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A set of Shock Wave Lithotripsy(SWL) related experimental observations including 3D dynamic
crack propagation, reported in literature, are simulated with the aim of understanding the frag-
mentation of kidney stone with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the frag-
mentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models
with fine discretization are used to accurately capture the high amplitude shear shock waves,
which play an important role in kidney stone fragmentation. For solving the resulting large scale
dynamic crack propagation problem, PDS-FEM is used since it provides numerically efficient
failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally ob-
served 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples
are reproduced. The experimental and numerical crack patterns are quantitatively in agreement.
The results confirm that the high amplitude shear waves induced in solid play a key role in stone
fragmentation.
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1. Introduction

Extracorporeal shock wave lithotripsy (ESWL) is the
fragmentation of kidney stones (urinary calculosis) by fo-
cusing an ultrasonic pressure pulse onto the stones. With
repetitive application of ultrasonic pulses, stones are bro-
ken into small enough pieces which can pass naturally
through the urinary system. Currently, a significant per-
centage of kidney stone patients are treated with this
nearly three decades old method1),2). Despite it’s wide us-
age, the mechanism of stone fragmentation has not been
well understood1),3),4). Consequently, modern day SWL
instruments are not much different from the oldest design,
except for the ease of clinical usage2).

To further enhance the SWL technology, it is necessary
to understand how the stress waves induced in stones ini-
tiate cracks, how the stress waves interact with extending
crack surfaces and where the resulting high stress regions
appear. 2D ray tracing techniques and high speed photoe-
lasticity have been used to locate the high stress regions
where the crack initiation could occur3). Being all the di-
mensions comparable in sizes, the induced state of stress
in kidney stones are fully 3D. Up-to-date, no methods have
been found to evaluate 3D stress distribution from 3D pho-
toelastic images. Due to the lack of experimental tech-
niques to measure full field dynamic state of stress, numer-
ical simulations are the only way to quantitatively analyze

the state of stress, crack initiation and propagation in kid-
ney stones. Up-to-date, no successful simulation of SWL
stone fragmentation, in 3D, has been reported. Almost all
the reported numerical simulations of SWL are limited to
studying lithotriptor shock wave and stone interaction with
simplified 2D models1),4).

In this study, some of the SWL related experimental ob-
servations published in literature by Xi et al.3) have been
numerically reproduced in 3D, including dynamic crack
propagation. With a series of experiments, Xi et al.3) have
captured images of transient stress waves of various sizes
and shapes of epoxy samples as 3D photoelastic images
and studied the crack patterns in plaster of Paris samples
of various sizes and shapes. In some literature, simplified
2D numerical models have been qualitatively validated by
comparing those 3D photoelastic images with displace-
ment or stress field 1),2). Unlike those, in this study, experi-
mental 3D photoelastic images are compared with numer-
ically calculated photoelastic images. Due to the lack of
information, only a qualitative comparison is done. Good
agreement of numerical and experimental photoelastic im-
ages validates the numerical model used in this study. One
of the interesting results reported by Xi et al. is T-shaped
crack patterns in cylindrical plaster of Paris samples, when
exposed to multiple lithotriptor shock waves. These T-
shaped crack patterns are simulated and the experimen-
tal and numerical crack patterns are found to be in agree-
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ment, quantitatively. Cleveland et at.1), have reported that
the induced shear waves are of high amplitude and could
be playing a major role in stone breaking. Our results
also confirm that induced high amplitude shear waves are
mainly responsible for the crack formation.

A recently developed variant of FEM called PDS-
FEM5),6), is used in this study since its failure treatment
is numerically efficient even to simulate crack propagation
in large scale problems. The lithotriptor shock wave has
nearly 2µs high compression phase and the shear shock
waves induced in the solid are spatially narrow. Both
these features play an important role in SWL. To accu-
rately capture these features, the numerical model has to
be discretized to large number of elements. In this study,
the domain was discretized to 11.2 million tetrahedral ele-
ments. To model 3D crack propagation in such large mod-
els, numerical methods with numerically efficient failure
treatments have to be used. Common FEM approaches
like re-meshing, element/nodal enrichment, etc. involves
numerically intensive treatments for creating a new crack
surface. Compared to these traditional approaches, the
failure treatment of PDS-FEM is light enough to simulate
3D crack propagation in large scale problems6). A dis-
tributed memory parallel program of PDS-FEM was used
to simulate this large scale 3D dynamic crack propagation
problem.

The rest of the paper is organized as follows. For the
sake of completion, formulation of PDS-FEM and its dy-
namic extension are briefly explained in section 2. In sec-
tion 3, a brief explanation of the experiments reported by
Xi et al., problem setting for the numerical simulations and
implementation of solid fluid interaction are presented.
Comparison of numerical and experimental results of 3D
photoelastic images and crack patterns are given in section
4. Finally, a short summery is given in the last section.

2. Numerical Method for Modeling Dy-
namic Crack Propagation: PDS-FEM

PDS-FEM is based on a non-conventional discretization
scheme called particle discretization scheme (PDS), which
uses a set of non-overlapping characteristic functions of
two conjugate geometries to discretize functions and their
derivatives. The non-overlapping shape functions intro-
duce numerous discontinuities to the discretized function,
all over the domain. Solving a growing crack problems
with PDS-FEM is numerically efficient since the disconti-
nuities in the discretized displacement field can be utilized
to model growing crack surfaces. Detailed formulation of
PDS and PDS-FEM is given in reference 5),6) and only a
brief description on PDS, PDS-FEM and its dynamic ex-
tension are given in the rest of this section.

Throughout this paper, the Cartesian coordinates system
and the index notation (i.e., xi stands for the ith coordi-
nate) are used. We use the summation convention and an
index following a comma stands for the partial differenti-
ation with respect to the corresponding coordinate.

mother points 

Voronoi tessellation 

Delaunay tessellation

Fig. 1 2D Conjugate geometries used in PDS

2.1 Particle discretization scheme (PDS)
PDS uses characteristic functions of a pair of conjugate

geometries, hypo-Voronoi and Delaunay tessellations, to
discretize functions and their derivatives. First the domain
of analysis is discretized with hypo-Voronoi and Delau-
nay tessellations. For a given set of mother points {xα} in
2D, the hypo-Voronoi diagrams are obtained by first form-
ing the Voronoi tessellation and then moving the common
meeting point of neighbouring three Voronoi diagrams to
the centre of gravity of the triangle, formed by the three
mother points of the Voronoi diagrams(see Fig. 1). With a
similar process, 3D hypo-Voronoi diagrams can be gener-
ated.

Using the set of characteristic functions φα(x) of hypo-
Voronoi diagrams {Φα}’s, PDS discretizes a function f de-
fined over a domain B as f d =

∑
α f αφα(x). To circum-

vent the problem of unbounded derivatives of the approx-
imation f d (i.e. f d

, j =
∂ fd
∂x j

is zero inside Φα’s and is un-
bounded along the boundaries ∂Φα’s), an average value
f ,dj is calculated using the Delaunay tessellation associ-
ated with Voronoi diagrams, Ψβ. Using the set of charac-
teristic functions of the Delaunay tessellation

{
Ψβ
}
, f,i is

discretized as f d
,i =
∑

gβi ψ
β(x). Discretization of functions

and their derivatives, with the characteristic functions of a
pair of conjugate geometries is the essence of PDS.

2.2 PDS-FEM
Implementation of PDS in FEM framework to solve

the boundary value problems of continuum is called PDS-
FEM. We consider the implementation of PDS-FEM to
solve the boundary value problem of linear elastic contin-
uum, assuming infinitesimal deformations. As customary,
the boundary value problem is posed as
{

(ci jkl(x)uk,l(x)),i + b j(x) = ρ(x)ü j(x) in B,
ui(x) = ui(x) on ∂B.

(1)

Here, ci jkl is heterogeneous linear elasticity tensor, ρ is the
density, bi and ūi are the body forces and displacements
prescribed in the body B and on the boundary ∂B, respec-
tively. Also, the standard notation of dots over a variable is
used to denote derivatives with respect to time. PDS-FEM
uses the following functional of displacements, strain(ε)
and stress(σ) to transform the above strong form of the
governing equations to an equivalent variational problem.
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Fig. 2 Evaluation of bβαj and approximate treatment of a
crack growing along Voronoi block boundary PG

I =
∫

B

1
2
εi jci jklεkl − σi j(εi j − u j,i) + biui −

1
2
ρu̇iu̇i ds.

It is straightforward to show that Eq. (1) can be de-
rived by setting the first variation of the above functional
δI(u, ε,σ) = 0.

Applying the PDS, the linear elastic domain B is dis-
cretized with hypo-Voronoi diagrams and associated De-
launay tessellation. Displacement field ui and body forces
bi are discretized with the set of characteristic functions
{φα} as ui(x) =

∑
α uαi φ

α(x) and bi(x) =
∑
α bαi φ

α(x).
The variables associated with derivatives σi j, εi j are dis-
cretized in terms of {ψβ} as σi j(x) =

∑
β σ
β
i jψ
β(x) , εi j(x) =∑

β ε
β
i jψ
β(x). The linear elasticity tensor is discretized with

{ψβ} as ci jkl(x) =
∑
β cβi jklψ

β(x). Substituting these dis-
cretized forms to I and setting the first variation to zero, the
discretization coefficients are determined as σβi j = cβi jklε

β
kl

and εβi j =
∑
α bβαi uαj , where

bβαj =
1
Ψβ

∫
Ψβ
φα, j (x) ds. (2)

Although φ,αj ’s are unbounded along the boundary ∂Φα,
an average value overΨβ can be calculated using the Gauss
theorem. As an example, it is straightforward to obtain
bβ1i =

1
2Ψεi j3(x2

j−x3
j ) (see Fig. 2a). Expressions for bβ2i and

bβ3i can be obtained by suitably replacing the superscripts.
Substituting these results to the discretized I and setting
∂I/∂uαi = 0, we obtain a set of linear equations for {uα}, as

∑
α′

kαα
′

i j uα
′

j − Φαbαi = mαüαi , (3)

where the element stiffness matrix

kαα
′

i j =
∑
β

Ψβcβik jlb
βα
k bβα

′

l . (4)

Eq. (3) is the governing matrix equation of FEM im-
plemented with PDS, i.e., PDS-FEM. When the hypo-
Voronoi mother points, {xα}, are considered as nodes and
Delaunay tessellations are considered as elements, the el-
ement stiffness matrix of PDS-FEM is exactly equal to
that of FEM with linear elements, numerically. There-
fore, PDS-FEM has the same accuracy of FEM at nodal

points. Extension of PDS-FEM to higher dimensions is
straightforward with hypo-Voronoi diagram and the asso-
ciated Delaunay tessellation of the relevant dimension.

2.3 Approximate Failure Treatment of PDS-FEM
With PDS-FEM, the existing discontinuities in the dis-

cretized displacement field can be easily utilized to model
propagating cracks. Even though homogeneous mate-
rial properties are assumed, forcing cracks to propagate
along the hypo-Voronoi boundaries makes the numeri-
cal model to be heterogeneous with respect to material
strength; hypo-Voronoi blocks have infinite strength while
their boundaries have a finite strength. This feature of
PDS-FEM is useful in kidney stone fragmentation simu-
lations and other crack propagation analysis of real mate-
rials. Different kidney stone samples, with the same ge-
ometry, break with different crack profiles due to their het-
erogeneous material properties. With PDS-FEM, the pres-
ence of these material heterogeneity can be easily simu-
lated by choosing different arrangements of Voronoi tes-
sellations which corresponds to different distributions of
material strength.

The approximate failure treatment is formulated as
changes in elastic tensor ci jkl. When a Voronoi block
boundary is broken under tension, it is modelled by set-
ting ci jkl = 0 in an infinitesimally thin neighbourhood,
GP+P−, of the broken Voronoi block boundary , while ci jkl

is unchanged in the rest of the domain (see Fig. 2b). This
changes the element stiffness matrix Eq. (4) of the broken
element 1. This change of kαα

′

i j is due to the fact that bβαi ,
given by Eq. (2), drops the contribution from the deriva-
tive of the Voronoi characteristic function that appears in
GP+P−. A crack along GP can be modelled by recom-
puting the element stiffness matrix with the changed bβαi ’s
and updating the global stiffness matrix. The numerical
overhead associated with this approximate treatment is al-
most equal to re-computation of an element stiffness ma-
trix. Hence, PDS-FEM failure treatment is numerically
efficient compared to other FEM treatments.

2.4 Time integration
For the time integration of Eq. (3), any standard time

integration method like Newmark-beta, Verlet methods,
asynchronous variational integrators7), etc. can be em-
ployed. In addition to these standard algorithms in solid
mechanics, there is a rich set of symplectic, energy mo-
mentum preserving algorithms used in molecular dynam-
ics and celestial mechanics8),9),10). These algorithms for
simulating Hamiltonian flows are higher order accurate,
explicit, have a good behaviour in long time integrations
and can deal with steep potentials. As explained below,
the last property is important in crack propagation simu-
lations. Because of these attractive properties, we imple-
mented such algorithm for time integration of Eq. (3).

1 A Delaunay polyhedron containing one or more broken
hypo-Voronoi boundary is referred as a broken element.
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The domain discretized with PDS can be interpreted as
modelling a continuum with a collection of particles; ac-
cording to the Eq. (3), the non-overlapping shape functions
result in lumped masses or isolated particles at Voronoi
mother points {xα}. The interaction of these particles is
defined by the stiffness matrix. Even though, for infinites-
imal deformations, the inter particle interactions defined
by the Eq. (4) are linear, propagating cracks bring drastic
changes. We implemented the bi-lateral symplectic algo-
rithm by Lappo Casetti10) for time integration of Eq. (3)
since it is suitable for problems with steep potentials.

Denoting the mass and velocity of hypo-Voronoi block
Φα with mα and u̇αi , the Lagrangian for the collection of
interacting particles can be written as L =

∑
α

1
2 mαu̇αi u̇αi −∑

α

[
1
2 Kαα

′

i j uαj uα
′

i

]
. Hamiltonian for this collection of parti-

cles is H = pq̇ − L, where q and q̇ are generalized coordi-
nate and generalized velocity. Since our coordinate system
is stationary qαi = uαi , q̇αi = u̇αi and the generalized mo-
mentum are pαi =

∂L
∂q̇αi
= mαu̇αi . The system of Hamiltonian

equations for the set of particles{Φα} are q̇αi =
∂H
∂pαi
=

pαi
mα

and ṗi
α = − ∂H

∂qαi
= −Kαα

′

i j uα
′

j . The bilateral symplectic al-

gorithm, by Lapo Casetti 10), for time integrating these set
of equations are given in Algorithm 1.

Algorithm 1 Bilateral symplectic algorithm
(q0, p0) = (q, p) |t
for k = 1 to n do

qk = qk−1 + bkpk−1∆t
pk = pk−1 − ak

(
∇qV
(
qk
)
− Fk−1

)
∆t

end for
for h = n + 1 to 2n do

ph = ph−1 − bh−n
(
∇qV
(
qh−1
)
− Fh−1

)
∆t

qh = qh−1 + ah−nph−1∆t
end for
(q, p) |t+2∆t= (q2n, p2n)

Here, n is the order of integration algorithm, F is exter-
nal forcing if any involved, ∆t is the time increment and
k and h are iteration counters. The constants ak and bk up
to forth order accurate methods are given in literature9),8).
The constants for forth order accuracy are a1 = a4 =(
2 + 21/3 + 2−1/3

)
/6, a2 = a3 =

(
1 − 21/3 − 2−1/3

)
/6,

b1 = 0, b2 = b4 = 1/
(
2 − 21/3

)
and b3 = 1/

(
1 − 22/3

)
.

3. Problem Setting: Reported Experimental
Observations of SWL and Details of Nu-
merical Model

Using a laboratory shock wave lithotriptor and a set
up for capturing high speed photoelastic images, Xi et
al.3) have recorded stress waves induced in different epoxy
samples and crack patterns in a set of plaster of Paris sam-
ples. A brief overview of their experiments and results are
explained at the beginning of this section while the prob-
lem setting and the numerical models are given in the latter

water tank
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Fig. 3 Samples are kept at the focal point of the reflector,
in a water filled tank.
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Fig. 4 Pressure wave form at the focal point. Enlarged is
the Direct Shock Wave(DSW). Digitized from Xi
et al.3)

part. For the sake of space saving, figures showing the ob-
servations made by Xi et al. are shown together with the
numerical results in the next section.

3.1 An overview of the experiment
In their experiments, Xi et al.3) have used a laboratory

electro-hydraulic shock wave lithotriptor which is similar
to an unmodified HM-3 clinical lithotriptor. The shock
wave generator was kept inside a water tank and the sam-
ples were kept at the focal point of the reflector (see Fig.
3). In addition to this basic set up, they have used a circular
polariscope with bright field setting and high speed image
capturing equipments to record the photoelastic fringe pat-
terns of transient stress waves in various shaped and sized
epoxy samples. Also, they have exposed various shaped
and sized plaster of Paris samples to multiple lithotriptor
shock waves and recorded the crack patterns.

Figure 4 shows the pressure wave form measured at the
distal focal point of the reflector, where the samples are
kept. This pressure wave form, made by digitizing the
original wave form published by Xi et al.3), is used as the
input for the numerical simulations. There are two shock
waves. The smaller shock wave, arriving first, is gener-
ated by an electrical spark at the proximal focal point of
the reflector. This small amplitude spherical shock wave
is called direct shock wave(DSW). Nearly 3µs after the
DSW, a strong shock wave of peak stress 46.7MPa arrives.
This is due to the focusing of large portion of the spherical
shock wave at the distal focal point by the reflector, hence
it’s called focused shock wave(FSW). It’s mentioned that
the negative(tensile) portion of the pressure wave has not
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Fig. 5 Configuration of the numerical model

been well recorded due to the limitations of membrane hy-
drophones.

With various shaped and sized epoxy samples, they have
recorded 3D photoelastic images of DSW and FSW in-
duced transient stress waves. These 3D photoelastic fringe
patterns had been used as an aid for understanding the
complex interaction between the water shock wave and the
solid samples. However, no quantitative information on
the stress components can be extracted from these 3D pho-
toelastic images; up-to-date, no method has been found
to evaluate 3D stress distribution from 3D photoelastic
images of sensitive photoelastic materials like epoxy11).
Also, they have reported the crack patterns in cylindrical
and rectangular shaped plaster of Paris samples subjected
to multiples shock waves. Out of these crack patterns, the
most interesting is T-shaped crack surfaces of cylindrical
samples, when the pressure wave incident angle is 90 de-
grees with the cylinder axis. This counter-intuitive crack
pattern is a result of, shear shock/sub-shock waves, com-
plex interference of reflected and incoming waves gener-
ating high stress regions, interaction of stress waves with
extending crack surfaces, etc.. Main objective of this study
is to simulate the observed T-shaped crack pattern so that
some light can be shed on how the combination of above
complex process initiate and drive cracks. For easy com-
parison and to save space, the experimental observations
are presented with the numerical results in the next sec-
tion.

3.2 Details of the numerical model
Three dimensional models have to be used in SWL re-

lated simulations since kidney stones, being comparable
sizes in each dimension, experience 3D state of stress un-
der the lithotriptor generated shock waves. Figure 5 shows
the geometric details of the numerical model. The dimen-
sions of the cylindrical sample are as same as those of the
reported experiments; 14mm in diameter and 12.7mm in
length. This sample was kept inside a 50mm × 50mm ×
50mm domain filled with water. The dimension of the wa-
ter domain is selected such that the effect of boundary re-
flections do not affect the transient stress field in the solid
sample. Water is modelled with the linear elastic equa-
tion given in Eq. (1), since the deformation can be as-

Table 1 Material properties.
Epoxy Plaster of Paris Water

E /(GPa) 3.89 8.88
K /(GPa) 2.2
ν 0.377 0.228
ρ /(kgm−3) 1150 1670 1000
Vp /(ms−1) 2493 2478 1483
Vs /(ms−1) 1108 1470 –

fluid(Ωf)

solid(Ωs)

ns

Γ

Fig. 6 Coupled solid and fluid domains. Γ is the wet
boundary of the solid.

sumed infinitesimal. Shear modulus of water is assumed
to be zero(µ = 0), since water does not support shear.
Young’s modulus(E), bulk modulus(K), Poisson’s ratio(ν),
density(ρ), P-wave velocity(Vp) and S-wave velocity(Vs)
for epoxy3), plaster of Paris12) and water are given in Ta-
ble 1.

According to Zhou et al.2), the profile of the water pres-
sure pulse, especially the trailing part of the larger shock
wave, has some difference in the vicinity of the sample.
These changes are neglected and, assuming the incident
shock wave to be plane, the pressure wave form in Fig. 4
is applied on a plane surface 2mm behind the cylindrical
sample (see Fig. 5). Instead of the outermost boundary,
the input pressure pulse is applied on an internal surface in
order to reduce computation time.

To accurately model the pressure time history shown in
Fig. 4 with linear PDS-FEM, very fine domain discretiza-
tions is necessary. Most important feature of this pres-
sure time history is the peak pressure pulse of 2.7µs dura-
tion. The rise time of this pressure pulse is 32ns, which
is too small to accurately model with linear elements for
infinitesimal deformation. Hence, modelling of the peak
pulse as a whole is taken into consideration. To this send,
the solid cylinder and the its neighbourhood were mod-
elled with finer elements. The number of total tetrahedral
elements and degrees of freedom(DOFs) are 11.6 millions
and 5.6 millions, respectively. It would be evident from the
numerically calculated photoelastic patterns shown later,
the mesh is refined enough to capture finer details like
shear shock waves in the solid. To meet the large com-
putations inherited with 3D models, a distributed parallel
version of PDS-FEM was executed on a computer cluster
with 128 CPUs.
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3.3 Solid-fluid interaction
In this acousto-elastic problem, solid and fluid can be

assumed to be in frictionless contact (slip condition). Un-
der this assumption, kinematic condition requires that nor-
mal components of displacement of solid and fluid do-
mains should be equal at the shared boundaries (i.e. solid-
fluid interface). Also, the kinetic condition requires that
the normal traction of the two domains should be balanced
on the solid-fluid interface and no shear traction is trans-
ferred between the two domains via the solid-fluid inter-
face. Denoting the solid and fluid domains with Ωs and
Ω f (see Fig. 6) , respectively, and the interface boundary
with Γ, the kinematic and kinetic conditions can be written
as;

(
u f − us

)
.ns = 0 kinematic condition (5)

σn + p f = 0 kinetic conditions

σt = 0,

where ns is the normal vector to the wet boundary of the
solid(∂Ωs ∩ Γ). us and u f are the displacements of solid
and fluid on Γ (on ∂Ωs ∩ Γ and ∂Ω f ∩ Γ). p f is the water
pressure and σs is the stress tensor in solid domain. σn =

ns. (σs.ns) is the normal stress and σt = σs.ns − σnns is
the tangential traction vector on Γ. σt = 0 on Γ is usually
called slip condition.

The above solid-fluid interface conditions were imple-
mented with a partitioned approach which leads to weak
coupling. In partitioned approaches13), instead of solv-
ing a monolithic problem, the solid and fluid domains are
solved separately and their interaction is modelled by im-
posing above kinetic and kinematic conditions on Γ after
each time update. Strong coupling of two domains with
implicit methods is stable, but numerically intensive es-
pecially for problems involving large DOFs. We imple-
mented weak coupling of two domains with simultaneous
enforcing conditions given by Eq. (5) on the solid-fluid
interface, as shown in the Algorithm 2.

Algorithm 2 Bilateral symplectic algorithm with weak
solid-fluid interaction

(q0, p0) = (q, p) |t
for k = 1 to n do

update SF interface conditions
qk = qk−1 + bkpk−1∆t
pk = pk−1 − ak

(
∇qV
(
qk
)
− Fk−1

)
∆t

end for
for h = n + 1 to 2n do

update SF interface conditions
ph = ph−1 − bh−n

(
∇qV
(
qh−1
)
− Fh−1

)
∆t

qh = qh−1 + ah−nph−1∆t
end for
(q, p) |t+2∆t= (q2n, p2n)

Each update of solid-fluid interface conditions involves the
following two steps.

1. calculate fluid pressure and update Fk−1 on ∂Ωs ∩ Γ
such that kinetic conditions are satisfied

2. update qk−1 on ∂Ω f ∩ Γ such that kinematic condi-
tions are satisfied

Usually, in solid-fluid interaction problems, the meshes of
solid and fluid domains are not conforming at the inter-
face and interpolations of pressure and displacements are
required in implementing the above interface conditions.
The deformation involved in this acousto-elastic problem
is infinitesimal. Therefore, overhead of interpolations is
avoided by using conforming meshes at the solid-fluid in-
terface.

4. Results of Numerical Simulations

In this section, results of numerical simulations are pre-
sented. First the stress waves induced in a epoxy sample
due to DSW and corresponding 3D photoelastic images
are presented as a qualitative evaluation of the numerical
results. Next, the necessity of dynamic fracture criterion is
explained. The numerically simulated crack patterns and
experimentally observed by Xi et al. are qualitatively and
quantitatively compared, in the latter part.

4.1 DSW Induced Stress Waves and Photoelastic Im-
ages of Epoxy Samples

As a qualitative verification, numerically computed
photoelastic images are compared with that of the experi-
mentally observed by Xi et al.. Quantitative comparisons
of stress filed or photoelastic fringe patterns are not possi-
ble due to lack of information. Only the static photoelas-
tic constant for the epoxy samples used in the experiment
is known3). Usually, the dynamic photoelastic constant is
10% to 30% is higher than that of the static. As it was
mentioned in section 3.1, the tensile phase of the lithotrip-
tor shock waves are poorly recorded, due to the limitations
of membrane hydrophones used in the experiment. Only a
qualitative comparison is possible with these limitations.

Some snap shots of the principal stress and maximum
shear stress of epoxy sample under DSW are shown in
Fig. 7 and 8. Since VE

p > VW
p , where W and E stand for

water and epoxy, the induced P-wave in epoxy diverges
and moves ahead. This diverging P-wave front induces a
shock wave in water, which is clearly visible in Fig. 7. In
addition, this diverging P-wave induces shear shock wave
at the solid-fluid interface. Another shear shock wave is
induce in epoxy samples since VW

p > VE
s . Both the di-

verging solid P-wave and lithotriptor shock wave induced
shear shock waves are clearly visible in both the figures.
In both figures, small arrows are pointing to some of the
shear shock waves.

3D photoelastic images, corresponding to that of ex-
perimentally observed, are numerically computed for
the cylindrical epoxy sample under DSW. For the pho-
toelastic image generation, the governing equation of
photoelasticity14) was numerically integrated along a
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(a)1.6µs (b)5.6µs (c)8.1µs (d)9.6µs

(e)13.6µs (f)15.6µs (g)16.6µs (h)18.4µs

-2.0

-1.0

0.0

1.0

2.0

MPa

Fig. 7 Maximum principal stress of epoxy sample under DSW. Horizontal and vertical sections of the model and the
surface of the cylinder are shown. Note the shock waves in the solid and water.

(a)1.6µs (b)5.6µs (c)8.1µs (d)9.6µs

(e)13.6µs (f)15.6µs (g)16.6µs (h)18.4µs

0.0

0.25

0.50

0.75

1.0

MPa

Focusing
waves

Horizontal
section

Vertical
section

Fig. 8 Maximum shear stress of epoxy sample under DSW. Horizontal section, vertical sections and the surface of the
cylinder are shown. Note the shear shock waves.

150µs 152µs 154µs 156µs 158µs

1.6µs 3.6µs 5.6µs 7.6µs 9.6µs

Fig. 9 Numerical and experimental photoelastic images at 2µs intervals, for the epoxy cylinder under DSW. Source of
the experimental images in the bottom row is Xi et al.3).

dense set of light rays passing through the cylindrical sam-
ple, parallel to its axis. The governing equation of photoe-
lasticity can be written in terms of light vector components{
Ax, Ay

}T
, stress components, σxx, σxy and σyy, in a plane

normal to the light propagation direction z and the photoe-
lastic constant C0 for the given material as;

d
dz

{
Ax

Ay

}
=
−ıC0

2

[
σxx − σyy 2σxy

2σxy σyy − σxx

] {
Ax

Ay

}
.

As seen in Fig. 9, the numerically computed photoe-
lastic images match well with that of the experimentally
obtained. The fore-mentioned diverging P-waves and the
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(a)3.4µs (b)7.24µs (c)8.0µs (d)9.8µs (e)10.2µs

(f)11.4µs (g)12.4µs (h)14.0µs (i)14.4µs (j)16.48µs

-25.0

-12.5

0.0

12.5

25.0

MPa

Fig. 10 Maximum principal stress in plaster of Paris samples.

two shear shock waves are easily identifiable in both the
image sets. Some differences in the last set of images are
mainly attributed to the lack of dynamic photoelastic con-
stant and the poor sensitivity of membrane hydrophones
to tensile phase. Irrespective, of these limitations the two
image sets closely match qualitatively validating the nu-
merical model.

It should be noted that the photoelastic images shown
in Fig. 9 carry integrated information of the 3D state of
stress induced in the cylindrical sample(Fig. 7 and 8). The
inverse problem of 3D photoelasticity is still unsolved for
sensitive materials like epoxy due to its non-linear and ill-
posed nature11). State of stress cannot be inferred from
these images even qualitatively.

4.2 Stress waves in Plaster of Paris under FSW
Figure 10 shows the evolution of stress waves in plas-

ter of Paris under FSW. Being the shear wave speed(VP
s )

slightly lower than VW
p , water pressure wave does not in-

duce a shear shock wave in plaster of Paris. Still, the am-
plitude of this shear wave is large since VP

s ≈ VW
p . This

large amplitude shear wave is clearly visible in Fig. 10 (b)
to (g) as a planner red colour strip. Once these, high am-
plitude wave front reaches the distal circular surface, some
portion of its energy is transferred to water and the rest
reflects and focus. When the waves reflect, their phases
change. This focusing of the phase changed reflected wave
and the constructive interference with the incoming waves
create high stress regions as seen in Fig. 10 (d) to ( j).
Especially, in Fig. 10 (g) a localized high stress region
parallel to the cylinder axis is visible. The location of this
region matches with the location of the vertical crack of
the T-shaped crack described at the latter part of this sec-
tion.

4.3 Need of a Dynamic Fracture Criterion
As seen in Figs. 10 (b) to ( f ), the sub-shock shear wave

generates above 25MPa tensile stress in the sample. After
reflecting from the distal surface, focusing and interfer-
ence with the incoming waves generate maximum tensile
stress above 40MPa. These values are several times larger
than the static tensile strength of plaster of Paris, which is

around 4 and 6MPa. In addition, the maximum strain rate
is above 8×103 according to Fig. 11. Both these localized
high stresses and high strain rates indicate that dynamic
failure criterion has to be used in SWL simulations.

4.4 Dynamic Failure Criterion
When subjected to dynamic loading, the crack propaga-

tion is strongly depends on strain rate, stress wave ampli-
tude and the exposure time15),16),17). Due to its simplicity
in implementation, Tuler-Butcher criterion is used in this
study. The Tuler-Butcher failure criterion 15),16),18) can be
expressed as

∫ t f

0
(σ1 − σ0)βdt ≥ Kf , (6)

for σ1 ≥ σ0 ≥ 0 where σ1is the maximum principal stress,
σ0 is a specific threshold stress, t f is time for the fracture
and Kf is the stress impulse for failure. Since experimental
information on the values of β, t f , σ0 and Kf for the ma-
terial of interest are not available, we assumed β = 2 and
σ0 = 15MPa while Kf = 100 × 10−6 MPa2µs . With this
failure criterion, we could reproduces the T-shaped crack
patterns in plaster of Paris samples, observed by Xi et at.
Even with Kf = 50 × 10−6 MPa2µs, the same T-shaped
crack pattern was observed. However, it should be empha-
sized that Tuler-Butcher criterion could not be the best and
better dynamic failure criterion are to be sought in future
studies.

4.5 Comparison of Numerically and Experimentally
Obtained Crack Patterns.

When exposed to multiple pressure pulses, Xi et al.
have observed that cylindrical samples of various sizes
have broken into three parts with T-shaped crack profiles.
The experimentally observed T-shaped crack profiles are
shown in Fig. 12. Just as observed in the experiment, when
exposed to multiple pressure pulses, the cylindrical sample
of the numerical simulation broke into three parts with T-
shaped crack profiles. Fig. 13 shows the crack profile of
the numerical simulation at several sections. The number
at the bottom right of each sub-figure indicates the distance
from the centre of the cylinder (+ and − stands for the left

- 260 - - 261 -



and right). As shown in Fig. 14, the vertical crack of the
numerically obtained crack profile is located almost at the
same place observed in the experiment. This indicates that
numerical crack profile is in good agreement with the ex-
perimental observations, quantitatively.

(a)8.8µs (a)12.2µs

0.0 2.0 4.0 6.0 8.0 ×103

Fig. 11 Maximum strain rate of plaster of Paris sample,
along a horizontal and vertical sections.

Fig. 12 T-shaped cracked plaster of Paris samples (source
Xi et al.3))

Fig. 13 Numerically simulated crack patterns. The num-
ber stands for the distance from the centre.

0.34φ 0.34φ

Fig. 14 Comparison of the location of the vertical crack
surface. φ is the diameter of the cylinder

5. Summary and concluding remarks

Numerical reproduction of some experimental obser-
vations, including 3D dynamic crack propagation, re-
lated to SWL are presented in this paper. SWL related
stress wave and crack propagation simulations requires
fine domain discretization for accurately modelling the
shock waves. Especially, accurately modelling the shear
shock/sub-shock waves induced in solid is important as
those play a key role in fragmenting the stone. To simulate
this crack propagation phenomena requiring multi-million
degrees of freedom, PDS-FEM is used since it provides
simple and numerically efficient failure treatments. As it
is shown, the numerically generated photoelastic images
are qualitatively in agreement with that of the experiment
while the numerically obtained crack patterns are quanti-
tatively in agreement with that of the experiment. These
results indicates the potentiality of PDS-FEM to simulate
complex 3D crack propagation phenomena that require
large scale computations. Further, PDS-FEMs ability to
model crack propagation in heterogeneous materials is
useful in SWL simulations since kidney stones are highly
heterogeneous. In future, detailed study of the sources of
crack initiation and driving, time and spatial distribution of
lithotriptor shock waves for efficiently breaking the kidney
stones, etc. are to be conducted.
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