地下円形空洞を有する砂質土地盤の上界解析

Upper bound analysis of cohesive-frictional soils with a shallow circular tunnel

山本健太郎*

Kentaro YAMAMOTO

*正会員 博士(工学) 鹿児島大学助教 工学部海洋土木工学科(〒890-0065 鹿児島市郡元1-21-40)

The ultimate bearing capacity and the failure mechanism of cohesive-frictional soil with inclusion of a shallow circular tunnel have been theoretically and numerically investigated assuming plain strain conditions. Despite the importance of foundations stability above such tunnels/openings, research on this subject has been very scarce. At present, no generally accepted design or analysis method is available to evaluate the ultimate bearing capacity of cohesive-frictional soils with shallow tunnel inclusions. In this study a continuous loading is applied to the ground surface, and the smooth interface conditions between the loading and soils are modeled. For a series of tunnel geometries, shapes and material properties, rigorous upper and lower bound solutions for the ultimate bearing capacity of considered soil mass are obtained by applying recently developed limit analysis methods. For practical suitability the results are presented in the form of dimensionless stability charts, with the actual bearing capacities being closely bracketed from above and below. As an additional check and also a handy practical means, the upper bound rigid block mechanisms for circular tunnels have been developed and the obtained values of collapse loads were compared with the results of numerical limit analysis.

Key Words: shallow tunnel, bearing capacity, upper bound analysis, limit analysis キーワード: 浅リトンネル, 支持力, 上界解析, 極限解析

1.はじめに

著者はこれまで地下に円形または正方形の空洞(トンネ ル)を有し、排水条件下における砂質土地盤の極限支持力 並びに破壊メカニズムを数値極限解析により求めてきた¹⁾。 数値極限解析(上界有限要素解析)を用いれば、破壊メカ ニズムのパターンと可容速度場を仮定することなく、極限 支持力の上界値や破壊メカニズムを得ることができる。こ れらは大きな利点と考えられる。しかし、理論的背景も複 雑となり、解析手法の理解のみならず、解析を実施する上 での種々のテクニックなども要求され、あまり実務的であ るとは言い難い。また、数値極限解析を含め、有限要素法 を用いる場合には要素分割や境界条件、解析手法、解析モ デル並びに地盤定数の選定、解の収束問題、初期応力の設 定(極限解析では必要とされない)に対して、経験や多少 の試行錯誤は避けられない。よって、一般的に、実務レベ ルにおいては幅広い支持を得るには至っていなく、極限解 析に関しては、双方(高度な数値解析手法と古典塑性論に 基づく新たな手法)を用いていくべきであると考えられる。 本論文では数値極限解析のみに頼るのではなく、より実 務的な上界解析に基づく剛体ブロックメカニズムを開発 することを目的とした。そして、数値極限解析(上界有限

要素解析)結果との比較検討を実施し、その妥当性を検証 したものである。ここで、実務的とは破壊メカニズムの仮 定や特徴がわかりやすく、最終的な式の形が明記されてお り、直観的にも理解しやすいことを指す。また、実務者に とってもブラックボックス化する部分が少なくて済み、多 くの実務者が理解した上で使用することができ、それによ って多層系地盤などに対しても拡張していくことが可能 と考えられる。

次に、本論文に関連する主要な既存研究について鑑みる。 円形トンネルの崩壊メカニズムに関する研究は 1970 年代 以降、ケンブリッジグループによって主に実施されてきた。 Atkinson and Caimcross²⁰は平面ひずみ条件におけるモー ル・クーロン材の円形トンネルの崩壊に対して、一つの不 完全な下界解と一つの極限釣り合いメカニズムとそれか ら導かれる解を提案した。そして実験結果との比較を通し て、これらの解が土被りの小さい場合にのみ正確であるこ とを示した。なお、崩壊荷重は一つのパラメータ、 $\sigma_s - \sigma_t$ (地表面上に無限に作用する一様な荷重 σ_s とトンネル内 部の圧力 σ_t との差)で表された。続いて、Atkinson and Potts³⁰は粘着力のない地盤中の円形トンネルの安定性を実 験的並びに理論的に調べた。実験には小規模模型実験と遠 心模型実験を用いた。理論的研究では下界解と上界解とが 求められ、これらの値が実験結果を挟み撃ちにすることが 示された。なお、上界解を与える崩壊メカニズムは上載圧 がない場合のものが模型実験の観察結果を基にして一つ だけ提案された。Davis et al.⁴はトンネルに関連する3種類 の異なるタイプの地下坑口の安定性を調べた。それらは平 面ひずみ条件での円形トンネルと切羽並びに、円筒状の切 羽に対する非排水条件での崩壊荷重に関するものであっ た。特性曲線、剛体ブロック、極限解析などの手法を用い て、正解値に対する下界値と上界値を導いている。なお、 平面ひずみ条件における円形トンネルの非排水安定問題 に対する上界値計算では 4 つの剛体ブロックメカニズム を提案した。土被りが浅い時はトンネル頂部の滑落形式の 崩壊となるが、深くなるに従い、側方あるいは底部の押出 しの動きを考慮したメカニズムが最善の上界値を与える ことを示した。唯一の求めるべきパラメータとしては $(\sigma_s - \sigma_t)/c_u$ が用いられた。

1990年代に入り、Leca and Dormieux⁵⁾が砂質土地盤にお ける土被りの浅い円形トンネル切羽に対する安定性を評 価するために極限解析法を用いた。3つの破壊メカニズム が提案され、上界解をそれぞれ導いた。そして、下界解や 遠心模型実験結果との比較が行われ、その妥当性を検証し た。上界解の誘導や式も提示しており、実務に対してたい へん有効であると考えられる。一方、Sloan and Assadi[®]は 浅い円形トンネルの不均質地盤における非排水条件での 安定性を評価するために数値極限解析と上界解析を適用 した。数値極限解析では有限要素法に極限定理を適用し、 線形計画問題として定式化を行っている。利点としては厳 密な下界値と上界値が直接求められ、変位法による有限要 素法の様に、荷重沈下曲線から崩壊荷重を推測する必要 がないことが挙げられる。また、非排水条件下での不均質 地盤(深さ方向に非排水せん断強さが増加)に対して、有 限要素法の不均質地盤への適用の容易性を生かしている。 上界解析では3つの破壊メカニズムを提案し、その妥当性 も検証し、最終的には設計チャートを描き、解析結果であ る下界値と上界値が正解値を精度良く挟み撃ちにするこ とができると報告している。上記の Sloan らの研究におい ても求めるべきパラメータとして $(\sigma_s - \sigma_t)/c_u$ を用いて いる。2000年代に入り、Lyamin and Sloan⁷⁾が砂質土地盤に おける排水条件下での円形トンネルの安定性を評価する ために数値極限解析を適用した。求めるべきパラメータと しては、トンネルの崩壊を防ぐために必要とされる $-\sigma_t/c'$ を用いた。大きな改善点としては非線形計画法が 適用され、計算時間の短縮が大きく図られた。これに伴い、 かなり細かい有限要素メッシュの使用が可能となった。

以上のような既存研究が挙げられ、それらの背景を受け、 本研究を実施するものとする。

2.対象とする問題

実務上での興味の対象となる Fig.1 に示した、土被りが 浅い空洞を有する地盤条件に対して数値極限解析並びに 上界解析を実施した。土被りが浅い空洞を有する地盤の極 限支持力は が を除き、無次元化したパラメータを用い、 おおまかに以下のように表すことができると考えられる。

$$\frac{\sigma_s}{c'} = f(\phi', \frac{\gamma D}{c'}, \frac{H}{D}, \frac{L}{D})$$
(1)

ここに、 σ_s :極限支持力、c':地盤の粘着力、 ϕ' :地 盤の内部摩擦角、 γ :地盤の単位体積重量、D:空 洞の直径、H:空洞上面までの土被り、L:荷重の 載荷幅を表す。空洞形状としては円形空洞を考慮し た。また、土被り比H/Dを1,2,3,4,5の5ケース、 ϕ' を0,5,10,15,20,25,30,35°の8ケース、 γ とDの積をc'で除した無次元化量 $\gamma D/c'$ を0,1,2,3の4 ケースと変化させた。なお、本論文では空洞内部の 圧力を0と見なし($\sigma_t = 0$)、荷重の載荷幅 Lは無限 大(L=)、地盤との interface は smooth と設定した。

3. 極限解析法

ここでは、下界定理、上界定理について述べる⁸。

3.1 下界定理

応力境界条件を満たし、静的可容応力場が見出されれば、 その応力場を満足する崩壊荷重は正解値を上まわらず下 界値を与える。このことは、以下のように仮想仕事の式を 用いて表すことができる。

$$\int_{S} T_{i}^{L} v_{i} dS + \int_{V} X_{i}^{L} v_{i} dV = \int_{V} \sigma_{ij}^{L} \dot{\varepsilon}_{ij} dV$$

$$\leq \int_{V} D(\dot{\varepsilon}_{ij}) dV = \int_{V} \sigma_{ij} \dot{\varepsilon}_{ij} dV$$
(2)

ここに、 σ_{ij}^{L} : トラクション T_{i}^{L} と物体力 X_{i}^{L} と釣り合い状態にある静的可容応力場、 σ_{ij} : 実際の応力場、 $\dot{\varepsilon}_{ij}$: 実際のひずみ速度場、 v_{i} : 実際の速度場。下界定理では、力の釣り合い条件と応力境界条件は満足されているが、流れ則と速度境界条件は考慮されていない。

Fig. 1. Plain strain circular tunnel in cohesive-frictional soil.

3.2 上界定理

境界の速度条件を満たし、動的可容速度場が見出されれ ば、そこから導かれる外力による仕事と内部消散を等置し て得られる解は正解値を下まわらず上界値を与える。この ことは、以下のように仮想仕事の式を用いて表される。

$$\int_{S} T_{i}^{U} v_{i}^{U} dS + \int_{V} X_{i}^{U} v_{i}^{U} dV = \int_{V} \sigma_{ij}^{U} \dot{\varepsilon}_{ij}^{U} dV$$
$$= \int_{V} D \left(\dot{\varepsilon}_{ij}^{U} \right) dV \ge \int_{V} \sigma_{ij} \dot{\varepsilon}_{ij}^{U} dV$$
(3)

ここに、 v_i^U : ひずみ速度場 $\dot{\varepsilon}_{ij}^U$ と適合できる動的可容速 度場、 σ_{ij}^U : トラクション T_i^U と物体力 X_i^U と釣り合い状 態にある応力場、 σ_{ij} : 実際の応力場。上界定理では、流 れ則、変位の適合条件並びに速度境界条件は満足されてい るが、力の釣り合い条件はたいてい満足されていない。

4. 上界解析

極限解析法の一つである上界解析は、3.2の上界定理に 基づき、上界解を与えるものである。解が正解値に対する 上界値となるために、最小化演算が解析において要求され る。下界解析における可容応力場の設定と異なり、地盤の 破壊メカニズムと可容速度場を合理的に仮定することが さほど難しくないため、比較的容易に精度の良い近似解を 得ることが可能である。実務上での観点からも利用価値は 高いが、支持力問題で得られる解は危険側となり、その精 度は設定された破壊メカニズムの妥当性に大きく依存す ると考えられる。しかし、パラメータも複雑にならず、よ り明快に解を求めることが可能である。よって、上界解析 による支持力計算は有効な解析手法であると判断される。 本論文ではFigs. 2-5 に示す4つのタイプの剛体ブロック メカニズムを設定した。ここで、 σ_s : 地表面上での極限 支持力、A:: 剛体ブロック、V:: 運動力学的に可容な速度べ クトル、V_{ii}: 不連続線に沿う速度の不連続ベクトルである。 $\alpha, \beta, \gamma, \delta, \varepsilon, \lambda, \omega$: 破壊メカニズムを規定するための角度 ニズム1-4では破壊メカニズムを規定する角度パラメータ がそれぞれ1,4,7,4 個であることがわかる。メカニズム1 は土被りが浅い場合などに有効となるトンネル頂部の滑 落形式、メカニズム2がトンネル頂部の滑落形式に側方か らの動きを考慮したメカニズム、メカニズム3がメカニズ ム2を複雑にし、さらに自由度をもたせたメカニズムと設 定した。そして、メカニズム4はメカニズム2,3と異なり、 破壊メカニズムが地表面から地下に向かって ∅'の傾きで 生じない、トンネル側方からの動きも考慮したメカニズム となっている。なお、これらのメカニズムが可能な破壊形 態をすべて表現しているわけではない。メカニズムとして は、ブロックA」は鉛直下方に速度V」で移動する。そして、 A₁に隣り合ったA₂, A₃もそれぞれ速度V₂, V₃での斜め下方 への移動として消散される。流れ則には関連流動則が適用 され、内部エネルギー消散率は、粘着力 c'に速度の不連 続線長1と速度ベクトルVi またはViの大きさを乗じるこ

とにより計算できる。一方、外力仕事はそれぞれの剛体ブロックの面積に V_i の鉛直下方成分を乗じることにより得られる。この時、 σ_s は全外力仕事 W_{total} を全内部エネルギー消散率 E_{total} に等しいと置くことにより、それそれのメカニズムに対して、以下のように導かれる。

メカニズム 1 (Fig. 2 参照)

$$\sigma_{s} \leq \frac{c' l_{cd} \cos \phi' - A_{1} \gamma}{l_{ad}}$$
(4)

メカニズム2(Fig.3参照)

$$\sigma_{s} \leq \frac{c'V_{1}l_{ef}\cos\phi' + c'V_{2}l_{de}\cos\phi' + c'V_{21}l_{ce}\cos\phi'}{V_{1}l_{af}}$$

$$\frac{-A_{1}V_{1}\gamma - A_{2}V_{2}\gamma\sin(\gamma - \phi')}{V_{1}l_{af}}$$
(5)

メカニズム 3 (Fig. 4 参照)

$$\sigma_{s} \leq \frac{c' V_{1} l_{gh} \cos \phi' + c' V_{2} l_{fg} \cos \phi' + c' V_{21} l_{cg} \cos \phi' + c' V_{3} l_{ef} \cos \phi'}{V_{1} l_{ab}}$$

$$\frac{c'V_{32}l_{df}\cos\phi' - A_1V_1\gamma - A_2V_2\gamma\sin(\varepsilon - \phi') - A_3V_3\gamma\sin(\delta - \phi')}{V_1l_{ah}}$$

$$\sigma_{s} \leq \frac{c'V_{2}l_{de}\cos\phi' + c'V_{21}l_{ad}\cos\phi' + c'V_{31}l_{bd}\cos\phi' + c'V_{3}l_{cd}\cos\phi'}{V_{2}l_{ae}\sin(\delta - \phi')} - \frac{A_{1}V_{1}\gamma - A_{2}V_{2}\gamma\sin(\delta - \phi') - A_{3}V_{3}\gamma\sin(\gamma - \phi')}{V_{2}l_{ae}\sin(\delta - \phi')}$$
(7)

メカニズム 1-4 から、それぞれ計算される可容速度場を満 足する σ, の最小値をそのメカニズムから得られる上界値 と見なし、4つのメカニズムから得られた上界値を比較し、 その最小値を上界解析から得られた上界値と設定した。本 論文で対象とした地盤条件に対しては、たいていの場合、 メカニズム3 が最良の上界値を与えた。また、それぞれの メカニズムにおいて可容速度場を満足する最小の上界値 を求めるために、破壊メカニズムを規定する角度パラメー タはHooke and Jeeves 法⁹を適用して求めた。これは微分 を用いない最適化で、一つの角度パラメータ毎に変化させ て近傍検索し、最良の上界値を与える角度パラメータを見 つけるものである。なお、近傍探索時に他の角度パラメータ の初期値の与え方にやや依存する傾向も見られた。

Fig. 2. Upper bound block mechanism 1.

Fig. 4. Upper bound block mechanism 3

Fig. 3. Upper bound block mechanism 2

Fig. 5. Upper bound block mechanism 4.

5.解析結果と考察

Table 1 には4.で述べた様々な上界ブロックメカニズム (Figs. 2-5 で示されたメカニズム 1-4)から得られた上界 値の比較の一部を示す。ここでは、H/D=1-3、 $\phi'=0-20^\circ$ 、 $\gamma D/c'=0-3$ を比較の対象とした。無次元化されたパラメー $9\gamma D/c'$ に関して、例えば、 $\gamma D/c'=2$ は $\gamma=20$ kN/m³、 c'=20 kN/m²、D=2 mのケースなどに対応していることと なる。なお、Table 1 中の NA は可容速度場を満足する解 が得られなかったことを示す。表を見ると、3 つの剛体ブ ロックから形成されるメカニズム 3 が常に、メカニズム 1-4 の中で最小の上界値をとることがわかる。また、メカ ニズム 1 は H/D が増加する時に、 ϕ' が大きくなるにつれ て NA となる傾向が見られた。

全般的に、メカニズム4のすべての上界値がメカニズム 1のものよりも小さく、メカニズム2のすべての上界値が H/D=1, $\phi'=20^\circ$, $\gamma D/c'=0$ の時を除いて、メカニズム4 のものよりも小さい値をとることがわかる。これはメカニ ズム1-4では、破壊メカニズムを規定する角度パラメータ がそれぞれ1,4,7,4個であることにも起因する。当然では あるが、角度パラメータの数が増加するほど多様な破壊メ カニズムのパターンに対応し、最良の上界値を得ることが

可能となる。

Figs. 6-11 には上界解析結果(a)と数値極限解析(上界有 限要素解析)の結果((b)-(d))との比較を示す。(a)は剛体 ブロックメカニズム、(b)-(d)にはそれぞれ内部消散、変形 メッシュのパターン、速度ベクトルを示し、図中の σ_s/c' はそれぞれの解析から求まった上界値を明記している。ま た、(b)において内部消散の大きさは白黒の濃淡で示され、 黒い箇所では内部消散が生じていないことを示す。これを 見ると、全般的に上界解析からの剛体ブロックメカニズム が上界有限要素解析からの破壊メカニズムと良い対応を 示していることがわかる。また、剛体ブロックメカニズム はすべてメカニズム3が採用され、ここに挙げた地盤条件 のケースにおいては、特に Fig. 10 を除いて上界値の対応 もある程度は良好であることがわかる。これらを見ると、 H/D=3以上の土被りやFig.8のように土被りが小さい場合 でもゆ が少し大きくなると、上界解析からの上界値が上 界有限要素解析からのものよりも大きくなる傾向を示す ことがわかる。また、すべての解析結果の比較において、 上界解析からの上界値が上界有限要素解析からのものよ りも大きくなった。なお、Fig. 10 のケースにおいては ϕ' が 少し大きいこともあり、上界解析からの上界値が上界有限 要素解析のものよりも3倍以上大きい値を示した。これは

Table 1. Comparison of upper bound values from various rigid block mechanisms

H/D	(deg.)	Mechanism 1				Mechanism 2			
		D/c'=0	D/c'=1	D/c'=2	D/c'=3	D/c'=0	D/c'=1	D/c'=2	D/c'=3
1	0	2.83	1.74	0.64	-0.45	2.56	1.40	0.22	-1.00
	5	3.76	2.53	1.30	0.07	3.15	1.89	0.62	-0.67
	10	5.64	4.13	2.62	1.11	4.04	2.64	1.23	-0.19
	15	11.68	9.26	6.84	4.42	5.52	3.89	2.25	0.60
	20	NA	NA	NA	NA	10.40	6.36	4.31	2.24
2	0	4.90	2.80	0.70	-1.41	3.78	1.56	-0.70	-2.99
	5	8.57	5.80	0.24	0.24	5.10	2.59	0.07	-2.47
	10	35.98	28.16	6.18	12.50	7.53	4.54	1.52	-1.55
	15	NA	NA	NA	NA	13.14	9.20	5.16	0.93
	20	NA	NA	NA	NA	33.61	26.95	20.06	12.78
3	0	6.93	3.82	0.72	-2.38	4.71	1.45	-1.85	-5.17
	5	17.59	12.35	7.10	1.85	6.85	3.06	-0.75	-4.60
	10	NA	NA	NA	NA	11.58	6.77	1.83	-3.36
	15	NA	NA	NA	NA	27.35	19.88	12.05	3.36
	20	NA	NA	NA	NA	229.19	201.39	172.78	142.98
	-							-	
H/D	(pob)	Mechanism	n 3			Mechanisn	n 4	-	
H/D	(deg.)	Mechanism D/c'=0	n 3 D/c'=1	D/c'=2	D/c'=3	Mechanisn D/c'=0	n 4 D/c'=1	D/c'=2	D/c'=3
H/D	(deg.) 0	Mechanism D/c'=0 2.54	n 3 D/c'=1 1.36	D/c'=2 0.13	D/c'=3 -1.15	Mechanisn D/c'=0 2.62	n 4 D/c'=1 1.49	D/c'=2 0.34	D/c'=3 -0.82
H/D	(deg.) 0 5	Mechanism D/c'=0 2.54 3.10	n 3 D/c'=1 1.36 1.81	D/c'=2 0.13 0.50	D/c'=3 -1.15 -0.84	Mechanisn D/c'=0 2.62 3.22	n 4 D/c'=1 1.49 1.99	D/c'=2 0.34 0.75	D/c'=3 -0.82 -0.50
H/D 1	(deg.) 0 5 10	Mechanism D/c'=0 2.54 3.10 3.92	n 3 D/c'=1 1.36 1.81 2.49	D/c'=2 0.13 0.50 1.04	D/c'=3 -1.15 -0.84 -0.43	Mechanisn D/c'=0 2.62 3.22 4.13	n 4 D/c'=1 1.49 1.99 2.75	D/c'=2 0.34 0.75 1.36	D/c'=3 -0.82 -0.50 -0.02
H/D 1	(deg.) 0 5 10 15	Mechanisn D/c'=0 2.54 3.10 3.92 5.23	n 3 D/c'=1 1.36 1.81 2.49 3.58	D/c'=2 0.13 0.50 1.04 1.91	D/c'=3 -1.15 -0.84 -0.43 0.23	Mechanisn D/c'=0 2.62 3.22 4.13 5.64	n 4 D/c'=1 1.49 1.99 2.75 4.03	D/c'=2 0.34 0.75 1.36 2.41	D/c'=3 -0.82 -0.50 -0.02 0.79
H/D 1	(deg.) 0 5 10 15 20	Mechanism D/c'=0 2.54 3.10 3.92 5.23 7.57	n 3 D/c'=1 1.36 1.81 2.49 3.58 5.55	D/c'=2 0.13 0.50 1.04 1.91 3.52	D/c'=3 -1.15 -0.84 -0.43 0.23 1.46	Mechanisn D/c'=0 2.62 3.22 4.13 5.64 8.55	n 4 D/c'=1 1.49 1.99 2.75 4.03 6.53	D/c'=2 0.34 0.75 1.36 2.41 4.50	D/c'=3 -0.82 -0.50 -0.02 0.79 2.45
H/D 1	(deg.) 0 5 10 15 20 0	Mechanisn D/c'=0 2.54 3.10 3.92 5.23 7.57 3.68	n 3 D/c'=1 1.36 1.81 2.49 3.58 5.55 1.40	D/c'=2 0.13 0.50 1.04 1.91 3.52 -0.93	D/c'=3 -1.15 -0.84 -0.43 0.23 1.46 -3.29	Mechanisn D/c'=0 2.62 3.22 4.13 5.64 8.55 3.84	n 4 D/c'=1 1.49 1.99 2.75 4.03 6.53 1.65	D/c'=2 0.34 0.75 1.36 2.41 4.50 -0.56	D/c'=3 -0.82 -0.50 -0.02 0.79 2.45 -2.78
H/D 1	(deg.) 0 5 10 15 20 0 5	Mechanisn D/c'=0 2.54 3.10 3.92 5.23 7.57 3.68 4.85	n 3 D/c'=1 1.36 1.81 2.49 3.58 5.55 1.40 2.30	D/c'=2 0.13 0.50 1.04 1.91 3.52 -0.93 -0.27	D/c'=3 -1.15 -0.84 -0.43 0.23 1.46 -3.29 -2.85	Mechanisn D/c'=0 2.62 3.22 4.13 5.64 8.55 3.84 5.18	D/C'=1 1.49 1.99 2.75 4.03 6.53 1.65 2.70	D/c'=2 0.34 0.75 1.36 2.41 4.50 -0.56 0.21	D/c'=3 -0.82 -0.50 -0.02 0.79 2.45 -2.78 -2.28
H/D 1 2	(deg.) 0 5 10 15 20 0 5 10	Mechanisn D/c'=0 2.54 3.10 3.92 5.23 7.57 3.68 4.85 6.87	D/c'=1 1.36 1.81 2.49 3.58 5.55 1.40 2.30 3.89	D/c'=2 0.13 0.50 1.04 1.91 3.52 -0.93 -0.27 0.87	D/c'=3 -1.15 -0.84 -0.43 0.23 1.46 -3.29 -2.85 -2.18	Mechanisn D/c'=0 2.62 3.22 4.13 5.64 8.55 3.84 5.18 7.63	D/c'=1 1.49 1.99 2.75 4.03 6.53 1.65 2.70 4.66	D/c'=2 0.34 0.75 1.36 2.41 4.50 -0.56 0.21 1.67	D/c'=3 -0.82 -0.50 -0.02 0.79 2.45 -2.78 -2.78 -2.28 -1.35
H/D 1 2	(deg.) 0 5 10 15 20 0 5 10 15	Mechanisn D/c'=0 2.54 3.10 3.92 5.23 7.57 3.68 4.85 6.87 10.99	D/c'=1 1.36 1.81 2.49 3.58 5.55 1.40 2.30 3.89 7.23	D/c'=2 0.13 0.50 1.04 1.91 3.52 -0.93 -0.27 0.87 3.37	D/c'=3 -1.15 -0.84 -0.43 0.23 1.46 -3.29 -2.85 -2.18 -0.64	Mechanisn D/c'=0 2.62 3.22 4.13 5.64 8.55 3.84 5.18 7.63 13.28	D/C'=1 1.49 1.99 2.75 4.03 6.53 1.65 2.70 4.66 9.35	D/c'=2 0.34 0.75 1.36 2.41 4.50 -0.56 0.21 1.67 5.33	D/c'=3 -0.82 -0.50 -0.02 0.79 2.45 -2.78 -2.28 -1.35 1.15
H/D 1 2	(deg.) 0 5 10 15 20 0 5 10 15 20	Mechanism D/c'=0 2.54 3.10 3.92 5.23 7.57 3.68 4.85 6.87 10.99 22.07	D/c'=1 1.36 1.81 2.49 3.58 5.55 1.40 2.30 3.89 7.23 16.65	D/c'=2 0.13 0.50 1.04 1.91 3.52 -0.93 -0.27 0.87 3.37 11.00	D/c'=3 -1.15 -0.84 -0.43 0.23 1.46 -3.29 -2.85 -2.18 -0.64 4.92	Mechanisn D/c'=0 2.62 3.22 4.13 5.64 8.55 3.84 5.18 7.63 13.28 33.86	n 4 D/c'=1 1.49 1.99 2.75 4.03 6.53 1.65 2.70 4.66 9.35 27.17	D/c'=2 0.34 0.75 1.36 2.41 4.50 -0.56 0.21 1.67 5.33 20.26	D/c'=3 -0.82 -0.50 -0.02 0.79 2.45 -2.78 -2.28 -1.35 1.15 12.98
H/D 1 2	(deg.) 0 5 10 15 20 0 5 10 15 20 0 0 0 0 0 0 0 0 0 0 0 0 0	Mechanism D/c'=0 2.54 3.10 3.92 5.23 7.57 3.68 4.85 6.87 10.99 22.07 4.50	D/c'=1 1.36 1.81 2.49 3.58 5.55 1.40 2.30 3.89 7.23 16.65 1.17	D/c'=2 0.13 0.50 1.04 1.91 3.52 -0.93 -0.27 0.87 3.37 11.00 -2.21	D/c'=3 -1.15 -0.84 -0.43 0.23 1.46 -3.29 -2.85 -2.18 -0.64 4.92 -5.62	Mechanisn D/c'=0 2.62 3.22 4.13 5.64 8.55 3.84 5.18 7.63 13.28 33.86 4.77	n 4 D/c'=1 1.49 1.99 2.75 4.03 6.53 1.65 2.70 4.66 9.35 27.17 1.54	D/c'=2 0.34 0.75 1.36 2.41 4.50 -0.56 0.21 1.67 5.33 20.26 -1.71	D/c'=3 -0.82 -0.50 -0.02 0.79 2.45 -2.78 -2.28 -1.35 1.15 12.98 -4.97
H/D 1 2	(deg.) 0 5 10 15 20 0 5 10 15 20 0 5 0 5 10 15 20 0 5 10 15 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 15 20 0 5 10 5 10 15 20 0 5 10 5 10 5 10 15 20 0 5 10 5 10 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 5 10 15 20 0 5 5 5 5 5 5 5 5 5 5 5 5 5	Mechanisn D/c'=0 2.54 3.10 3.92 5.23 7.57 3.68 4.85 6.87 10.99 22.07 4.50 6.31	D/c'=1 1.36 1.81 2.49 3.58 5.55 1.40 2.30 3.89 7.23 16.65 1.17 2.50	D/c'=2 0.13 0.50 1.04 1.91 3.52 -0.93 -0.27 0.87 3.37 11.00 -2.21 -1.33	D/c'=3 -1.15 -0.84 -0.43 0.23 1.46 -3.29 -2.85 -2.18 -0.64 4.92 -5.62 -5.18	Mechanisn D/c'=0 2.62 3.22 4.13 5.64 8.55 3.84 5.18 7.63 13.28 33.86 4.77 6.92	n 4 D/c'=1 1.49 1.99 2.75 4.03 6.53 1.65 2.70 4.66 9.35 27.17 1.54 3.16	D/c'=2 0.34 0.75 1.36 2.41 4.50 -0.56 0.21 1.67 5.33 20.26 -1.71 -0.62	D/c'=3 -0.82 -0.50 -0.02 0.79 2.45 -2.78 -2.28 -1.35 1.15 12.98 -4.97 -4.41
H/D 1 2 3	(deg.) 0 5 10 15 20 0 5 10 15 20 0 5 10 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 15 20 10 15 20 0 15 20 0 15 20 10 15 20 0 15 20 10 15 20 10 15 20 10 15 20 0 15 20 10 15 20 0 15 20 10 15 20 0 15 20 0 15 20 0 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 10 15 10 15 10 15 10 10 15 10 10 10 15 10 10 10 15 10 10 10 10 10 10 10 10 10 10	Mechanisn D/c'=0 2.54 3.10 3.92 5.23 7.57 3.68 4.85 6.87 10.99 22.07 4.50 6.31 9.88	D/c'=1 1.36 1.81 2.49 3.58 5.55 1.40 2.30 3.89 7.23 16.65 1.17 2.50 5.23	D/c'=2 0.13 0.50 1.04 1.91 3.52 -0.93 -0.27 0.87 3.37 11.00 -2.21 -1.33 0.48	D/c'=3 -1.15 -0.84 -0.43 0.23 1.46 -3.29 -2.85 -2.18 -0.64 4.92 -5.62 -5.18 -4.49	Mechanisn D/c'=0 2.62 3.22 4.13 5.64 8.55 3.84 5.18 7.63 13.28 33.86 4.77 6.92 11.68	n 4 D/c'=1 1.49 1.99 2.75 4.03 6.53 1.65 2.70 4.66 9.35 27.17 1.54 3.16 6.88	D/c'=2 0.34 0.75 1.36 2.41 4.50 -0.56 0.21 1.67 5.33 20.26 -1.71 -0.62 1.98	D/c'=3 -0.82 -0.50 -0.02 0.79 2.45 -2.78 -2.78 -2.28 -1.35 1.15 12.98 -4.97 -4.41 -3.13
H/D 1 2 3	(deg.) 0 5 10 15 20 0 5 10 15 20 0 5 10 5 10 15 20 0 5 10 15 20 0 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 10 15 20 0 15 20 0 15 20 0 15 20 0 15 20 0 15 20 0 15 20 0 15 20 0 15 20 0 15 20 0 15 20 0 15 15 20 0 15 15 10 15 15 10 10 15 10 15 10 15 10 15 10 10 15 10 15 10 15 10 15 10 15 10 15 10 10 15 15 10 10 15 10 15 10 15 15 10 15 15 15 15 15 15 15 15 15 15	Mechanisn D/c'=0 2.54 3.10 3.92 5.23 7.57 3.68 4.85 6.87 10.99 22.07 4.50 6.31 9.88 19.08	D/c'=1 1.36 1.81 2.49 3.58 5.55 1.40 2.30 3.89 7.23 16.65 1.17 2.50 5.23 12.70	D/c'=2 0.13 0.50 1.04 1.91 3.52 -0.93 -0.27 0.87 3.37 11.00 -2.21 -1.33 0.48 5.96	D/c'=3 -1.15 -0.84 -0.43 0.23 1.46 -3.29 -2.85 -2.18 -0.64 4.92 -5.62 -5.18 -4.49 -1.68	Mechanisn D/c'=0 2.62 3.22 4.13 5.64 8.55 3.84 5.18 7.63 13.28 33.86 4.77 6.92 11.68 27.51	D/c'=1 1.49 1.99 2.75 4.03 6.53 1.65 2.70 4.66 9.35 27.17 1.54 3.16 6.88 20.03	D/c'=2 0.34 0.75 1.36 2.41 4.50 -0.56 0.21 1.67 5.33 20.26 -1.71 -0.62 1.98 12.20	D/c'=3 -0.82 -0.50 -0.02 0.79 2.45 -2.78 -2.78 -2.28 -1.35 1.15 12.98 -4.97 -4.41 -3.13 3.57

(a) rigid block mechanism(b) power dissipations(c) deformed mesh(d) velocity vectorsFig. 7. Comparison of rigid block mechanism with numerical limit analysis (H/D=1, '=20°, D/c'=1, smooth interface).

Fig. 8. Comparison of rigid block mechanism with numerical limit analysis (H/D=2, '=15°, D/c'=1, smooth interface).

(a) rigid block mechanism(b) power dissipations(c) deformed mesh(d) velocity vectorFig. 11. Comparison of rigid block mechanism with numerical limit analysis (H/D=4, '=5 °, D/c'=1, smooth interface).

メカニズム3の仮定、すなわち地表面から地下に向かって ダイレイタンシー角 Ø'の傾きで破壊メカニズムが生じる としていることが原因だと考えられる。さらに、Ø'が30° とより大きい値をとると、上界解析からの上界値は上界有 限要素解析からのものよりも過度に大きい値をとり、剛体 ブロックメカニズムは良好とは言えない結果となった。メ カニズム3においても H/D>3 やØ'が大きいケースになる と、もはや可容速度場を満足する解を得られない結果を得 た。

一方、上界有限要素解析からの破壊メカニズムは interface が smooth なこともあり、空洞下端から生じ、地表 面へと向かうすべり面が rough の場合と比べると、細くク リアーには生じない結果となった((b)の内部消散を参照)。 ¢' が小さい場合には、空洞下端から生じたすべり面はそ のまま直線的に上方へと向かうが、¢' が少し大きくなる と、空洞下端から生じたすべり面が少しカーブして地表面 に到達することもわかる。また、 φ' が小さい場合(Figs.6, 9,11 を参照)には、空洞直上の領域での速度ベクトルが顕 著であることも観察された。

最後に、Fig. 12 には $\phi'=0, 5, 10, 15, 20^\circ$, smooth interface の場合における数値極限解析結果と上界解析結果との比 較を示す。凡例中の上方に位置する数値極限解析において、 LB は下界値、UB は上界値を表し、線で結ばれている。 一方、凡例中の下方に位置する上界解析結果は(UB, Rigid block)で表され、プロットのみで示されている。まず、こ れを見ると、 ϕ' が大きくないこともあり、すべてのケー スにおいて正解値は数値極限解析結果からの下界値と上 界値とで精度良く挟み撃ちにされていることがわかる。縦 軸は無次元化した極限支持力を示し、 $\gamma D/c'$ が大きくなる 時、すなわち単位体積重量が増加するほど極限支持力が小

Fig. 12. Comparison of stability bounds for circular tunnel ('=0, 5, 10, 15, 20°, smooth interface).

さくなる傾向を示す。また、 $\phi' to 10$ °以上となる(c)以降 のグラフにおいて、例えばH/D=5 における $\gamma D/c'=0$ の時 の(UB, Rigid block) の値(\bullet)などはグラフの縦軸の上限を 超えていることにも注意が必要である。全般的に(a) $\phi'=0$ °, $H/D \leq 5$, (b) $\phi'=5$ °, $H/D \leq 5$, (c) $\phi'=10$ °, $H/D \leq 3$, (d) $\phi'=15$ °, $H/D \leq 2$, (c) $\phi'=20$ °, $H/D \leq 1$ においては、上界解析結果は上界有限要素解析 結果と比較的良い対応を示すことがわかる。なお、数値極 限解析結果における(c), (d), (e)の $\gamma D/c'=3$, $H/D \geq 4$ の時 には実行可能解が求まらなかった。これは空洞が崩壊した ためである。なお、 σ_s/c' が負となる場合は引張応力が作 用していることを表す。

6. 結論

本論文では地下円形空洞を有し、排水条件下における砂 質土地盤の極限支持力と破壊メカニズムを求めるために 上界解析を適用した。そして、既存研究である数値極限解 析(上界有限要素解析)との比較検討を実施した。その結 果、& とHDが小さい場合には両者は良い一致を示した。 しかし、& が大きくなる時、HDの増加とともに上界解 析結果が上界有限要素解析結果よりも過度に大きく極限 支持力を評価する傾向を示した。これは今回、仮定した破 壊メカニズムのパターン(地表面から地下に向かって、& の傾きで破壊メカニズムが生ずる)に起因すると考えられ る。今後は、& がある程度大きく、HDが増加する場合 においてすらも、容易に解を与えることができる剛体ブロ ックメカニズムの開発が課題として挙げられる。

謝辞

本研究テーマに関してはオーストラリア、ニューカッス

ル大学地盤工学研究室と共同研究を実施してきている。主 に、数値極限解析に関しては Prof. Lyamin, 上界法に関して は Daniel Wilson 氏の御協力を得た。なお、解析の実施や まとめについては鹿児島大学工学部学生、平山正樹氏の協 力を得て実施した。ここに深く謝意を表します。

参考文献

- 山本健太郎, A.V. Lyamin, S.W. Sloan and A.J. Abbo: 地下 空洞を有する砂質土地盤の極限解析,応用力学論文集 Vol.9, pp.395-406, 2006.
- Atkinson, J. H. and Cairneross, A. M.: Collapse of a shallow tunnel in a Mohr-Coulomb material, In A. C. Palmer (ed.), *Role of plasticity in soil mechanics*, Cambridge, pp.202-206, 1973.
- Atkinson, J. H. and Potts, D. M.: Stability of a shallow circular tunnel in cohesionless soil, *Geotechnique*, 27(2), pp.203-215, 1977.
- 4) Davis, E. H., Gunn, M. J., Mair, R. J. and Seneviratne, H. N.: The stability of shallow tunnels and underground openings in cohesive material, *Geotechnique*, 30(4), pp.397-416, 1980.
- 5) Leca, E. and Dormieux, L.: Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material, *Geotechnique*, 40(4), pp.581-606, 1990.
- 6) Sloan, S. W. and Assadi, A.: Stability of shallow tunnels in soft ground, In G. T. Houlsby and A. N. Schofield (eds.), *Predictive soil mechanics*, Thomas Telford, London, pp.644-663, 1992.
- Lyamin, A. V. and Sloan, S. W.: Stability of a plane strain circular tunnel in a cohesive-frictional soil, In D. W. Smith and J. P. Carter (eds.), *Developments in theoretical geomechanics*, Balkema, Rotterdam, pp.139-153, 2000.
- Chen, W. F.: *Limit analysis and soil plasticity*, Elsevier, Amsterdam, 1975.
- Bunday, B. D.: Basic optimisation methods, Edward Arnold, 1984.

(2009年4月9日受付)