す位置にて 圧縮側面(写真右側)に最初の座屈が生じており,写真 -6(a)の写真からも確認できる(図-8(c)参照).一方, かぶり無し供試体の場合は、かぶりコンクリートの剥落 がすでに生じていることと同じであるため、大きな変形 を受けた引張鉄筋が、載荷方向の反転により圧縮側に負 荷されたときに座屈が発生する (図-9). すなわち, 図 -4(b)における $8\delta_{v} \rightarrow -8\delta_{v}$ の載荷での◆で示す位置に て引張側面(写真左側)に最初の座屈が生じており,写 真-7(a)からも確認できる(図-9(c)参照).以後,同様 に、引張側面の座屈(図-3(b)の◆印)および圧縮側面 の座屈 (図-4(b)の■印) がそれぞれ対応する.

以上より分かるように,かぶりの有無に違いがある場 合,主鉄筋の座屈発生状況に半サイクル分の載荷履歴に

(a) -16 δ y→16 δ y
 かぶり有り 西面
 写直-2 座団性状 (

(b) 16δy→16δy かぶり無し 東面

写真-2 座屈性状 (横拘束筋間隔 s = 65 mm)

(a) -16δy→16δy かぶり有り 西面

(b) 16∂y→16∂y かぶり無し 東面

写真-3 座屈性状(横拘束筋間隔 s = 90 mm)

(a) -16δy→16δy
 (b) 16δy→16δy
 かぶり有り 西面
 かぶり無し 東面
 写真-4 座屈性状(横拘束筋間隔 s = 105 mm)

違いが生ずる.

3.5 座屈発生後の荷重-変位関係

座屈は鉄筋が塑性域にまで至る引張状態に負荷された 後に、圧縮側への載荷状態で発生する.一般に、 RC 柱 の耐力は、鉄筋とコンクリートとの複合体による耐力と および β の値を図-11 に示す. 図より分かるように、横 拘束筋間隔が大きくなるにつれて α 値が全体的に小さく なる傾向にある. s=65 mm と 120 mm の場合を比較する とおよそ 0.7 倍となった. また、座屈発生点までの変位で ある β についても一部を除き α と同様の傾向がみられた.

図-12 座屈発生点での (α , β) と横拘束筋間隔 s との関係 (12 δ ,および 16 δ ,での座屈)

12 δ_vおよび 16 δ_vの載荷ループにおける座屈発生点での α および β の値を図-12に示す。図より分かるように、 載荷パターンに関わらず, 横拘束筋間隔 120 mm の場合 を除き, αは一定かわずかながら小さくなる傾向にある.

4. 主鉄筋の座屈解析概要

繰り返し力を受ける RC 柱基部周辺のかぶりコンクリ ートが剥離し、主鉄筋と内部コンクリートとの付着が切 れた段階で、載荷方向が反転する状況を図-13に示す. この場合、図中、右側の主鉄筋は引張状態にあり、載荷 方向反転後, 圧縮力が作用することになる.

本章では、繰り返し曲げを受ける RC 柱基部の主鉄筋 のはらみ出し挙動を考察するために、まず、繰り返し圧 縮力を受ける主鉄筋の耐力特性に関する座屈解析(ファ イバー手法に基づいた有限変形解析)を概説する⁸.

4.1 解析手法の概要

本研究においては、解析手法として有限要素解析プロ グラム FEAP⁹ を採用した.本解析手法は,以下に述べる

1) ~5) の仮定を採り入れたファイバーモデルに基づい ており、当該プログラムのエレメントサブルーチンに材 料構成モデルとともに組み込まれている.

- 1) Bernoulli-Euler のはりの理論が成り立つ.
- 2) 応力は軸応力のみが断面に作用する.
- 3)局部座屈は考慮しない.
- 4) 有限要素解析にて、はりの変形は Hermitian 三次形状 関数を用いて表現した.
- 5) Green のひずみを導入した近似更新ラグランジアン法 を用いて仮想仕事の原理により定式化した.

4.2 材料定数

軸方向鉄筋の材料定数については、前述のように、材 料試験から求めた平均応力ーひずみ関係を基に決定した (表-1参照).

4.3 軸方向鉄筋の構成モデル

本解析では軸方向鉄筋(鋼材)の材料構成モデルとし て、降伏棚および硬化領域までの応力--ひずみ関係を表 現できる修正二曲面モデル¹⁰を採用した.

図-13 解析モデル

塑性域まで繰り返し応力を受ける鋼素材の一軸状態で の応力 σ -塑性ひずみ ϵ^{p} 曲線は、図-14 に示すように、 一般に、塑性ひずみが生じない弾性域(例えば図中, OA)、 非線形な塑性域(AC)、さらに定常状態の塑性域(CX) に分けることができる.弾性域および定常状態の塑性域 での鋼素材の挙動は、それぞれ弾性係数 E および定常状 態の塑性係数 E_{δ}^{p} (= 応力増分 $d\sigma$ /塑性ひずみ増分 $d\epsilon^{p}$) を用いて、一次関数で容易に表現できる.この場合、弾 性域から塑性域へと移行する時点の応力点(例えば、図 中の点 D)と境界線 YY'との距離 δ_{in} ,現応力点と境界線 YY'との距離 δ 、形状パラメータ h、さらに、定常状態の 塑性係数 E_{δ}^{d} を用いることにより、塑性係数 E'を決定し ている.本研究では、Dafalias・Popov による接線塑性係 数 E'と同様な式を用いる.

$$E^{p} = \frac{d\sigma}{d\varepsilon^{p}} = E_{0}^{p} + h \frac{\delta}{\delta_{in} - \delta}$$
(1)

ここで, h は形状パラメータと呼ばれ, 曲率の割合を表す.

修正二曲面モデルのパラメータ数は弾性定数を含めて 16 であり、それらの詳細については文献 3) および文献 10) を参照されたい.

4.4 解析モデル

図-13 に示すような状況に基づいて、以下の解析モデ ルを設定した。

- ・柱基部と直上の横拘束筋までの主鉄筋(モデル1):
 境界条件:固定端-ヒンジ下で,圧縮力 P を受けるはり(固定-ヒンジ解析)
- ・横拘束筋間での主鉄筋(モデル2):
 境界条件:ヒンジーヒンジ下で,圧縮力Pを受けるはり(ヒンジーヒンジ解析)

4.5 解析条件

- ・はりの種類:モデル1およびモデル2の2種類
- ・はり長さs:35mm, 50mm, 65mm, 90mm, 105mm,

120 mm, 150 mm の7 種類(横拘束筋間隔 s の種類) ・荷重反転時でのはりの初期不整δ:0 mm, 1.5 mm, 3 mm, 6 mm, 9 mm, 12 mm, 15 mm の7 種類

- ・初期不整形状:それぞれの初期不整の形状は,有限変 形解析によって設定した.
- ・分割数:はりを10要素に分割した.

5. 圧縮下での座屈解析および実験結果の考察

横拘束筋間隔sならびに初期不整 δ を水準とする「圧 縮力 P-軸変位関係」,横拘束筋間隔sを水準とする「耐 力の低減率-初期不整関係」を解析より考察する.これ を基に,文献 7)の実験結果ならびに本実験結果と併せて 検証する.さらに,繰り返し圧縮載荷下での鉄筋の変形 挙動解析を行い,繰り返し耐力の低減について考察する.

5.1 解析結果

ヒンジーヒンジ解析:

横拘束筋間隔 35 mm と 150 mm に対する, 圧縮力 P-軸変位関係を図-15 (a) および (b) に示す. また, 全 解析結果をまとめた耐力の低減率-初期不整関係を図-15 (c) に示す. なお, 圧縮耐力の低下は, 鉄筋の軸力を 降伏軸圧縮力で無次元化して, 低減率としてある.

横拘束筋間隔 35 mm ならびに 150 mm の結果を比較す ると、初期不整量による耐力の低減状況は、はり長さ 150 mm の方がより敏感であるが、2 mm 程度の初期不整量で 耐力が 40%~60%まで大きく低減するというような、概 ね同様な傾向を示している.しかし、同じ初期不整量(例 えば、2 mm 程度までの不整量)を有するはりが軸変形を 受ける場合、長さ 150 mm のはりの方が、軸耐力の低減 が 2 倍程度早いことが分かる.また、残留耐力に大きな 違いが出ていることに留意されたい.

固定-ヒンジ解析:

一例として, 横拘束筋間隔65 mm と120 mm に対する, 圧縮力 P-軸変位関係を図-16(a) および(b) に示す. また, 全解析結果をまとめた耐力の低減率-初期不整関 係を図-16(c) に示す. 横拘束筋間隔65 mm ならびに120

mmの結果を比較すると、初期不整量による耐力の低減 状況は、ほぼ同様の低減傾向を示す. ヒンジーヒンジ解 析結果と同様であるが、2mmまでの初期不整量で耐力が 60%程度まで低減するという、緩やかな低減傾向を示し ている.しかし、残留耐力に大きな違いが出ている.

5.2 実験結果の考察

座屈発生箇所:

繰り返し載荷実験を検証すると、RC 基部のかぶりコン クリートが剥離する領域は徐々に広がり、最終的には、 塑性ヒンジ領域まで破壊が進展する.例えば、文献7)の 実験結果によれば、横拘束筋間隔35 mmでは、基部の直 上の35 mm区間の主鉄筋で座屈が生ずるのではなく、先 ずその上の2段目にて、座屈が生じている.固定-ヒン ジの条件下での軸耐力よりもヒンジーヒンジの条件下で の軸耐力の方が小さいためと考える.しかし、破壊領域 が進展するに従い、横拘束筋のはらみ出しなどによりヒ ンジ支持の効果がなくなり、第2層目のはり(ヒンジー ヒンジの条件下)としての変形よりも、第1層目と第2 層目とを合わせた長さ70 mmのはり(固定-ヒンジの条 件下)の変形へと移行する.このことは、解析結果(図 -15(a)と図-16(a))などを比較・考察することからも 推測できる.

同様な傾向は、文献7)の実験および本実験の横拘束筋 間隔65mmまでの供試体で観察された.一方、90mmよ り長い横拘束筋間隔を有する供試体では、柱基部の領域 にて、固定-ヒンジの条件下で主鉄筋の座屈が生じた. 座屈発生点(α) -横拘束筋間隔との関係: 荷重反転点(変位点)が同じであっても、横拘束筋間 隔が大きくなれば、初期不整量に差異が生ずる.それゆ え、初期不整量が小さい場合には、座屈耐力の低減が顕 著となり、不整量が大きい場合には、低減が収束するこ とが推測される.図-11および図-12を考察する限り、 横拘束筋間隔の増加とともに、座屈発生点での耐力(a) の低下状態または一定状態が見られる.実験結果には初 期不整量(はらみ出し)などにばらつきが含まれるもの の、実験結果と本解析結果との間には同様な傾向が認め られると考える.

5.3 繰り返し圧縮下での座屈挙動の考察

本節では、一例として、横拘束筋間隔 s =105 mm を有 する主鉄筋の「繰り返し軸方向力ー軸ひずみ関係」を有 限要素解析結果に基づいて考察する.主鉄筋の境界条件 を「固定-ヒンジ支持」とした.

実験データによれば、横拘束筋間隔 s = 105 mm の場合、 両側面の主鉄筋のひずみは、図-17 (a) に示すような変 動をしている.これを参考に、横拘束筋間隔 s = 65 mm お よび横拘束筋間隔 s = 105 mm 間の鉄筋の繰り返し圧縮解 析を、

- ① 0%→-1.5%→0%-1.5%ひずみ
- ② 0%→-3.0%→0%-3.0%ひずみ
- ③ 0%→−4.5%→0%−4.5%ひずみ

の領域にて行った.有限要素解析結果によれば、 $8\delta_y$ の 反転点では、基部 65mm 区間および 105mm 区間の主鉄筋 には、おおよそ 1 mm および 2 mm の不整量(水平変位) がそれぞれ生じていることから、1 mm および 2 mm の初

図-17 軸方向力を受ける主鉄筋の繰り返し特性

(b) 解析結果(s=65 mm)

(c) 解析結果(s=105 mm)

(a) 鉄筋ひずみの変動状況(かぶりなし: s=105 mm)

図-18 ひずみ軟化型モデル(Trilinear型)

期不整量を有する鉄筋の座屈解析として取り扱った. 解 析結果を図-17 (b) および図-17 (c) に示す.

初期不整量 1 mm を有する長さ 65 mm の鉄筋の耐力特 性は、軸圧縮ひずみが進展するに従って、全塑性圧縮力 P_y の 0.8 倍~0.7 倍程度まで低減する傾向が見られる. 一 方、初期不整量 2mm を有する長さ 105 mm の鉄筋の耐力 特性は、軸圧縮ひずみが進展するに従って、全塑性圧縮 カ P_y の 0.6 倍~0.4 倍程度まで低減する傾向が見られる. よって、これらの低減傾向を次章以降での「座屈を考慮 した RC 柱の繰り返し変形解析」に応用した.

6. 座屈を考慮した RC 柱の有限要素解析概要

ここでは、有限要素解析プログラム FEAP⁹ に採り入れる、鋼材の構成モデルおよびコンクリートの構成モデル, さらには解析モデルの概要について述べる.

6.1 材料定数

軸方向鉄筋ならびにコンクリートの材料定数について は、前述のように、材料試験から求めた平均応力-ひず み関係を基に決定した(**表-1**参照).

6.2 構成モデル

(1) 軸方向鉄筋の構成モデル

座屈発生までの軸方向鉄筋(鋼材)には、鋼素材とし

ての修正二曲面モデル¹⁰ を,座屈発生後の軸方向鉄筋に は,横拘束筋間隔に応じて繰り返し圧縮耐力の低減特性 (図-17 (b) および (c))を採用した.

(2) コンクリートの構成モデル

拘束効果を考慮できるコンクリートの構成モデルは, これまでに提案されているが^{11)~13)},本解析では,コン クリートの構成モデルとして,図-18に示すようなひず み軟化型構成モデル³⁾を採用した.すなわち,コアコン クリートの応力--ひずみ関係は,圧縮領域では一軸圧縮 強度まで上昇した後,軟化挙動を示すものと仮定した. 一方,引張領域では,コンクリートの強度はゼロである と仮定した.以下にその詳細を示す.

<u>硬化域</u>:硬化域の応力 σ -ひずみ ϵ 関係式を次式のよう に定義した.

$$\sigma = f'_{c} \left\{ 2 \left(\frac{\varepsilon}{\varepsilon^{p}_{c0}} \right) - \left(\frac{\varepsilon}{\varepsilon^{p}_{c0}} \right)^{2} \right\}$$
(2)

ここで、 f_c :一軸圧縮強度、 $\epsilon^{P_{c0}}$:最大応力時のひずみ(以降、ピークひずみと称する)である.

<u>除荷・再載荷域</u>:除荷・再載荷曲線は割線(線形)型の ものを採用し、その勾配がひずみの進行とともに劣化す るものとした.

<u>軟化域</u>:一般的に,横拘束を受けるコンクリートの軟化 域における応力-ひずみ関係は、図-18に示すように, ピーク以降,応力の低下が急であるが,ひずみが大きく なるに従い,徐々にその軟化勾配が緩やかになる傾向が ある. それゆえ,本解析では,コンクリートのひずみ軟 化領域に対して図-18 に示すような多直線型(例えば, トリリニア型)の応力-ひずみ関係を採用した. ここで は,文献5)の結果を基に,コアコンクリートには,ピー ク点(圧縮ひずみ0.23%,36.6 MPa),点(圧縮ひずみ1.5%, 14.0 MPa),点(圧縮ひずみ1.8%,8.0 MPa)および点(圧 縮ひずみ16.9%,0 MPa)を結ぶトリリニア型の軟化勾配 を採用した.また,かぶりコンクリートには,圧縮試験 結果から得られた軟化勾配を用いた.

6.3 解析モデル

有限要素解析プログラム FEAP を用いてファイバーモ デルによる二次元有限要素解析を実施した.供試体諸元 に基づき,図-19に示すような1要素長:100mm,高さ 方向に10分割した解析モデルを採用した.要素長:10cm の理由としては,1) コンクリート圧縮試験によるひずみ を10cm間隔で計測したこと,2) コンクリートの構成モ デルにひずみ軟化型モデルを使用したことによる.また, 図-20に示すような断面分割モデルを採用した.ここで, 図中の黒色のブロックは軸方向鉄筋を示す.

7. RC 柱の鉄筋座屈特性に関する解析的検討

本章では、まず、(1) 鋼材の構成モデルが RC 柱の解 析結果に与える影響について、さらに、(2) 横拘束筋間 隔 s = 65 mm および 105 mm の RC 供試体を例に採り、主 鉄筋座屈後の耐力低減特性(図-17 (b), (c))を考慮し た解析を実施し、モデル化の有効性について考察する.

7.1 修正二曲面モデルおよび弾完全塑性モデルによる 解析

ここでは、横拘束筋間隔65mmの供試体を対象として、 鉄筋の応力-ひずみ関係を変化させた場合の解析結果と 実験結果との比較を図-21および図-22に示す.解析で は、コンクリートの応力-ひずみ関係をひずみ軟化型と 固定し,鉄筋の応力-ひずみ関係を1)弾完全塑性モデル, または2)ひずみ硬化型の修正二曲面モデルとして,二種 類の解析を実施した.

いずれの構成モデルにおいても、80、の除荷点までは、 最大耐力も含めて概ね一致した挙動を再現できている. しかし、それ以降、弾完全塑性型モデルによる挙動は実 験曲線のそれとは異なった様子を呈している.変位振幅 16δ、間のループでは、実験曲線の勾配と概ね一致した挙 動を示している.一方,修正二曲面モデルでは,変位振 幅 16δ, の最終ループ前までの挙動を概ね再現できてい る. この理由としては、横拘束筋間隔65mmの供試体に おいては、それまで鉄筋の顕著な座屈が生じていなかっ たことが挙げられる、また、鉄筋の座屈が発生するまで は、鉄筋のひずみ硬化が影響しているため、鉄筋のひず み硬化を RC 部材の解析に採り入れる必要があることを 示唆している¹⁴⁾.しかし、大きな変形が生ずるポストピ ーク領域(変位振幅16δ、のループ)では、ひずみ硬化に より、耐力を高く見積もることになり、荷重一変位関係 を精度良く再現できない.

7.2 座屈を考慮した主鉄筋の耐力特性を採り入れた解析

前節より分かるように、鉄筋には修正二曲面モデル, コンクリートにはひずみ軟化型の応カーひずみ関係の組 み合わせによる解析は、主鉄筋の座屈が生ずる段階まで の挙動を再現することは可能である.しかし、鉄筋の座 屈が生じた後の挙動は、再現できないことを確認した.

本節では、1) $8\delta_y$ 以降のかぶりコンクリートが剥離した段階で、2) 座屈発生後の鉄筋の耐力低減特性(図-17(b)、c))を有限要素解析プログラムFEAPに採り入れ、解析を実施した.解析結果と実験結果との比較を図-23および図-24に示す.図から分かるように、横拘束筋間隔に応じた主鉄筋の圧縮耐力の低減が考慮されているため、座屈挙動の再現がある程度の精度で再現できている.特に、 $8\delta_y$ および $16\delta_y$ のサイクルでの座屈挙動の違いが良く再現できており、本研究での主鉄筋の座屈挙動のモデル化が有効であることを示唆している.

図-22 解析結果(修正二曲面モデル:s = 65mm)

図-23 座屈を考慮した解析結果 (s = 65 mm)

8. まとめ

本研究では、繰り返し曲げを受ける RC 柱の塑性ヒン ジ領域における主鉄筋の座屈特性に対して、横拘束筋間 隔が及ぼす影響を実験的ならびに解析的に検証した.

- かぶり有りおよびかぶり無し RC 柱供試体の座屈発生のメカニズムは、かぶりコンクリートが剥落する分だけ過程が異なるが、剥落後は同じ傾向を示した.
- 2) かぶり有りの供試体では、かぶりコンクリートが剥離 する分だけ高い吸収エネルギー量となった.また、か ぶりの有無に関わらず、横拘束筋間隔 s が大きくなる に従い、吸収エネルギーは小さくなった.
- 3)かぶり有り供試体では、±8δy直後の載荷は柱基部と その直上の横拘束筋との間で主鉄筋の座屈が観察されたが、かぶり無し供試体では、かぶりが無いため、 ±16δyの区間は横拘束筋を越えて座屈が生じた.
- 4) 主鉄筋をヒンジーヒンジ支持または固定-ヒンジ支持 と仮定したはりの座屈解析結果に基づいて、座屈発生 箇所の変遷ならびに座屈発生時点での耐力低減と横 拘束筋間隔との関係を検討・推察した結果、実験結果 と概ね同じ傾向があることが分かった。
- 5) ファイバーモデルによる二次元有限要素解析を実施し, 軸方向力を受ける主鉄筋の解析に基づいて実験結果 を考察するとともに,座屈に関するモデルを有限要素 解析プログラムに採り入れて,その有効性を確認した.

謝辞:

本研究は、中部大学総合工学研究所ならびに愛知工業 大学耐震実験センターの研究助成により行った.また、 実験を遂行する際には、中部大学および愛知工業大学の 学生諸君からは助力を受けた.ここに感謝の意を表する.

参考文献:

- 島弘・伊藤圭一・水口裕之:曲げ破壊型 RC 橋脚における 鉄筋座屈モデルによる靭性解析、コンクリート工学年次論 文集, JCI, Vol.12-2, pp.741-746, 1990.
- 2) 中村光・二羽淳一郎・田辺忠顕:鉄筋の座屈が RC 構造の

図-24 座屈を考慮した解析結果 (s = 105 mm)

ポストピーク挙動に及ぼす影響,コンクリート工学年次論 文集,JCI, Vol.14,No.2,pp.337-342,1992.

- 水野英二,松村寿男,畑中重光:繰り返し載荷を受ける鉄 筋コンクリート柱のポストピーク挙動解析,コンクリート 工学論文集,JCI,Vol.13, No.3, pp.47-60, 2002.9.
- 日本コンクリート工学協会編:コンクリート構造物のポス トピーク挙動評価と設計への応用,2003.
- 6) 亀田好洋ら: 圧縮下で繰り返し曲げを受ける鉄筋コンクリ ート柱の変形特性に関する実験的研究、コンクリート工学 年次論文集, JCI, Vol.30, No.3, pp.145-150, 2008.7.
- 7) 亀田好洋・水野英二・鈴木森晶・梅原秀哲:一方向繰り返し曲げを受ける鉄筋コンクリート柱の変形特性に関する 実験的研究,コンクリート工学年次論文集, JCI, Vol.31, No.2, pp.139-144, 2009.7.
- 渡辺耕平:曲げ破壊型 RC 柱部材の塑性変形評価と座屈挙 動に関する研究,武蔵工業大学工学部都市基盤工学科,修 士論文,2002.3
- 9) Zienkiewicz, O.C.: The Finite Element Method, Third Ed., (吉識 雅夫,山田嘉昭監訳「マトリックス有限要素法」), 培風館, pp.672-796, 1984.
- 10) 水野英二ら: 鋼素材に関する修正ニ曲面モデルの一般定式 化,構造工学論文集, JSCE, Vol.40A, pp.235-248, 1994.3.
- 11) 星隈順一,川島一彦ら:鉄筋コンクリート橋脚の地震時保 有水平耐力の照査に用いるコンクリートの応力-ひずみ関 係,土木学会論文集,JSCE, No.520/V-28, pp.1-11, 1995.8.
- 12) 例えば、土木学会編: コンクリート標準示方書 2002 年度版 [耐震性能照査編], pp.21-25, 2002.
- 13) 秋山充良ら:普通強度から高強度までの構成材料を用いた RC 柱の一軸圧縮試験と圧縮破壊エネルギーを介したコン ファインドコンクリートの平均化応カーひずみ関係,土木 学会論文集,JSCE, No.768/V-67, pp.81-98, 2005.5.
- 14) 岡村甫・前川宏一:鉄筋コンクリートの非線形解析と構成
 則,技報堂出版, pp.44-49, 1991.5.

(2010年3月9日 受付)