PDS-FEM を用いた弾塑性破壊解析

Numerical analysis of failure phenomena of elasto-plastic bodies using PDS-FEM

本山 紘希*・小国 健二**・堀 宗朗***

Hiroki MOTOYAMA, Kenji OGUNI, and Muneo HORI

*正会員 鉄道総合技術研究所(〒185-0034 東京都国分寺市光町2-8-38) **正会員 Ph.D 慶應義塾大学准教授 理工学部システムデザイン工学科 (〒223-8522 横浜市港北区日吉3-14-1) ***正会員 Ph.D 東京大学教授 地震研究所(〒113-0032 東京都文京区弥生1-1-1)

By implementing Particle Discretization Scheme(PDS) to FEM software, PDS-FEM, which enables the computation of crack propagation for large structures, is developed. PDS gives the method of discretization using characteristic function. Since implementing PDS doesn't change the solver of FEM, PDS-FEM achieves high-speed computation. This paper mainly mentions about PDS-FEM for elasto-plastic analysis and shows one example of computations by this software. The computations target a simulation of the experiment in E-Defense that treats the failure of bridge column. In this paper, two FEM software are tried. The names are ADVENTURE and ADVENTURE Cluster, which are for quasi-static analysis and dynamic analysis respectively.

Key Words : PDS-FEM, failure phenomena, crack propagation

1. はじめに

破壊進展を計算する場合,最も重要になるのはソフ トウェアの高速性である.理由の一つ目として,破壊現 象が不安定であることが挙げられる.このことから,適 切にモデル化された境界値問題から得られる解も不安 定であり,モンテカルロ・シミュレーションでの繰返し の計算による解の検討が必要になると予想されるから である.二つ目の理由としては,土木構造物に代表され るような大規模な計算対象を扱う時,工学上有意な解 を得るために最低限のメッシュ分割を行ったとしても、 要素数は莫大なものになることが挙げられる.たとえ ば,本研究で扱ったようなコンクリート構造物の場合, 1つのメッシュが骨材程度であることが最初の目標と なる.高速性を備えた破壊進展解析ソフトウェアとし て,高速 FEM ソフトウェアに Particle Discretization Scheme(PDS) を実装して得られる PDS-FEM¹⁾が最も 」適していると考えられ,本研究ではこれを採用している.

PDS-FEM の特徴について説明するため,連続体内 の破壊進展の計算について概観することから始める.ま ずは,破壊進展を計算できるように FEM²⁾に加えられ てきた改良について述べる.

そもそも FEM と破壊進展の計算が相性の悪い理由 は、変位場を離散化する時に用いる形状関数がなめら かで重なりを持つという FEM の特徴のためである.こ の問題を避けるための改良が FEM に対して施されて きた.代表的な改良の手法として,FEM にリメッシュ 法を加えた方法と、メッシュレス法がある.一つ目の リメッシュ法では、亀裂進展時に亀裂を外部との境界

として構造物の要素を作成しなおす.そのため,リメッ シュのための計算コストが大きくかかることが問題と して残る.二つ目の手法としてエレメント・フリー・ガ ラーキン法 (EFGM) がある³⁾.この方法は,変位場を 移動最小自乗法を用いて離散化し,積分点を中心とし た球状の評価区間で,評価区間内の節点に関して要素 剛性マトリクスを作成する. EFGM では, 複雑な離散 化手法を用いていることと,評価区間の定義により要 素剛性マトリクスの局所性が保たれない可能性がある ことにより,計算効率に問題が残る.また,亀裂面が 評価区間に含まれる場合, 亀裂面により遮られる節点 を用いずに評価が行われるが、この方法では、複雑に 亀裂面が走る3次元の問題で,節点の検索にかかる計 算コストも大きくなる.これら二つの FEM を改良し た手法は,計算効率という点で実用的ではなく,少な くとも現時点では,大規模数値解析には使えない.

FEM 以外の手法では,個別要素法(DEM)がある⁴⁾. これは,構造物を剛体とそれをつなぐバネによりモデ ル化する手法で,破壊はそのバネの切断として表現さ れる.これは上記の連続体を対象に使用されるFEMを 改良した手法とは違い,構造物を粒子の集まりと見る 点が特徴的である.つまり,元々変位は不連続に与え られており,関数の連続性が理論の足かせにならない. ただこの手法は,与えられた境界値問題に対して粒子 間の相互関係を記述するバネを決定する理論が確立さ れていない.そのため,信頼に足る手法とは呼べない.

以上が代表的な破壊進展の計算手法であるが,土木 の分野では,コンクリート構造物に特化し,実験に整 合する破壊面を簡便に計算する手法も提案されている ⁵⁾.この手法では構造物を小さい要素に分けることは 考えておらず,ある程度大きな要素をコンクリート部 材の一部として上手く平均化するために複雑な構成則 を使用している.これは破壊の平均値を得る良い方法 と言えるが,本研究で焦点を当てたい,ばらつきまで 表現できる数値解は得られない.

これらの中で, PDS-FEM も FEM に改良を加えた 手法だと分類できる. PDS-FEM は, FEM に対して, Particle Discritization Scheme(PDS)を加えることで, 亀裂進展の計算を実現している. PDS は不連続な形状 関数による変位場の離散化手法を与える.形状関数が 不連続であるため,リメッシュなどの計算コストのか かる特別な取り扱いも必要なく構造物内で不連続面を 扱え,またつりあい式に現れる要素剛性マトリクスは FEM と同等の局所性を保っているため, FEM ソルバ の計算効率を阻害しない.

現在までに, PDS-FEM による弾性数値解析ソフト ウェアの開発が行われた.本論文では,弾塑性解析を 扱う.弾塑性解析は非線形解析であるため,諸変数は 各非線形ステップでの増分の和として計算される.こ のため,亀裂を持った要素では,亀裂面でトラクショ ンを除く計算を行い,亀裂面が応力を保持しないよう にしなくてはならない.この手法に関しても,後に詳 述する.

以下,本論文ではこの PDS-FEM について,はじめ に定式化を行う.その後,FEM ソフトウェアへの実装 方法をその問題点・解決方法とともに説明し,最後に 数値実験の例を示す.

2. PDS-FEM の手法

本節では,3次元の境界値問題に対して,4面体1次 要素を用いた,PDS-FEMの定式化について述べる.具 体的には,PDSの定式化と,そこから得られる不連続 な形状関数による離散化を用いたPDS-FEMの定式化 を行い,最終的に得られるマトリクス方程式が従来の FEMのものと同じになることを示す.また,その定式 化内で破壊により要素剛性マトリクスが変化すること を示す.

2.1 PDS の定式化

 $D(\in R^3)$ 上に節点を振りまく.この時 Dに対して, Voronoi 分割 { Φ^{α} } と Delaunay 分割 { Ψ^{β} } が定義できる.PDS では,それぞれの分割に対して,異なる不連続な関数を用いて離散化を行う.つまり, $\Phi^{\alpha} \ge \Psi^{\beta}$ に対して形状関数をそれぞれ $\phi^{\alpha} \ge \psi^{\beta}$ を決める. $\phi^{\alpha}, \psi^{\beta}$ は PDS-FEM の場合,

$$\phi^{\alpha}(\boldsymbol{x}) = \begin{cases} 1 & \boldsymbol{x} \in \Phi^{\alpha} \\ 0 & \boldsymbol{x} \notin \Phi^{\alpha} \end{cases}$$
(1)

$$\psi^{\beta}(\boldsymbol{x}) = \begin{cases} 1 & \boldsymbol{x} \in \Psi^{\beta} \\ 0 & \boldsymbol{x} \notin \Psi^{\beta} \end{cases}$$
(2)

のように設定される関数である.これを用いて PDS で は関数 f とその微分 f_iを次のように離散化する.

$$f^{d}(\boldsymbol{x}) = \sum_{\alpha} f^{\alpha} \phi^{\alpha}(\boldsymbol{x}) \tag{3}$$

$$f_{,i}^{d}(\boldsymbol{x}) = \sum_{\beta} g_{i}^{\beta} \psi^{\beta}(\boldsymbol{x})$$
(4)

この時, f^{lpha} 及び g_i^{eta} は,以下で与えられる.

$$f^{\alpha} = \frac{1}{\Phi^{\alpha}} \int_{\Phi^{\alpha}} f(\boldsymbol{x}) dv \tag{5}$$

$$g_i^{\beta} = \frac{1}{\Psi^{\beta}} \int_{\Psi^{\beta}} \sum_{\alpha} f^{\alpha} \phi_{,i}^{\alpha}(\boldsymbol{x}) dv \tag{6}$$

ただし, Φ^{α} および Ψ^{β} は, それぞれが示す領域の体積 も表すこととした.この時,式(6)内の $\phi^{\alpha}_{,i}$ は Φ^{α} の境 界で立ち上がるデルタ関数となる.そのため,直接値 を出すことはできないが, PDS-FEM では,最終的に この関数を直接用いないで定式化できる.

fの離散化と同様に変位場を離散化すれば、Voronoi 分割の境界で変位場は不連続であることが可能になる. これは、Voronoi 分割の境界で亀裂を無理なく扱える ことを意味する.また、Delaunay 分割で変位場の微分 が定義できるため、この上で歪み場についても議論が 可能になる.

2.2 PDS-FEM の定式化

FEM を考える際,前節の Delaunay 分割が4面体1 次要素に対応する.3次元の境界値問題を考える.

$$\begin{cases} c_{ijkl}u_{k,li} = 0 \quad \boldsymbol{x} \in D\\ u_i = \bar{u}_i \quad \boldsymbol{x} \in \partial D \end{cases}$$
(7)

ここで, *u_i* は変位場を, *c_{ijkl}* は弾性係数を表す. これ に対し,以下の汎関数が得られる.

$$I(\boldsymbol{u}, \boldsymbol{\epsilon}, \boldsymbol{\sigma}) = \int_{D} \frac{1}{2} \epsilon_{ij}(\boldsymbol{x}) c_{ijkl} \epsilon_{kl}(\boldsymbol{x})$$
(8)
$$- \sigma_{ij}(\boldsymbol{x}) (\epsilon_{ij}(\boldsymbol{x}) - u_{j,i}(\boldsymbol{x}))
$$- b_{i}(\boldsymbol{x}) u_{i}(\boldsymbol{x}) dv$$$$

この式の内,変位 u_i と体積力 b_i は Voronoi 分割上で $\{\phi^{\alpha}\}$ を用いて離散化される.

$$u_i(\boldsymbol{x}) = \sum_{\alpha} u_i^{\alpha} \phi^{\alpha}(\boldsymbol{x}) \tag{9}$$

$$b_i(\boldsymbol{x}) = \sum_{\alpha} b_i^{\alpha} \phi^{\alpha}(\boldsymbol{x}) \tag{10}$$

また, σ_{ij} , ϵ_{ij} , c_{ijkl} はDelaunay分割で離散化され,

$$\sigma_{ij}(\boldsymbol{x}) = \sum_{\beta} \sigma_{ij}^{\beta} \psi^{\beta}(\boldsymbol{x})$$
(11)

$$\epsilon_{ij}(\boldsymbol{x}) = \sum_{\beta} \epsilon_{ij}^{\beta} \psi^{\beta}(\boldsymbol{x})$$
(12)

$$c_{ijkl}(\boldsymbol{x}) = \sum_{\beta} c_{ijkl}^{\beta} \psi^{\beta}(\boldsymbol{x})$$
(13)

となる . これらを I に代入し , $\frac{\partial I}{\partial \epsilon_{ij}^{\beta}} = 0$ および , $\frac{\partial I}{\partial \sigma_{ij}^{\beta}} = 0$ を計算すると ,

$$\sigma_{ij}^{\beta} = c_{ijkl}^{\beta} \epsilon_{kl}^{\beta} \tag{14}$$

$$\epsilon_{ij}^{\beta} = \sum_{\alpha} B_i^{\beta\alpha} u_j^{\alpha} \tag{15}$$

ただし,

$$B_i^{\beta\alpha} = \frac{1}{\Psi^\beta} \int_{\Psi^\beta} \phi^{\alpha}_{,i}(x) dv \tag{16}$$

この結果を用い, $\frac{\partial I}{\partial u_i^{lpha}}=0$ を計算すると, $\{u_i^{lpha}\}$ に対する方程式が得られる.

$$\sum_{\alpha'} k_{ij}^{\alpha\alpha'} u_j^{\alpha'} - \Phi^{\alpha} b_i^{\alpha} = 0$$
 (17)

ただし,

$$k_{ij}^{\alpha\alpha'} = \sum_{\beta} \Psi^{\beta} c_{ijkl}^{\beta} B_k^{\beta\alpha} B_l^{\beta\alpha'} \tag{18}$$

これは,4面体1次要素を用いた通常のFEMの要素剛 性マトリクスの成分と等しいことが分かる.

ここで直感的理解のため, Voronoi 分割と Delaunay 分割を図示する(図-1).1つの Delaunay 分割には4つ の Voronoi 分割の断片が互いに重なりを持たずに含ま れていて, Voronoi ブロックがあたかも剛体であるか のように離散化されている.さらに,歪みを Delaunay 分割内での平均値と定義している.これにより,要素 内で亀裂が扱えるわけである.

図-1 Delaunay 分割 Ψ と重なっている 4 つの Voronoi 分割 Φ

2.3 破壊の表現

PDS-FEM では, Voronoi ブロックの境界近傍の領 域 $\partial \Phi$ での c_{ijkl} の値を変化させることで破壊を表現す る.この時,要素内で c_{ijkl} が変化するため,式 (18)の ように, *c_{ijkl}* を定数として,積分の外に出すことができない.つまり,

$$k_{ij}^{\alpha\alpha'} = \sum_{\beta} \frac{1}{\Psi^{\beta}} \int_{\Psi^{\beta}} \phi^{\alpha}_{,k} c^{\beta}_{ijkl} \phi^{\alpha'}_{,l} dv \qquad (19)$$

ここで, 亀裂がある場合, *c_{ijkl}* が次のように定義されているとする.

$$c_{ijkl} = \begin{cases} c_{ijkl}^{0} & \boldsymbol{x} \notin \partial C \\ c'_{ijkl} & \boldsymbol{x} \in \partial C \end{cases}$$
(20)

ただし , ∂C は $\partial \Phi$ のうち , 破壊が起こった領域を表す . この時 , 式 (19) は次のように計算される .

$$k_{ij}^{\alpha\alpha'} = \sum_{\beta} \frac{1}{\Psi^{\beta}} \Big(\int_{\Psi^{\beta} - \partial C} \phi^{\alpha}_{,k} c_{ijkl}^{0\beta} \phi^{\alpha'}_{,l} dv + \int_{\partial C} \phi^{\alpha}_{,k} c^{\prime\beta}_{ijkl} \phi^{\alpha'}_{,l} dv \Big)$$
(21)

ここで,たとえば
$$c_{ijkl}^\prime=0$$
の時,式 (21) はさらに,

$$k_{ij}^{\alpha\alpha'} = \sum_{\beta} \frac{1}{\Psi^{\beta}} c_{ijkl}^{0\beta} \int_{\Psi^{\beta} - \partial C} \phi^{\alpha}_{,k} \phi^{\alpha'}_{,l} dv \qquad (22)$$

これは, 亀裂が入った場合の $k_{ij}^{\alpha\alpha'}$ の変化が, 積分の離散化として現れる B マトリクスの変化のみで表せることを意味する.

3. 破壊面の取り扱い

実装上最も困難な問題が,破壊面の扱いである.今回,この点に関して,大きな改良があったため,章を 分けて述べる.具体的な改良としては,1つの要素が 内部に持つことができる亀裂面の個数を最大3つに増 やした.これにより,構造物内の応力状態がより現実 に即したものになったが,特に亀裂面上のトラクショ ンの扱いが複雑になった.その計算方法についても詳 述する.

3.1 破壊面のパターン

4 面体要素では,1 つの要素 (Delaunay 分割)の中に, Voronoi ブロックの境界が6 面あることになる (図-2). 破壊後の要素では破壊面でトラクションを適切に除か

図-2 Voronoi 分割の境界

なくてはならないため,破壊面を表現する Voronoi ブ ロック境界の組み合わせは,Delaunay ブロックを2つ に分けるものを選ぶことになる.これには二つのパター

図-3 分割パターン A

図-4 分割パターン B

ンがあることが分かっていた.それぞれのパターンを A, B とし, 対称性を考慮に入れて図に示すと 図-3, 図-4 となる.また,1つの要素は複数の破壊面を持つ ことができなくてはならないことも本研究を通して分 かった.これはたとえば,パターン A の破壊から,さ らに,図-5 図-6のように分割できるということを 意味する.

図-6の状態は全ての Voronoi ブロックの関係が絶た れた状態である.パターン B から始まっても,2 段階 目以降の破壊は 図-5 図-6 と同じになる.このよう に破壊が要素内で複数回起こる場合と,一度しか起こ らない場合の違いは,与えられる変位が大きくなった 時などに現れる.破壊面を1つしか許容できない要素 では,変位によっては,破壊後も大きな応力を保持し うる.これは,望まない応力集中を生み,数値解析結 果として直感とずれる破壊面を与える.

二つのケースで計算結果が異なる例を示す.直方体 のモデルを考え,1軸引張試験を模した数値解析を行 う.与える強制変位は比較的大きなものとなるように 設定した.破壊面を要素内に1つしか許容できないプ ログラムでの計算結果が図-7となり,3つ許容できる プログラムの結果が図-8となった.両者とも,亀裂 面を青で着色し,亀裂を起こすべき応力を保持してい る要素を,応力のレベルによって,緑から赤に着色し た.前者では,青く着色された亀裂の付近に緑から赤 に着色された,大きな応力を保持している要素が目立 つ.これは,コードの制約により,亀裂が上手く起こっ ていないことを意味する.また後者では,モデルの中 に青く着色された部分しかないため,不自然な応力が

図-5 パターン A にさらに 1 つ追加の亀裂

図-6 パターン A にさらに 2 つ追加の亀裂

図-7 要素内に亀裂1面のみの場合の亀裂面と応力分布

図-8 要素内に亀裂複数の場合の亀裂面と応力分布

残っていないことが分かる.

3.2 破壊後の応力の計算

弾塑性解析では,応力は増分として計算される.そ のため,亀裂が発生した際,亀裂面でトラクションを 適切に除かなければならない.そして,破壊面の取り 扱いを「1面のみ」から「複数」に変えた際,理論上・ 実装上ともに,最も複雑に変化するのが破壊後の応力 計算である.本節では,応力場の計算方法と破壊面の 設定の2つに分けて説明する.

(1) 破壊面をもつ要素の応力場

まずは,破壊面を要素内に1つ持つ要素の応力の計 算方法を述べる.要素内の破壊面は1つの法線ベクト ルで表現できる.1つ目の破壊面を表現する法線ベク トルを n_i^1 とする. n_i^1 に垂直で,お互いに垂直な2つ の単位ベクトル s_i^1 , t_i^1 を適当に選べば,破壊面上のト ラクションを次のように表すことができる.

$$\sigma_{n^1 n^1} = \sigma_{ij} n_i^1 n_j^1 \tag{23}$$

$$\sigma_{n^1 s^1} = \sigma_{ij} n_i^1 s_j^1 \tag{24}$$

$$\sigma_{n^1t^1} = \sigma_{ij} n_i^1 t_j^1 \tag{25}$$

ただし,破壊面が発生する直前の応力テンソルを σ_{ij} とした.ここで,本研究で用いたように,破壊後は全ての成分がゼロになるようにモデル化したとし,変化後の応力テンソルを σ'_{ij} とすると,

$$\begin{split} \sigma'_{ij} &= \sigma_{ij} - (\sigma_{n^1n^1} n_i^1 n_j^1 + \sigma_{n^1s^1} n_i^1 s_j^1 + \sigma_{n^1t^1} n_i^1 t_j^1) \ (26) \\ & \aleph \\ & \varphi \\ & \aleph \\ & \varphi \\ & \varphi$$

次に,破壊面を2つ持つ要素内の応力テンソルの変 化について考える.この時,2つの破壊面上のトラク ションを同時にゼロにする応力場を考える必要がある. しかし,1破壊面ずつ順番にトラクションを落とす方 法では,それぞれの破壊面上の操作がもう一方の破壊 面上のトラクションに影響を与えるため実現できない. そこで,ここでは,2つの破壊面に同時に垂直に交わ る1つの面を考える.この面を表現する法線ベクトル をn'とする.破壊面を表現する法線ベクトルをそれぞ れ n^1 , n^2 とすると,n'は図-9のように図示できる.

図-9 2 つの破壊面に垂直な面

面 n' に垂直な方向のトラクションは,

 $\sigma_{n'n'} = \sigma_{ij} n'_i n'_j \tag{27}$

で表される.破壊面が2つの場合,このトラクションのみ残るように応力場を変化させれば,2つの破壊面

上のトラクションがゼロになり,かつ適切な大きさの 応力場が残ることが分かった.よって、変化後の応力 テンソル σ'_{ij} は,

$$\sigma'_{ij} = \sigma_{n'n'} n'_i n'_j \tag{28}$$

また,破壊面を3つ持つ要素では,応力テンソルは単 純に,

$$\sigma'_{ij} = 0 \tag{29}$$

で良い.

(2) 破壊面をもつ要素の応力場の破壊履歴への依存

実際の亀裂面には凹凸があり一つの平面となってい ないため,前節の方法で応力を計算するためには,亀 裂面を平均化するような,仮の亀裂面を考える必要が ある.仮の亀裂面上の法線ベクトルをただ1つ決定で きれば良いため,2つの平行でないベクトルを選ぶ.こ れは,2つの平行でないベクトルの始端を合わせた時 に得られる,ベクトルが張る平面を仮の亀裂面とする イメージである.本論文で採用した平面の近似的決定 方法を以下詳述する.

まずは,図-10のように点の名前を決める.

図-10 点の名前

要素内に亀裂が1つの場合,図-3,図-4で表され る2パターンに分類できることは述べた.パターンA を代表するものとして, 点 A を含む Voronoi ブロック と他の Voronoi ブロックの間に亀裂が入る場合,破壊 面を定義する 2 つのベクトルは, \overrightarrow{PQ} , \overrightarrow{PR} となる.パ **ターン**Bで, 点 A・点 B を含む 2 つの Voronoi ブロッ クと点 C・点 D を含む 2 つの Voronoi ブロックの間に 亀裂が入ったとすると,2 つのベクトルは, \overrightarrow{PT} , \overrightarrow{RS} となる,パターンBでは一般に2つの線分はねじれの 位置にあるが,亀裂面を横切る2つのベクトルを定義 するために採用した.パターンAにさらに点Bを含む Voronoi ブロックと点 C・点 D を含む 2 つの Voronoi ブロックの間に亀裂が入った場合は, \overrightarrow{VS} , \overrightarrow{WU} で定義 される破壊面を追加する.また,パターンBで,点A と点 Bの間に亀裂が入った場合は \overrightarrow{VW} , \overrightarrow{PZ} が張る平 面を破壊面として追加する.3つ目の亀裂に関しては, トラクションを考える必要がないため考えない.

上記の方法で亀裂面を考えると,2つの亀裂,各 Voronoi ブロックの関係が全く同じであるにも関わら ず(上記の例示のように,ブロックAとブロックBが 孤立し,ブロックCとブロックDのみつながっている 場合など),応力場の変化の仕方が違うことがある.こ れは,ブロック間の相互関係だけではなく,破壊の履 歴が応力場に影響することを意味している.

4. FEM ソフトウェアへの実装

本節では,今までに述べた PDS-FEM の手法の FEM ソフトウェアへの実装について述べる.

2. で述べたように, PDS による離散化を用いた4面体1次要素のPDS-FEMのマトリクス方程式は,通常のFEMのそれと等しい.そのため,要素剛性マトリクスの破壊による変更と,破壊面を持つ要素の応力場の計算をコード内に記述すれば, PDS-FEM は既存のFEM ソフトウェア内で機能する.つまり,十分に高速化された既存のFEM ソフトウェアに組み込むことで,高いパフォーマンスのソフトウェアを構成できるということである.

本研究では,オープンソースソフトウェアとして公 開されている準静的弾塑性解析が可能な FEM ソフト ウェア,ADVENTURE_Solidを使用した.これは,AD-VENTURE プロジェクト⁶⁾の成果を元に作られた動的 弾塑性解析ソフトウェアである ADVENTURE Cluster への実装を踏まえた選択である.

準静的ソフトウェアへの実装に関して,特別に注意 の必要だった点を以下で述べる.

4.1 破壊ステップ

準静的解析では, 与えたい境界条件を細かいステッ プに分割して与え,各ステップごとに全節点の変位の 増分を計算し数値解を得る.PDS-FEM を実装するに は,この変位ステップにさらに破壊ステップというもの を導入する必要がある.たとえば,ある面に垂直な方 向の歪み成分の大きさが値 et を超えると破壊が起こる, と破壊基準を設定したとする、準静的解析では、大き すぎる変化は解の収束を阻害したり,解の精度に悪影 響を与えたりするため,閾値を超えた要素を一度に全 て壊すのではなく, ϵ_t を超えた要素のうち, 歪みが最 も大きな要素においてのみ破壊を起こす.そして,境 界条件のインクリメントを止めた状態で,構造物内の 変位・歪み・応力などを計算しなおし,全ての要素が 破壊の閾値を下回ってから,次の境界条件のインクリ メントに移る.この時の1つの破壊と諸々の物理量の 再計算を行うステップが破壊ステップとなる.

図-11 E-Defense 実験モデル図

4.2 要素剛性マトリクス

1つの要素が破壊面を複数持てる場合,考えられる問題として,Voronoiブロックの孤立がある.他のVoronoi ブロックとつながっていないブロックが発生すると,そ の節点の変位が計算できない.このため,亀裂のある 要素でのBマトリクスの計算の際に,Bマトリクスの 変化量をPDS-FEMから求められる変化量の99.9%の 変化にとどめた.これにより,節点の孤立が原因での 計算の停止を回避できる.ただし,これは準静的解析 においてのみ問題となる現象である.動的解析を行う ADVENTURE Clusterでは問題とならない.

4.3 応力場の変化

亀裂面を3つ有する要素での応力場の変化に注意が 必要となることが分かった.前節で,破壊面を3つ持 つ場合,応力の変化は

$$\sigma'_{ij} = 0 \tag{30}$$

で良いとしたが,準静的解析を使用している状況では 収束が得られなかった.応力がゼロになる時に収束計 算が困難なる可能性を考え,

$$\sigma_{ij}' = \sigma_{ij}/1000 \tag{31}$$

などとすることで,要素剛性マトリクスの変化と合わせ,応力がゼロにならないようにした.これにより,今回使用したソフトウェアに対して,収束が確認できた.

5. 破壊進展解析

前章までの手法で作成した PDS-FEM ソフトウェア による破壊シミュレーションの例を提示する.また,ほ ぼ同じ手法で得られる破壊進展の動的弾塑性解析ソフト ウェアでの解析結果についても得られたため紹介する.

解析対象は E-Defense の橋脚実験⁷⁾を模したものに なっており,模式図は 図-11 のようになっている.こ れに対して,コンクリートに鉄筋を通した 図-12 のよ うなモデルを作成した.メッシュを作成するソフトウェ アの性能により,要素数を削るため,柱部に占める鉄 筋の大よその割合のみを模して,実験で使用された橋

図-12 数値実験モデル

表―1 モデルサイズ				
材料	全体	コンクリート	鉄筋	
要素数	604297	589933	14364	
節点数	107367	97922	9445	

表-2 物性値

材料	コンクリート	鉄筋
ヤング率 (N/mm^2)	25000.0	200000.0
ポアソン比	0.3	0.3
加工硬化係数 (N/mm^2)	1000.0	20000.0
初期降伏応力 (N/mm^2)	30.0	350.0
密度 (ton/mm^3)	2.3 e-09	7.5e-09

脚よりかなり粗いモデルを使用することになった.モ デルの要素サイズは表-1のようになっている.物性値 は表-2のように設定した.ただし,密度は動的解析の みに使ったパラメータである.

これに対し,静的解析ではスラブの上面に左右方向 の強制変位を与え,動的解析ではフーチング底面に震 動を入力した.これらは,曲げ破壊を目的としている. また,今回,破壊の基準として歪みを用いた.ある方向 の歪みが閾値を越えると破壊が生じるようにしている.

結果は図-13と図-14である.それぞれ準静的解析 と動的解析に対応している.準静的解析の結果である 図-13は青で表される破壊面と比較的大きな応力を持 つ要素を重ねてプロットしたものである.要素は応力 の大きさによって,緑から赤に着色されている.初め の頃,フーチングと柱部の境に大きな変位が見られる. それにより,剛性の大きな鉄筋を中心に大きな応力が 見られるようになる.その後,最も応力の集中してい る箇所から亀裂が現れ始め,応力が集中する亀裂先端 に向け,亀裂が広がっていく様子が見られる.また動 的解析の結果である図-14では,破壊した要素の色を 曲げ破壊 (step: 59) 曲げ破壊 (step: 59) 曲げ破壊 (step: 1199) 曲げ破壊 (step: 1799) 単げ破壊 (step: 1799) 曲げ破壊 (step: 2399)

図-13 曲げ破壊の進展

赤に変更し,変位を100倍に拡大して表示した.柱部 とフーチング境界で亀裂が起こり,その亀裂箇所に大 きな変位が現れていることが分かる.これらの解析結 果は,定性的には現象をとらえたものであり,本研究 で用いた解析ソフトウェアが比較的大きな解析対象に 対して使用できる可能性を示している.

一方, 亀裂がスパン方向に分散していかないといっ た鉄筋コンクリートの挙動と相容れない現象も見られ る.これは,鉄筋のモデル化が十分に細かく行われて いないため,破壊進展の過程で,コンクリートに対す る鉄筋比が局所的に小さくなっていることにより,鉄 筋の降伏が実物での実験より早く起こってしまうこと が原因ではないかと考えられる.

6. まとめ

本研究では,弾塑性体における破壊現象の数値解析 を高速に行う PDS-FEM ソフトウェアを作成すること に成功した.作成の過程で,準静的解析においてニュー トン法の収束が得られる実装方法を発見し,また,要素 内で破壊面を複数許容できるようにすることで,PDS-FEM 自体にも改良を行うことができた.この手法が動 的解析において同様に機能することも,おおよそ確認 することができた.これにより,実際に大規模な構造

動的解析での曲げ破壊 (Time: 3.37 s) (Time: 3.39 s) 動的解析での曲げ破壊 (Time: 3.40 s) 動的解析での曲げ破壊 (Time: 3.4445482 s)

動的解析での曲げ破壊

動的解析での曲げ破壊

(Time: 3.4238696 s)

動的解析での曲げ破壊

図-14 曲げ破壊の進展

物を微小な要素に分割した大規模計算を行うことや解 の安定性を見るためのモンテカルロ・シミュレーション を行うための基礎が整ったと言える. また,今回行っ た数値解析の例から見ても,鉄筋コンクリート構造物 の計算では、鉄筋を高精度で再現できる要素サイズが 必要であることが分かり、このような面からも大規模 計算の必要性が確認された.

参考文献

- 1) Hori, M., Oguni, K. and Sakaguchi, H.: Proposal of FEM implemented with particle discretization for analysis of failure phenomena Journal of the Mechanics and Physics of Solids, Vol.53, pp.681-703, 2005.
- 2) 久田俊明, 野田裕久: 非線形有限要素法の基礎と応用 丸善, 1997
- 3) Belytschko, T., Lu, Y.Y. and Gu, L.: Element - free Galerkin methods Int. J. Numer. Meth. Engng., Vol.37, pp.229-256, 1994.4) 伯野元彦:
- 破壊のシミュレーション 拡張個別要素法で 破壊を追う -森北出版,1997.
- 5) K. Maekawa, A. Pimanmas and H. Okamura: Nonlinear Mechanics of Reinforced Concrete Spon Press, 2003
- 6) ADVENTURE プロジェクト HP http://adventure.q.t.u-tokyo.ac.jp/
- 7) 独立行政法人防災科学技術研究所 兵庫耐震工学研究セ ンター E-ディフェンス HP http://www.bosai.go.jp/hyogo/index.html

謝辞

論文に掲載した動的解析は, PDS-FEMの Adventure_Solid への実装コードを Adventure Cluster に移植したものであ る.移植作業と動的解析は(株)アライドエンジニアリング により行われた.記して謝意を表する.

(2009年4月9日受付)