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The semi-empirical relationship between coefficient of earth pressure at rest Ko and the 

internal friction angle proposed by Jáky is widely accepted in practice. This relationship is a 

simplified equation derived from the stress state in a prismatic sand heap inclined at the angle 

of repose on the rough and firm base. Though Jáky’s derivation is theoretically correct, it was 

later considered coincidence. This study examined other possible derivations of the 

relationship based on Jáky’s approach by using scaled stress and generalized shear stress 

reduction functions. The results of formulation lead to associate lateral stress ratio in the center 

of sand heap with degree of arching. The analyzed stress distribution, in which the major 

compressive stresses carry the granular weight to the base in a particular pattern, is found 

reliable with experimental data and indicates a good agreement with Jáky’s Ko expression. 
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1. Introduction 

 

The coefficient of earth pressure at rest, Ko, is the ratio of 

effective horizontal pressure to vertical pressure, acting on 

principal planes in the condition of horizontally constrained 

deformation. Analyses of many geotechnical engineering 

problems often require the magnitude of Ko to describe in-situ 

lateral earth pressure. Jáky (1944)
1)
 initially derived the 

relationship between Ko and the internal friction angle   as 

shown in Eq.(1). Later, Jáky (1948)
2)
 simplified his original 

equation to Eq.(2) as the semi-empirical relationship. It is clear 

that both Ko equations reasonably provide Ka<Ko<1 where Ka is 

a coefficient of active earth pressure shown in Eq.(3). Ko 

obtained from Eq.(1) gives value about 90% of Eq.(2) over a 

range of  between 10

-40


. Due to this small difference, the 

formula Ko=1-sinυ is well-known for geotechnical engineers 

due to its simplicity in practice, e.g. giving Ko = 1/2 whereas Ka 

= 1/3 for  =30

. 
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Figure 1 Relation between various coefficients of lateral 

pressure and friction angle with some experimental data 
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Many researchers have been studied and determined 

magnitudes of Ko from in-situ and laboratory tests for a 

world-wide variety of soils
3)-7)

. Despite of discussions on the 

influences of stress history, stress level, void ratio, 

inhomogeneous degree and effect of  based on either peak or 

residual shear strength, those of researches arrive to a common 

conclusion that, the measured values for homogeneous sands 

and clays in a state of primary loading show a good agreement 

with Jáky’s correlation as shown in Fig. 1. Therefore, the 

attractive simplicity of Jáky’s semi-empirical formula linking Ko 

to   is widely accepted.  

Much effort has been made to measure Ko because Ko  is 

determined by strain-controlled, not a parameter obtained by 

stress-controlled experiment. It is doubted whether how this 

complicated relationship can be uniquely expressed in very 

simple terms, using only one basic soil parameter but applicable 

to almost soil types. Therefore, the Jáky's formula from the 

theoretical standpoint has drawn many interests. Though 

formulation of Jáky’s Ko is not familiar due to disadvantage to 

publishing in Hungarian, Jáky’s assumption and analytical 

method were critically examined
6),8)-11)

. It was found that, 

(i) The analysis is not associated with one-dimensional strain 

state but the result of principal stress orientation regulated by the 

particularly assumed shear stress distribution in granular mound. 

(ii) The boundary condition does not correspond to Ko 

physical condition of a wide loaded area where horizontal 

boundary of soil mass is infinite; therefore, the validity of Jáky’s 

Ko equation should be exclusively applied to the center line of 

symmetrical embankments with slope forming the angle of 

repose with the horizontal ground surface.  

In earlier research, a ratio between lateral to vertical 

pressures at the symmetry axis of a wedge was assumed 

constant and termed as a compaction factor K in Brahtz (1936)’s 

solution of stress distribution
12)

. In the same context, Jáky 

(1944)
1)
 formulated the Ko equation from a stress analysis in a 

long wedge-shaped granular heap in loose state lying at the 

angle of repose  as depicted in Fig. 2. The coefficient of lateral 

stress K at the symmetrical line of the mound, whose elastic 

region is sandwiched by plastic region, was considered to be Ko. 

In-plane purely frictional Coulomb material with fixed slip 

planes in plastic region was assumed while the shear stress 

distribution was supposedly reduced to zero at the center in 

elastic region.  

Michalowski (2005)
11)

 pointed out that Jáky’s analytical 

method proposed in 1944 is theoretically acceptable. But stress 

distribution across the width of the heap was found unrealistic 

when comparing to the experiments on sand piles, e.g. Vanel et 

al. (1999)
13)

. This verification leads to the conclusion that Jáky’s 

Ko is a coincidental findings (see also Handy
9)
, 1985) which 

happens to fit with laboratory measurements. 

In fact, the resemble hypothesis used in Jáky (1944)
1)
 was 

considered to explain the curious phenomenon of central 

pressure dip underneath the granular mound (Wittmer et al., 

1996, 1997)
14)-15)

. Cantelaube & Goddard (1997)
16)

, Cates et al. 

(1998)
17)

 and Didwania et al. (2000)
18)

 also analyzed the stress 

distribution in granular wedge by separating the continuum into 

elastic and plastic regions. All stress components satisfying the 

stress equilibrium were continuously across this boundary (see 

Figs. 2-3). The analytical solutions reveal the vertical normal 

stress at the center can exhibit a dip, a peak and a flat by varying 

the adjustable parameter which is a value of the slope separating 

the elastic-plastic boundary. The closure remarked the variation 

of vertical pressure is caused by arching action over the base of 

the heap. A case of pressure dip surprisingly gives a coefficient 

of lateral stress K at the mid-plane of the heap equal to 1 while a 

case of flat distribution of vertical pressure gives K equal to Kw 

which is known as Krynine (1945)’s wall coefficient
19)

. Kw is 

defined as the ratio of the lateral to vertical stress mobilized 

along a vertical plane. It is clear that Kw gives higher value than 

Jáky’s Ko, e.g. Kw =3/5 for  =30

. 
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Therefore, the magnitude of K involves a certain degree of 

arching and there is a particular arching criterion which can 

associate with Ko. However, the relation of stress distribution 

with arching action in sand heap is remaining unclear. The 

authors have reviewed Jáky’s approaches on stress analyses in 

sand heap and storage silo (Heng et al., 2008)
20)

. It is apparent 

that Jáky assumed quadratic shear stress reduction in sand heap 

but differently assumed linear shear stress reduction in storage 

silo. There is no rational clue for these inconsistent assumptions.  

This research aims to clarify the drawback of Jáky’s basic 

assumption and examine other formulations of Ko by using a 

method of scaled stress with generalized shear stress reduction 

functions. In extension to the past researches, the authors 

consider the essence of Handy’s arching assumption
9)
 (1985) to 

widen Jáky’s assumption in effort to validate Ko in prismatic 

sand heap. The resulted stress distribution is compared with the 

published experimental data. Interpretation of the results relating 

to arching effects is presented and discussed. This basic study is 

expected to be a useful review and rationale for theoretical 

validation of Jáky's semi-empirical Ko equation.  
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Figure 2 Prismatic sand heap lying at the angle of repose  with 

the horizontal on a rigid and rough base. State of stress along the 

center line is considered as at-rest condition by Jáky (1944) 
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2. Theoretical Background 

 

According to the review made by Savage (1998) 
21)

, analysis 

and modelling of stress distribution under either prismatic or 

conical heaps have been extensively studied, ranging from 

Airy’s stress function approach in earth dam
12)

, discrete 

approach in embankment
22)-23)

, continuum approach in sand 

piles
10)-11),14)-17),24)

 and recently by finite element method
25)

. 

Despite of numerous techniques, this study focuses on the 

continuum approach for prismatic heap in an attempt to present 

the analytical method that conforms to Jáky’s approach. 

 

2.1 Continuum Mechanics Approach 

A sand heap can be assumed to be a homogeneous body 

because a length scale of a whole material is sufficiently large in 

compare with individual sizes of particles. A sand heap, which is 

composed of numbers of granules, can be symmetrically piled 

up on rough and firm surface in a long prismatic shape with the 

highest slope inclined at the angle of repose . Self weight 

transferred to vertical support stabilizes the sliding force due to 

the frictional resistance among sand particles and along surface 

roughness of the base.  

As illustrated in Fig. 3, due to a symmetrical shape, the half 

width of the heap ACO is considered, where the vertical z-axis is 

measured vertically downwards from the apex of the mound and 

the horizontal x-axis is measured horizontally outwards. The 

slope OA is inclined with horizontal AC at the reposed angle . 

The internal friction angle  is generally equivalent to the angle 

of repose for loose deposit of granular materials. 
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Figure 3 Idealized plastic and elastic regions in half-width body. 

Elastic core is sandwiched by plastic crusts along the plane of 

elastic-plastic boundary sloping at angle  . It is considered 

  where Ψ represents the direction of the maximum 

compressive stress in plastic region. 

 

In Fig.3, the continuum of the mound is divided into plastic 

and elastic regions by the plane OB. The outer plastic shells are 

slipped along layers of infinite slope. We can see that the whole 

plastic crust ABO is placed above the inner region of elastic 

core BCO. Blocks of finite thickness in ABO are sliced by two 

sets of slip planes; the parallel plane to the slope surface and the 

vertical plane. Stress components along the elastic-plastic 

boundary must be connected. Therefore the continuum of stress 

is maintained along the slope OB oriented at the angle  from 

the horizontal. We can observe that the elastic core is 

symmetrical along OC plane. This plane is assumed by Jáky as 

the plane of at-rest condition where the direction of major 

principal stress is normal to the base. At the free-surface AO, 

material is essentially in a zero stress state. Moreover, at the 

mid-plane OC, shear stress must be zero due to symmetry and 

absence of frictional horizontal support. Stress components 

throughout the heap must satisfy the two-dimensional 

equilibrium equations condition given below, 
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           (5) 

where σx is a horizontal stress, σz is a vertical stress, τxz is a shear 

stress,  is a unit weight of bulk material. The subscript x and z 

refer to horizontal and vertical axes as depicted in Figs.2-3. 

 

2.2 Scaled Stress Functions 

As a granular heap grows in size, the bulk material deposited 

in thin layers on the slope face remains inclined at the angle of 

repose. So there is no change in shape throughout the formation. 

By ignoring the bin effect, it is possible to find the similarity 

solution in which the stress states are proportionally increased 

with depth. Many research works assumes the patterns of stress 

distributed in granular heap are independent of 

height
10),14)-18),24),28)

. By following Sokolovskii’s scaled stress 

analysis of planar wedge
24)

, the ratios of stresses σx, σz and σxz to 

the equivalent geo-static pressure z are respectively defined to 

the scaled stress variables x, z and xz. 

x x z   , z z z   , xz xz z       (6), (7), (8) 

According to Eqs.(6)-(8), we can substitute σx =zx, σz 

=zz and σxz =zxz to Eq.(5) and arrive to Eq.(9). 
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          (9) 

   Under the scaled stress analysis, similar patterns of stress 

distributions are assumed to all depth. That means the scaled 

stress variables are depended only on a scaling variable x/z. By 

adapting Wittmer’s notation
15)

, a relative width s is defined in 

Eq.(10) as a scaling variable x/z normalized by the maximum 

value at the slope face. Fig. 4 envisages a geometrical 

transformation of a heap from a physical scale (in dimension of 

height H and half-width of base Hcot) to a normalized scale. 

We note that s=0 at the symmetrical line passing the center, s=1 

at the slope face and s s  at the elastic-plastic boundary. We 

can see that s  does not only mark the elastic-plastic boundary 

described by Eq.(11), but s  can be also regarded as a 

proportion of elastic zone in a body of a heap.  
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Figure 4 Normalized geometry of granular heap from a 

physical geometry (left) to a scaled geometry (right) 
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According to Eq.(10), spatial derivatives of s with respect to 

coordinates x and z are given by the following equations. 

1
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, 
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As mentioned earlier, stress field function σx(x,z)=zx(x/z),  

σz(x,z)=zz(x/z) and σxz(x,z)=zxz(x/z) are basically postulated 

in Sokolovskii’s scaled stress analyses of wedge
24)

. For 

convenience, the scaled stress variables are modeled to be a 

function of a relative width s in this study as described in 

Eqs.(14)-(16). The derivatives of x, z and xz with respect to s 

are given by Eqs.(17)-(22). 

( )x x s  , ( )z z s  , ( )xz xz s    (14),(15),(16) 
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The system of ordinary differential equations in 

terms of scaled stress variables and relative width can be 

formulated by substitutions of Eqs.(14)-(22) to Eq.(9). 
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      (23) 

Three unknown variables in Eq.(23) are x, z  and 

xz while number of equations are two, therefore one 

additional equation is necessary to solve the system of 

equations. This required equation is usually regarded as 

a class of constitutive equation in continuum mechanics. 

Providing that a particular form of xz is known, the 

derivatives x/s and z/s can be solved from the 

above differential equation.  
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The integral forms of above differential equations x(s) and 

z(s) can be manipulated below. 
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The integral constants cx and cz are obtained from the 

boundary conditions. The necessary boundary conditions are 

given at the continuity of state of stresses along the slope 

boundary s  which separates plastic and elastic regions. 

( )x x s  , ( )z z s                       (28), (29) 

By using the described boundary conditions Eqs.(28)-(29) 

to Eqs.(26)-(27), the algebraic solution of x and z can be 

expressed. 
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Figure 5 Typical Mohr stress circle used to describe the state of 

stresses in fully mobilized plastic zone of a granular heap 

inclined at angle of repose. Pole O is determined by the 

intersection of a slip plane  of slope face and a conjugate slip 

plane π/2. The angle Ψ indicates the direction of major principal 

stress. By geometry, Ψ=/4+/2 inclined with the horizontal 
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3. Local Constitutive Equations 

 

The constitutive equation of materials is generally expressed 

in stress invariants and independent of boundary condition. 

However, closures in several papers proposed local constitutive 

equations to explain stress distribution in sand heap (see Savage, 

1998)
21)

. This study is also restricted to the local constitutive 

equation because the specific boundary condition is embedded. 

Throughout this study, components of normalized stress are 

given by the following conditional expressions which obey two 

local constitutive equations used in plastic (“p” superscript) and 

elastic (“e” superscript) regions. 

( ) if     
( )

( ) otherwise

p

e

s s s
s

s






 
 


         (32) 

 

3.1. Mohr-Coulomb Criterion with Fixed Principal Axes 

In plastic region, stress in bulk material is characterized by the 

Mohr-Coulomb failure criterion with zero cohesion. In this 

closure, the slip planes are fixed, the angle of major principal 

direction is Ψ=/4+/2. The states of stresses described by 

Mohr’s stress circle exhibited in Fig.5, are expressed as follow.  

tanxz x   , thus tanp p

xz x                      (33) 

2 tanz x xz     , thus  21 2 tanp p

z x         (34) 

From Eq.(33) and Eq.(34), the derivatives of p
xz and p

z with 

respect to s are obtained. 
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Substitutions of Eqs.(33), (35) to Eq.(24) and Eqs. (34), (35) 

to Eq.(25) can obtain the following derivatives with respect to s. 
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Combining Eqs.(36)-(38) can derive the solutions given below. 

  2( ) 1 cosp
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  cos( ) 1 sinp

xz s s              (41) 

Since the continuity of all stresses on boundary between 

elastic and plastic zones marked on s  is required. 

Components of boundary stresses variables are expressed by 

substitution of s s  into Eqs.(39)-(41). 

( )p

x x s  , ( )p

z z s  , ( )p

xz xz s   (42), (43), (44) 

3.2 Shear Stress Reduction Models 

Central core behaves elastically, so the state of stresses lies 

inside Mohr-Coulomb failure criterion. The local constitutive 

equations in elastic region are generalized and explained. The 

possible solutions can be derived under shear stress reduction 

models which appeared in Witter et al. (1996, 1997)
14)-15)

. It was 

later extended and verified by Catelaube and Goddard (1997)
16)

, 

Cates et al. (1998)
17)

 and Didwania et al. (2000)
18)

. This class of 

closure assumes that shear stress in elastic core is linearly 

reduced along horizontal distant from elastic-plastic boundary to 

zero at the center. To include non-linearity in this study, the 

extended shear stress reduction models are suggested in form, 

( , , )e

xz xzr a b     (45) 

where  0,1s s    is an internal coordinate,  0,1r  

is a non-linear reduction function and s  marks the 

elastic-plastic boundary. The simple form of r functioned with η 

can be characterized by the following curving function,  

 1 1
a br   , hence   

1

( , , ) 1 1
b

a
r a b      (46) 

where a and b are positive real numbers which help adjust an 

desired curvature. The derivatives of e
xz with respect to a 

normalized slope s can be given by, 

1
1

1 1 1

e

xz

xz

b
a a b

xz

r

s s

a s s

b s s s

 









  


  

    
            

     (47) 

where  
1 11

a br a
r

b




 
 


, 

1

s s





 by Eqs.(45)-(46).  

It is remarked that ∂e
xz/∂s (or ∂r/∂η) is undefined at s=0 (or 

η=0) for b>1. Nevertheless, 5 cases of reduction function are 

studied and illustrated in Fig.6, including the case of b>1 

employed in case (3). Using Eqs.(45)-(47) together with 

Eqs.(30)-(31), the solution of stress profiles can be obtained for 

each shear reduction models. Detailed solutions are grouped in 

Appendix case (1) to case (5). A coefficient of lateral earth 

pressure K at the center of granular heap can be evaluated as a 

ratio of the horizontal stress to vertical stress. K is determined by 

a limit of σx/σz when s approaches to 0 as shown below. 

0 0
lim lim

e

x x

es s
z z

K
 

  
   due to Eqs.(6)-(7)       (48) 

In linear reduction model (see Appendix case (1)), for a given 

s , e
x maintains constant, e

z is linearly dependent on s. This 

solution is confirmed with the earlier research (Cantelaube & 

Goddard, 1997)
16)

. Despite of undefined K in case (3), 

according to the expressions of K summarized in Table 1, it can 

be concluded that K are depended on a choice of reduction 

functions and s  is considered as an adjustable parameter. 

c c
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
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Figure 6 Various variations of reduction functions 

 

Table 1 Coefficients of lateral pressure K expressed as functions 

of elastic-plastic boundary slope in corresponding to 5 selected 

cases of shear stress reduction.  

Cases
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3.3 Jáky’s assumption 

In regarding to Fig.3, the direction of major principal stress 

inclines at Ψ and the direction of elastic-plastic boundary 

inclines at   with horizontal. Jáky (1944)
1)
 particularly chose 

  equal to Ψ in order to prohibit shear stress along 

elastic-plastic boundary. Therefore, s  can be determined from 

Eqs.(49)-(50), consequently the solutions for stress distribution 

can be solved and demonstrated in Figs.7-11 for  =33º. 

In linear reduction of case (1) is known as “FPA model” 

(fixed principal axis) coined by Wittmer et al. (1996, 1997)
14)-15)

 

because Ψ is fixed throughout the mound. Michalowski 

(2005)
11)

 emphasized that Wittmer’s assumption appears to 

resemble the theoretical effort of Jáky by choosing    . 

4 2

 
   , 

cot cot sin

cot cot 1 sin
s

 

  


  


    (49), (50) 

FPA model associates to the extreme case of arching effect 

due to the central stress dip. Wittmer et al. (1996)
14)

 explained 

that the uniform stack of arches carrying self weight to the base 

lies straight with constant direction. It is surprised that an 

isotropic condition is achieved at the center line because K=1.  
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Figure 7 Resulted stress distribution by shear reduction case (1) 
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Figure 8 Resulted stress distribution by shear reduction case (2) 
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Figure 9 Resulted stress distribution by shear reduction case (3) 
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Figure 10 Resulted stress distribution by shear reduction case (4) 
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Figure 11 Resulted stress distribution by shear reduction case (5) 
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In effort to formulate Ko equation, Jáky (1944) proposed 

quadratic reduction of shear stress
1)
 (see Appendix case (2)) as 

given in Eq.(71) Manipulations of equations to obtain the 

solution are explained shortly (see details in Michalowski, 

2005)
11)

. The expression of Jáky (1944)’s Ko is obtained thru K 

in Eq.(75), derived by integration of partial derivatives obtained 

in Eq.(72) with the boundary conditions defined in Eqs.(42)

-(43), using s specified in Eq.(50). The resulted stress profiles 

are demonstrated in Fig.8. But the vertical stress profile with 

local minimum appearance is considered unreliable by 

Michalowski (2005)
11)

 when comparing with typical 

experimental results. 

In a similar manner, to formulate other possible K equations 

which can be derived by the condition between case (1) and 

case (2), more detailed derivations are added in this study by 

power rules as given in Eq.(76) in Appendix case (2.1): a=1, 

b=1/(1+n). A positive number n≥0 is applicable in regard to the 

applicable range discussed previously that 0<b≤1 should be 

used in reduction functions to avoid singularity. The formulation 

of K in this case is shown in Eq.(51). It is found that there are 

two distinct conditions of K for n=0 and n>0.  

 

1 if

2
1 sin

2 1 sin if
1 sin

0

0

n

n

K
n













 
 

 

          (51) 

Table 2 shows variation of K by various n. It is found that as 

n→0, K→1-sin  is exactly the expression of Ko used in Jáky 

(1948)
2)
. But if n=0, K=1. To explain the reason of immediate 

change, the stress profiles for various n are plotted in Fig.12. It 

can be see that the vertical stress z=γz at the center equals to 

geo-static pressure when n>0 but z=γz(1-sin) when n=0.  

Therefore, formulations of K for case (1)-(5) are theoretically 

correct but the resulted stress fields appear unrealistic due to an 

inappropriate adjustable parameter. Condition of Eq.(50) 

adopted in Jáky’s assumption unreasonably equates the slope of 

elastic-plastic boundary to the major compressive direction.  

 

Table 2 Influence of power degree to coefficient of lateral earth 

pressure based on nonlinear reduction of shear stress 

n K Note 
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Figure 12 Unrealistic stress distribution results based on Jáky’s 

assumption with the singularity at the center line of heap 

 

4. Validation with Experimental Data 

 

4.1 Experimental Data 

The earliest measurements of normal stresses across the base 

of a granular wedge were conducted by Hummel and Finnan 

(1920)
26)

, following by a series of sand wedge experiments 

carried out by Trollope (1957)
22)

 and Lee and Herington 

(1971)
27)

. It is of interest that an intuitive expectation in 

considering the maximum amount of pressure underneath a 

poured sand heap is sensed commonly in the middle, directly 

under the apex. But in fact, the results of experiments have been 

reported that a granular media exerts its maximum pressure at a 

slight distant from the centre point depends upon 2D/3D 

geometry, rigidity/deflection of the base and the formation 

process/construction history of the heap. 

 





rigid base with fully rough surface

funnel source

angle of repose 

 

Figure 13 Heap constructed by pouring sand from a funnel 

source in sequences of prismatic wedge 

 

rigid base with fully rough surface

sieve source

planar geometry

angle of repose

 

Figure 14 Heap constructed by pouring sand from a sieve source 

in sequences of raining layer 
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This fact was systematically confirmed by experiments of 

Vanel et al. (1999)
13)

 on poured sand of =33
o
. A series of 

experiments on sand heap using two different sand dispensing 

sources; funnel source and sieve source is referred in this study. 

During deposition processes, the pouring sources were moved 

upward to control the density of deposition. The heap grows in a 

proportional geometry under the funnel source (see Fig. 13) 

while spreading in a planar layer under the sieve source (see Fig. 

14). The heap constructed by the sieve source rarely exhibited a 

central pressure dip, but obviously occurred by the funnel source 

for both 2D wedge-shaped and 3D conical heaps with weaker 

effect on wedge-shaped heap. 

 

4.2 Analytical Results 

Though, there are experimental data reported for both 

conical and prismatic heaps, conical heaps are out of scope in 

this study. In the context of prismatic wedge, the solutions given 

in case (1) and case (5) are further considered by dropping case 

(3) due to singularity problem at the centerline, and cases (2) and 

(4) due to unrealistic local minimum in vertical stress profiles. In 

case (1), if s  is selected in the way to keep e
z constant, then 

the solutions are reduced to those obtained by Bouchaud, Cates 

& Claudin (1995)
28)

. This solution is termed “BCC model” and 

can explain that the stacks of arches rotate in elastic region under 

uniform vertical stress distribution. Actually, this solution 

resembles Trollope (1957)’s no arching solution
22)

. The 

expression of K turns to Krynine (1945)’s wall coefficient Kw
19)

.  

According to case (1), s  is related to K as follows. 

   
2

22 2

2

1 sin
1 1 2 sin cos

1 sin

2

K K K

s


 




   


 (52) 

Obviously, various stress distribution can be obtained by 

varying the adjustable parameter s , not necessary to be fixed 

like Jáky’s assumption
1)-2)

. Because various lateral stress ratios K 

can be related to s  in according to the formulations shown 

Table 1, K is correspondingly considered as adjustable 

parameter being varied with influence and history of heap 

formation. 4 different stress distributions are illustrated in 

Figs.15 for linear reduction model of case (1) and Fig.16 for 

non-linear reduction model of case (2), in accordance with 4 

typical K values; Ka for active condition determined by Eq.(3), 

Kw for rough wall condition determined by Eq.(4), Ko for at-rest 

condition determined by Eq.(2) and Ki for isotropic condition 

by taking K=1.  

Because arching action steers weight away from the center 

of sand heap, the transition from no-arching state when K=Kw to 

full-arching state when K=Ki is clearly observed in the analyzed 

vertical pressures exhibited in Fig.15 for linear shear reduction 

model. Moreover, for non-linear shear reduction model, the 

stress dip in the analyzed stress profiles exhibited in Fig.16 can 

be visibly captured for K<Ka. Non-linear shear reduction model 

is apparently more advantageous than linear shear reduction 

model by providing smoother stress profiles with arching 

indicatives. In general, both Fig.15 and Fig.16 indicate that 

vertical pressure dip is achieved for large value of K, resulting in 

large horizontal pressure and high shear stress profile along the 

base of the wedge.  

The measurements on horizontal and shear stresses were not 

available in experiments of Vanel et al. (1999)
13)

. Though sand 

heaps are rested on a base by a relative degree of arching effect 

depended on construction method, it is likely that the analyzed 

stress profile under K=Ko at the center of both models are 

acceptable agreed with averaged results of experimental data in 

prismatic heaps. However, K equation in at-rest condition of the 

heap cannot be derived without specifying s  and degree of 

non-linearity which are unknown parameters for shear reduction 

models. Therefore, arching action might give a clue to formulate 

Ko equation. 
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Figure 15 Normalized vertical pressure and shear stress profiles 

analyzed by linear shear reduction model 
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Figure 16 Normalized vertical pressure and shear stress profiles 

analyzed by non-linear shear reduction model 
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5. Arching Effect 

 

Arching action is regarded as internal stress redistribution in 

granular media. Experimental results reported several cases of 

active arching in loose soils, which has upward shear stresses 

acting to soil mass. According to Handy (1985)
9)
, arching action 

can be formed in bulk materials along the trajectories of 

principal stresses to carry its own weight. Consequently, a 

concept of arch can be applied to evaluate earth pressure in 

stockpiles, silos, slopes, buried conduits and retaining walls. 

 

5.1 Soil Arching 

In sand heap, the granular arches can be regarded as chains 

of particles transferring self-weight to the base, and stacks of 

arches acted along the major compressive stresses dominate 

pressure distribution. Handy (1985)
9)
 suggested a shape of 

granular arch along the minor compressive stress is catenary like 

a hanging flexible chain acted by self-weight. 

In regard to arching theory, Handy (1985)
9)
 purported that the 

expression Ko=1-sin of Eq.(2) can be approximated by a flat 

arch partially supported by friction at the ends which is 

analogous to a parallel fully rough wall problem in which 

Jáky(1948)
2)
 initiated his semi-empirical Ko equation to analyse 

earth pressure in silo. 

 

5.2 Arching Criterion 

The flat arch in sand heap explained by Handy (1985) in an 

attempt to validate Jáky’s (1948) Ko is not rigorously correct 

because the arch axis is not thoroughly fixed with the horizontal 

but rotated along the direction of principal stresses. Herein, a 

particular arching action is found to validate Jáky’s (1948) Ko. 

 An arching criterion is assumed thru a distribution of the 

major principal stress σ1 in the elastic core of the mound. 

Expressions of σ1 and χ1 are basically described by, 

2

2

1
2 2

x z x z

xz

   
 

  
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 
         (53) 
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 



  
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 
 (54) 

For a given depth, stack of arches loaded by its own weigh 

transfer constant 1  ( 1  in normalized or scaleed quantity) 

over the base in different direction from the plane of 

elastic-plastic boundary to the vertical plane at the center. 

Therefore, the scaled major compressive stress χ
e
1 is assumed to 

uniformly distribute over the elastic crust of the heap.  

1 1

e   where 1 1 ( )p s                          (55) 

To keep the stress continuity, χ
e
1 must equal to χ

p
1 along the 

elastic-plastic boundary s . Referring to Eq.(54), stresses in 

plastic crust obtained from Eqs.(39)-(41) results as follows. 
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  

 (56) 

   The expressions of χ
e
1 in terms of three stress components 

can be similarly expressed by referring to Eq.(54). 
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e ex x x x
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              (57) 

We can relate e
xz to e

x and e
z by substitution of Eq.(57) to 

Eq.(55). With minor rearrangement, a local constitutive 

equation for this particular condition can be manipulated. 

     1 1( )e e e e

xz xz x zs s s                   (58) 

The derivatives of e
xz with respect to s can be obtained from 

Eq.(58) using chain’s rule of differentiation. 

e e e e e

xz xz x xz z

e e

x z
s s s
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 
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                       (59) 

According to Eq.(58), the partial derivatives of e
xz with 

respect to e
x and e

z are given below. 
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Using the condition of equilibrium given by Eqs.(24)-(25), 

the derivatives of e
x/s and e

z/s can be obtained with some 

rearrangement in according to Eq.(59). 
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    (63) 

Stress continuity conditions at the elastic-plastic boundary 

s provide the boundary conditions to integrate the above 

differential equations. Since the analytical solution is 

complicated, we conducted a numerical solution using 

Runge-Kutta method. Some numerical techniques can be found 

in Pipatpongsa et al. (2008)
29)

. The magnitude of  s  must be 

trialed until the condition of zero shear stress imposed on the 

center line where s=0 is satisfied. Consequently, for a given 

friction angle , the coefficient of lateral pressure K was 

obtained by calculating the ratio of e
x/

e
z at the center line. 
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Figure 17 Resulted stress distribution by constant major 

compressive stress across the width of elastic crust 

 

To validate the proposed assumption, the systematic 

experimental conducted by Vanel et al. (1999)
13)

 was compared 

with calculated results. Though the solution gives a vertical 

pressure profile with no stress dip, Fig.17 shows that the 

measured data of vertical pressure agreed well with numerical 

solution. Also, according to Fig. 18, K values were found close 

to Ko=1-sin  which is the expression of Jáky (1948)
2)
. So, the 

proposed assumption on arching criterion in prismatic sand heap 

might be sufficiently capable to demonstrate the arching effect in 

the mound and validate the rationale of Jáky’s Ko equation. 
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Figure 18 Comparison between the computed K and Jáky’s Ko 

(1948) in relation with friction angle  

 

Though the closed-form integration of the coupled system of 

partial differential equations cannot be analytically derived in 

this study, numerical integration of over a range of  between 

10
  

to 40

 can estimate the expression of K to Eq.(65), which is 

approximately 2% larger than Jáky (1948)’s Ko.  

1.02(1 sin )K            (65) 

The assumption of constant compressive stress distribution 

in elastic crust looks promising. Still, there are other possible 

arching criteria which can be assumed and investigated in 

prismatic sand heaps.  

6. Conclusion 

 

The value of Ko assumed by Jáky is the ratio of horizontal to 

vertical pressure at the center line of a granular formed by angle 

of repose. A series of stress solutions aiming to formulate Ko 

equations based on Jáky’s hypothesis in prismatic granular 

mounds was reviewed and examined. The generalized shear 

stress reduction function was proposed and employed to local 

constitutive models for describing stress profiles in elastic zone 

of the heap. The implementation of scaled stress function, which 

is formulated in terms of dimensionless quantity of stress 

components normalized by the equivalent geo-static pressure, 

was proven to conveniently handle the partial differentiation 

with respect to the relative width of the half-based heap.  

Stress profiles were derived by integration of the derivatives 

of equilibrium equations with the boundary conditions of zero 

stress at sliding surface as well as the stress continuity specified 

at elastic-plastic boundary. The results of this study confirmed 

the conclusion made in the earlier research that Jáky’s Ko is a 

coincidental finding. The problem on adopting the slope of 

elastic-plastic boundary equal to the inclination of the major 

principal stress was clarified as the ambiguity in Jáky’s 

hypothesis. The shear stress reduction model is still regarded as 

a general model among other possible models. Therefore, it is 

doubted why Jáky particularly chose a quadratic reduction 

model from a plenty number of models which can be used.  

It was found the model of shear stress reduction cannot 

provide the coefficient of lateral pressure. So, it is understood 

that Ko is an adjustable parameter to fit the model with the 

experimental data. Nevertheless, degree of non-linearity of shear 

stress reduction was found to link with arching indicatives.  

The analyzed stress distribution by the arching criterion, in 

which the major compressive stresses carry granular weight to 

the base in a particular pattern, is found reasonable. Constant 

distribution of the major compressive stress along elastic core 

underneath the wedge-shaped granular heap was presented as 

one of possible arching criteria. The validation of the suggested 

arching criterion showed that the calculated vertical pressure 

was matched with experimental results and coefficient of lateral 

earth pressure was considerably agreed with the widely-used Ko 

expression of Jáky (1948).  

In this closure, the assumption of soil arching appears to 

rationally relate Ko with friction angle of granular media. Still, 

there is no clear model which can describe stress distribution in 

granular wedge because the self-weight transfer characteristics 

in the granular wedge are considered as elastic behaviors. As a 

result, elastic parameters should be relevant to Ko in addition to a 

friction angle. The suggested arching criterion is merely 

considered as a demonstrated model which can be assumed to 

justify the Ko expression of Jáky. More researches in arching 

criteria and arch shapes are required for further investigations. 
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Note: it is found that Eq.(80) is reduced to Eq.(75) for n=1 in 

regardless of the singularity in Eq.(79). However, Eq.(80) is not 

reduced to Eq.(70) for n=0. Therefore, the expression of K in 

case (2.a) can cover case (2), but cannot cover case (1). 
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Note: K is undefined because χ
e
z is undefined at s=0. 
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