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A model order reduction (MOR) technique for time transient finite element analysis (FEA) 
imposing prescribed displacement is described in this paper. MOR techniques via a Krylov 
subspace need to generate basis vectors that define the subspace. Second Order ARnoldi 
(SOAR) is one of the major algorithms to generate these basis vectors. In many applications, 
only a Neumann boundary condition is imposed, because to generate the MOR basis vectors 
in SOAR the RHS vector is necessary. In this paper, we propose a treatment of the prescribed 
displacement problem in the framework of MOR incorporated with dynamic finite element 
method (FEM). For this purpose, we introduce not only SOAR but also Block SOAR 
(BSOAR). We then investigate applicability and accuracy in time transient FEA imposing a 
prescribed displacement. 
 
     Model Order Reduction, Krylov Subspace, Prescribed Displacement,      
Transient Analysis  

 
 
 
1. Introduction 

 
In classical seismic design, the massspring model has been 

widely used to evaluate global structural dynamic response. The 
main advantage is fast evaluation of global displacement at major 
sampling points, but it is very difficult to investigate the stress 
distribution and/or local behavior with this simplified simulation. 
A common method for evaluating the local dynamic response 
has been finite element method (FEM). Even if computer 
performance has developed dramatically in the last decade, FEM 
is not always applied in the practical seismic design because of 
the computational time.   

There are several reduction methods applicable to decrease 
the computational cost of FE analysis. The most famous is a 
geometrical simplification by using a structural element like a 
truss, bar or shell. These structural elements can dramatically 
simplify structures with a small number of elements, thus also 
decreasing the total degrees of freedom (DOFs) of the system 
matrix. The alternative is the reduction of the DOFs without any 
change in the FE meshes.  

In this context, there are two famous reduction methods. One 
is Guyan’s reduction1) and the other is a reduction with 
eigenmodes. Guyan’s reduction attains a lot of speed by the 
deletion of unneeded DOFs. However, the accuracy is quite low 
in dynamic analysis because Guyan’s reduction ignores inertia 
effects. On the other hand, eigenmode reduction has the critical 
problem of slower computation. That is why the numerical costs 
of eigenvalue analysis are much higher than for solving of linear 
equations. 
   Recently, a model order reduction (MOR) in general time 
differential discretized system equation has been introduced by 
using projections into a subspace. The advantages of this method 
are: it is not required to solve eigenvalue problems as well as it 
will retain the original system. Currently, the techniques can be 
divided into two major types  singular value decomposition 
(SVD) and Krylov subspace (KS) methods2). SVDMOR 
provides error bounds and preserves stability, while KSMOR 
has no error bounds but has the main advantage of fast 
computation. KSMOR generates an orthonormal basis of its 
subspace, and there are two major algorithms to generate basis 
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vectors3)  the Arnoldi algorithm (AR) and the Lancoz algorithm 
(LZ). Although there are no big differences in accuracy or 
computational costs, AR is more stable than LZ4). In this paper, 
KSMOR is used because of its faster computation, and to 
generate basis vector AR is selected for its robustness. Notes that 
the original KSMOR can only be applied to first order general 
ordinary differential equations (ODEs). 

Dynamic structural analysis involves second order ODEs. 
The first idea for applying KSMOR to higher order ODEs is 
linearization to a first order ODEs5). This linearization induces an 
increase in the number of unknowns. To prevent the increased 
number of unknowns, Bai6),7) introduced a second order Arnoldi 
(SOAR) algorithm which can be applied directly to second order 
ODEs. The mathematical proof of KSMOR can be derived in 
the frequency domain by using the Laplace transform. That is 
called by moment matching property to reveal the features of this 
approximation 6),7),8) .  

Both AR and SOAR require the right hand side (RHS) 
vector. In a case of prescribed displacement problem, there is no 
external force at RHS vector. Therefore, there are no applications 
to prescribed displacement problems as far as the authors know. 
It is not clear that KSMOR with FEM can handle free vibration 
and/or seismic problem as a prescribed displacement condition.  
   In this paper, we will mention how to apply KSMOR to 
FEM with a prescribed displacement condition. After defining an 
equivalent discretized system with RHS vectors, we utilize 
conventional SOAR. The key point is that the equivalent system 
has multiple RHS vectors, so Block SOAR (BSOAR), originally 
developed by Lin9), may be necessary to manage the problems. 
We also investigate the applicability of both SOAR and BSOAR 
for multiple RHS vectors problems. After studying the accuracy 
of a multiple external loading problem, these methods are applied 
to a prescribed displacement problem with an equivalent system 
of discretized equations.  

  
2. Model Order Reduction via Krylov Subspace for 

Second Order System 
 

In this section we present an overview of the KSMOR for 
second order ODEs and its application to time transient FEA. 
After giving the flowcharts of SOAR and BSOAR for 
calculating basis vectors, we show a small equivalent system 
equation defined in a Krylov subspace.  
 
2.1 Time transient FE analysis in elastic body 

The basic equation governing motion of an elastic 
homogeneous medium  enclosed by two different boundary 
conditions is written as 

 (,), +  +  = 0 in , 
      = () on Γ,  = () on Γ,    (1) 
 

where, ,,  and   are vectors of displacement, velocity 
and acceleration respectively, and  ,   and indicate the 
elasticity tensor, viscosity and mass density respectively. Notes 
that the comma in the lower subscription is designated the spatial 
derivatives, and the time derivative is indicated by superposed 
dots. Γ  is the parts of the boundary where prescribed 
displacement are imposed, and Γ is the parts of the boundary 
where traction conditions (Neumann BC) are imposed. The 
traction vector on the boundary is also related to the stress tensor 
by  = , where  are the outward components normal 
to the boundary. Both boundary conditions cannot be applied to 
the same node as shown in Fig.1. That is Γ ∩ Γ = 0 at any 
time.  

 
Fig.1  Boundary condition  

 
After applying the FE discretization with  degree of 

freedoms (DOFs), the matrix form of the governing equations 
with the consideration of boundary conditions can be derived in 
dynamic equation form as     
                 () +  () + () = (),              (2) 
 
where  ∈ ℛ×,  ∈ ℛ×,  ∈ ℛ× indicate the mass, 
damping and stiffness matrix respectively, while    ∈ ℛ, ∈ ℛ,  ∈ ℛ  and  ∈ ℛ  are the nodal acceleration, 
velocity, displacement and force vectors. The damping matrix, D 
is calculated using Rayleigh damping,  =  + . Here, () is a scalar load function of time. 
 
2.2 Generation of KSMOR basis vectors 
(1)  SOAR algorithm for single RHS vector 

In this study, SOAR7) algorithm is utilized to generate basis 
vector of the KSMOR for the second order dynamic system. An th second order Krylov subspace (, ; ) with a pair of 
matrix  =  and  =  is defined by   

  
  (, ; ) = span , , , . . , .         (3) 

 
Here  =   is chosen as a starting vector, and  = A,  =  +  for  ≥ 2. The SOAR, whose algorithm 
is outlined in Algorithms 1, generates orthonormal basis 
vectors ( = 1,2, … , ). These basis vectors are stored at the 
columns of , and they can represent the th second order 
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Krylov subspace 6)7). 
               (, ; ) = span.              (4) 
 
This algorithm can be applied only to problems with single RHS 
vector.  
 
 Algorithms 1: SOAR procedure for problems with single 
RHS vector6) 

1. qqqq1  = r0     =  K=  K=  K=  K-1 f f f f    
2. pppp1 = 0 
3. j =1,2,…, n 
4. rrrr =DKDKDKDK-1 qqqq j + MKMKMKMK-1 pppp    j 
5.    ssss =qqqq    j 
6.  i =1, 2, … , j 
7.  t i j =qqqqi T rrrr 
8.         rrrr := rrrr    ̠  qqqq    j t i j 
9.         ssss := ssss ̠  pppp    j t i j 
10. 
11.              t j+1 j = ‖rrrr‖2 
12. t j+1 j = 0,
13. 
14. qqqq    j +1 = rrrr / t j +1 j 
15.       p p p p j +1 = ssss / t j +1 j 
16. 
17. 


Algorithm 2: BSOAR procedure for problems with multiple 
RHS vectors9) 
1. QQQQ1 = [qqqq1,qqqq2,… ,qqqq    l ]  
2. pppp1 = 0 
3. j =1,2, …, m (= m1×l )
4.  rrrr =DKDKDKDK-1 qqqq    j + MKMKMKMK-1 pppp    j 
5.    ssss =qqqq    j 
6.   i =1,2, …, j + l ̠ 1  
7.  t i j =qqqq    i Trrrr 
8.         rrrr := rrrr    ̠  qqqq    j t i j 
9.         ssss := ssss ̠  pppp    j t i j 
10. 
11.            t j +l j = ‖rrrr‖2 
12. t j +l j = 0,
13. 
14. q q q q j +l = rrrr / t j +l j 
15.       p p p p j +l = ssss / t j +l j 
16. 
17. 


(2) BSOAR algorithm for multiple RHS vectors 

For the case of multiple RHS vectors the governing Eq. (2) 
can be rewritten by  

 () +  () + () =  ()()⋮();            (5) 

 = [  ⋯ ] 

Only (), ( = 1, . . , ) are times dependent function.  
A block version of SOAR (BSOAR)9), can be utilized to 

generate orthonormal basis vectors for problems with multiple 
RHS vectors. The major modification is applied only in the initial 
step. That is, the starting vector  =   in SOAR becomes 
a matrix  =  in BSOAR. Each vector in column of   does not have orthonormal properties. Then, QR 
decomposition   =  is applied. Here,   ∈ ℛ×  is 

upper triangular matrix and   = [ … ] ∈ ℛ× 
becomes starting vectors to preserve the orthonormal properties. 
The algorithm BSOAR is summarized in Algorithm 2. 
 
2.3 Dimension reduction via Krylov subspace 

The idea of projection can be viewed as the approximation of 
state vector () ,  () ,  ()  of the original system by 
reduced state vector (),  (),  ()constrained to the 
second order Krylov subspace spanned by 6). The change of 
state variables can be expressed with vectors of dimension 
 

  ≅  ,  ≅   ,  ≅  .         (6) 
 
Substitute Eq. (6) into Eq. (2) and multiplying with  from 
left will create a reduced system as 

       () +  () + () = ().          (7)         
                                                             

Then KSMOR reduced system matrix can be written as  
                                              =  ;  = ;  = ;        = ,                                         (8) 

                                            
where   ∈ ℛ× ,   ∈ ℛ×  and   ∈ ℛ×  are  ×  matrices, and  ∈ ℛ are  vector.  ∈ ℛ× is a 
KSMOR basis  ×  matrix. The numbers of basis vectors  
are chosen to be as small as possible, but the accuracy with a 
selected   cannot be estimated before computation. Further 
study on error estimation and adaptive selection of the dimension 
of the reduced system after dimension reduction should be 
conducted as presented by Bai10). 
 
2.4  Inverse projection into real space 

The small system of equations defined in Eq. (7) for a 
solution in a Krylov subspace can be numerically solved by a 
conventional time integration scheme such as the Newmarkβ11) 
method. An approximate solution in real space for displacement, 
velocity and acceleration is given from the small system 
solutions as in Eq. (6).  

It is not necessary to apply the inverse projection at each time 
increment. Also note that the number of outputs can be selected 
according to purpose. For example, to evaluate displacement, 
velocity and acceleration for a few output points, the inverse 
projection should be applied only to the output points. The 
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overall KSMOR procedure is summarized in Fig. 2. 
 

 
Fig.2  Research Flow 

 
3. Treatment of problems imposing prescribed 

displacement  
  

As shown in Algorithms 1 and 2, SOAR and BSOAR 
require RHS vector information. In this section, equivalent 
systems equation with RHS vectors for problems imposing 
prescribed displacement is defined for application of SOAR and 
BSOAR.  
 
3.1 Equivalent system equations with RHS vectors 

By renumbering unknown vector components in Eq. (2), a 
block system equation can be written as 

        +        

                                 +       = ()  ,  (9)   

                  
where the subscript   indicates values related to constraint 
nodes and the subscript   indicates unknown values. We 
assume that , ,  are prescribed before FEA. Note that 
the nodal points given a prescribed displacement, velocity and 
acceleration cannot take an external force vector. That is,  = 0 at any time. The Eq. (9) should be solved only for  ,   and . Therefore, these equations can equivalently be 
written as 

   +   + 
= [   ] ()()()(). 

 
 
(10) 

  
Here, (), (), () and ()  are scalar load 

functions of time defined for RHS input vectors. Note that the 

equivalent predescribed values   ,     and    has the 
following relationships; 
 
             = −,  = −, 
            = −.                         (11) 
 
3.2 KSMOR implementation

 
To generate KSMOR basis vectors of equivalent system 

for prescribed displacement problem,  ,   and  are 
substituted into all equation in Algorithm 1 and 2 instead of ,  and . Then, the same procedure as conventional KSMOR, 
which is summarized in Fig. 2, can be applied. The next process 
is dimension reduction in Section 2.3, and the last process is 
inverse projection in Section 2.4. 
 
4. Performance check of SOAR and BSOAR in a 

multiple RHS vectors 
 

Before a prescribed displacement problem is solved, multiple 
external loading problems are solved by KSMOR with the 
SOAR and BSOAR algorithms. The reason is evaluate the 
performance of BSOAR for multiple RHS vectors problems and 
to show the accuracy of SOAR. Then, a prescribed displacement 
problem is solved by KSMOR using BSOAR algorithm. 

 

 
Fig.3  Model dimension and input load function for load1 and 

load2 for prescribed two loads (Neumann boundary). 
 

4.1 Problem details 
In this section, we apply both algorithms described in the 

previous sections to a simple 3D column with eight square holes. 
The model is analyzed by conventional FEM and KSMOR. 
The FE model has 40960 quadratic Hexa elements and 152019 
DOFs. The material is isotropically elastic, and the Young 
modulus (E),  density (ρ) and poison ratio (ν) are 196 GPa, 
7.95× 103 kg/m3 and 0.3 respectively. The coefficients for 
Newmarkβ 10) are β = 0.25 and δ = 0.5. The Rayleigh damping 
coefficients are assumed to be = 0.1 and  = 0.1. In this 
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section, the conventional FEM solution is taken as reference 
solution to check the accuracy of KSMOR. 
 
4. 2 Multiple external loading problem  

Two different loads, which are labeled load1 and load2, are 
applied at the same time on the top surface of the column. These 
loads are given as surface forces. The maximum value for each is 
1 N/mm2, and these loads are defined by functions of time as 
shown in Fig.3. These loads are applied in different directions. 
Load1 is directed parallel to the xaxis, and load2 may set in one 
of three different directions in the xy plane. The angle between 
load1 and load2 is either 0.001o, 45o or 90o. The loading period is 
1.0 second, and time increments are fixed at 1.0×103 second.  

The horizontal displacement at the corner point has been 
plotted versus time in Fig 4 (a)(c). The conventional FEM 
system equations were projected into small system with 8 – 12 
basis vectors calculated by BSOAR and SOAR algorithms. 

In each graph, four results are plotted with different lines.  
The solid line shows the reference solution by FEM, and the gray 

bold line is the KSMOR solution with BSOAR. The long and 
short dotted lines are KSMOR with SOAR, the difference being 
the loading vector information for generating basis vectors in 
Algorithm1. The long blue dotted line is the solution with load1 
vector, and the short red dotted line shows the solution with 
load2 vector. Note that it is sometimes very difficult to see 
differences between FEM and many KSMOR solutions in these 
graphs. 

Only eight basis vectors are used in each KSMOR solution. 
To specify the size of the basis, the notations SOAR1(8), 
SOAR2(8) and BSOAR(2×4) are utilized. The displacement 
results in the x and y directions obtained by the BSOAR 
algorithm match very well compared to conventional FEM in all 
the loading cases. SOAR1(8) shows a critical error only in the y 
displacement in case2 and case3, and SOAR2(8) has error only 
in the x displacement. In these results with SOAR, displacement 
in a direction that is the same as the selected loading direction 
shows good agreement with the FEM solution, but 
displacements in other directions may infer critical errors.  

  
Fig. 4 (a) Displacement in x and displacement in y for θ = 0.001o, (b) Displacement in x and displacement in y for θ = 45o,  

(c) Displacement in x and displacement in y for θ = 90o 
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(c)　case3 : θ=90°
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In order to investigate the reasons of error, KSMOR basis 
vectors are compared to eigenmodes. KSMOR basis vectors 
depend on the loading vector as mentioned, for case3 these 
vectors are plotted as deformation modes in Fig. 5(a)(b). The 
eigenmodes are given by MSC.Marc2003. Some of the 
KSMOR basis vectors show modes similar to the eigenmodes. 
The 3rd and 4th eigenmodes are compared in Fig.5 (a) and (b) 
respectively. Fig.6 shows high frequency vibration modes in the 
KSMOR basis vectors. 

 

(a)  

(b)  
Fig.5 (a)(b) EigenMode 3 and 4 with similar KSMOR basis 

mode.


Fig. 6  KSMOR high frequency vibration modes 

 
These comparisons of ten eigenmodes are summarized in 

the Fig. 7. The numbers in the rows labeled BSOAR, SOAR1 
and SOAR2 indicate the number of basis vectors in each 
algorithm. BSOAR includes many eigenmodes deformations, 
but SOAR may select only modes related to one of the loading 

directions. From these comparisons, KSMOR may have similar 
properties to the eigenmode decomposition method, but these 
basis vector modes are not exactly same for eigenmodes 
decomposition.  

 
Fig.7 Summary of similar KSMOR mode basis and 

EigenModes 
 

Below, we summarize the results of KSMOR 
approximation for the multiple loading problems. 
1) Some KSMOR basis vectors modes are similar to 
eigenmodes for low frequencies.  
2) BSOAR may generate reasonable vibration modes related to 
each loading pattern.  
3) SOAR generates vibration modes related to the selected 
loading vector.  
4) In the case of similar loading directions (refer to case1), 
KSMOR with SOAR may give good approximation with few 
basis vectors. 
5) BSOAR is more accurate than SOAR in the case of multiple 
loading. 

Note that KSMOR with the SOAR algorithm is not so 
much lessaccurate in the case of multiple loading if enough basis 
vectors are selected. When this number is increased from eight to 
twelve, in case3 for example, displacement in the x result can be 
improved dramatically as shown in Fig. 4(c). This tendency has 
been checked in the other examples.  
 
4.3 Prescribed displacement problem 

Using an equivalent system of equations, prescribed 
displacement problems have multiple RHS vectors. In this study, 
the same structure as Section 4.2 was used, and the prescribed 
displacement at the bottom boundary was given by sine wave 
with 10 Hz frequency. The maximum displacement is 1mm. 
Then, scalar loading functions in Eq. (10) are given by 
    
           = sin(2),  = 2 cos(2), 
           = −4sin(2).                     (12) 
 

Only the KSMOR solutions with BSOAR are given here. 
The performance of BSOAR with the original three RHS vectors 
and two RHS vectors, in which one of the RHS vectors is 
neglected, are checked in this section. 
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In this example, the number of basis vectors is fixed at six.  
The labels of BSOAR(2×＊) and BSOAR(3×＊) indicate two 
and three RHS vectors respectively. The difference of 
BSOAR(2×3)a and BSOAR(2×3)b is the selection of RHS 
vectors to generate basis vectors. BSOAR(2×3)a uses  = − and   = −, and BSOAR(2×3)b uses  and  = −.  

Fig.8 shows displacement, velocity and acceleration at the 
output node as in the previous example. In each graph, four 
results are plotted, where the solid black line shows FEM 
reference solution, and the gray and dotted lines are KSMOR 
with different RHS vectors. In both cases, the BSOAR solutions 
for displacement and velocity in x show good agreement with the 
reference solution evaluated by FEM. Only the acceleration 
result has a small error, as seen in Fig.9. The error can be 
considerably reduced by increasing number of basis. 

 

 

 

 
Fig.8 Displacement, velocity and acceleration in xaxis for 

prescribed displacement with 6 KSMOR basis 
 

 
Fig. 9  Details of acceleration in x for time of 0.85－0.9 second 

 
We also investigated the displacement in both y and z 

directions. Fig.10 shows that BSOAR(3×2) with three RHS 
vectors created large displacement in the y direction. Also, 
BSOAR(2×3)a, in which the combination of vectors  and  
are used, created greater oscillation than in the reference solution. 
All cases show good agreement in the z displacement.  

 

 

 
Fig.10  Displacement in yaxis and the zaxis 

 
To investigate the reason of these results, we checked the 

direction of the loading vectors; ,  and , because the 
performance of BSOAR may decrease in the case of similar 
loading pattern as in Section 4.2. The inner products between two 
input vectors were used to check the loading directions. The 
results are listed in Table 1.  

 
Table 1  Inner product of two RHS basis vectors 
Vector  inner product | ·  | 0.676 ×109 – 0.214×107 | ·  | 1.0 | ·  | 0.676×109 – 0.214×107 
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The results in Table 1 are for Rayleigh damping coefficients 
in the ranges of 0.001 ≤  ≤ 1.0 and 0.001 ≤  ≤ 1.0. 
These results mean that   and  are similar vectors in the 
Rayleigh damping. From these inner products of two input 
vectors, we guess the two suitable input forces are either the pair 
of vectors  and  or   and  .  
 

 
Fig.11  Von Misses stress of KSMOR and FEM 

 
At the end, the stress distribution is compared with the FEM 

reference solution to check the accuracy. Fig.11 shows that both 
FEM and KSMOR give stress distributions with a peak in the 
displacement in the x direction at point A in Fig.8. The stress 
distributions are plotted to show the similarity in this behavior. 
The maximum value of stress indicated in the contour range 
shows that BSOAR(2×3)b can accurately represent not only the 
local response as a nodal value but also the global stress 
distribution. However, BSOAR(3×2) using three inputs gives 
higher stress as shown in the contour range. This is related to 
greater displacement in y. 
 
4.4 CPU Time 

As you can see from Algorithms 1 and 2, the KSMOR 
procedure involves many linear equations with the same 
coefficient matrix. Thus, a direct solver with triangular 
decomposition may have an advantage compared with iterative 
or other solvers. In this research, the LDLT solver with skyline 
storage is used in both FEM and KSMOR, so that the triangular 
decomposition is only done once.  

Table 2 shows a list of CPU times. The measurement of 
CPU time counts for all the procedure including the generation of 
basis vectors and the reduction of system matrix. The total time 
increment is 1000 steps. The total DOFs is 152019, with 6 – 18 
basis vectors being used for KSMOR in this measurement. The 
computational efficiency compared to conventional FEM 
calculations is 1.89 – 2.51% in CPU time. Note that parallel 
computation is never used in these comparisons, and the 
processor is an Intel Core i7 with a memory of 8GB. Nonetheless, 

it is not necessary to apply the inverse projection in order to 
evaluate the nodal values for each increment. In general, the 
inverse projection is applied only to output nodes, where 
displacement records should be evaluated to decrease CPU time. 

In future work, it would be better to use the parallel 
computation, and find some way to reduce memory 
requirements for large scale computation.  

 
Table 2  CPU time 

Type of Model No of 
basis 

Time 
(sec) 

Original 
system (sec) 

% 
Diff 

Multiple loading 
(Neuman condition 

8 460 24226 1.89 
12 480 1.98 

Prescribed 
Displacement 

6 426 21101 
 

2.01 
12 479 2.27 
18 530 2.51 

 
5. Conclusion 
 

This study has shown the procedure for applying KSMOR 
to prescribed displacement problems. KSMOR shows accuracy 
in numerical analysis compared to conventional FEM. To solve 
prescribed displacement problems, a modification to the dynamic 
equations using an equivalent system with RHS vectors is 
considered. Since the equivalent system requires multiple inputs, 
BSOAR is necessary to generate basis vectors. Reasonable 
combinations of the RHS vectors show a very accurate result to 
reproduce the reference solution, but in the case of a combination 
of  and  vectors which are parallel, BSOAR basis creates 
unstable results in KSMOR. Then we recommend checking the 
inner product between input vectors in order to select the 
reasonable input vectors. 

KSMOR promises low computational time and cost by 
solving linear equations 52 times faster than the conventional 
FEM in an example. Needless to say, the effective ratio depends 
on the degree of freedoms (DOFs) and number of increments in 
time.  
There are a couple of major problems remaining in KSMOR. 

One is a topic related to error estimation, and the other is 
selection of the number of basis vectors. In our future, we will try 
to fix the above problems, and we are going to apply the 
KSMOR into large scale FE models using an iterative solver. 
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