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This paper presents a numerical method based on the Navier-Stokes equations to evaluate
viscous forces acting on a moving body. A cell center based finite volume method for

unstructured grids is applied to discretize the computational domain and solve the governing

equations. A floating body with or without bilge keels undergoing roll motions at different roll

angles is taken as model case. Evaluation of hydrodynamic coefficients due to viscous forces
is conducted. The numerical results show that  the roll-damping coefficients obtained by using

the Navier-Stokes solver are larger than the radiation damping coefficients evaluated by the

linear potential theory due to viscous and vortex effect.
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1. Introduction

Predicting floating structure motions due to wave and the

corresponding hydrodynamic loads is of great importance to the

floating structure design and the mooring system. Numerical

results from previous studies still fail to predict motions of

floating body especially in case of rolling motions. This is due to

high non-linearity of rolling motions. Viscous and vortex effects

in the fluid are of causes the non-linearity state. Thus, neglecting

the fact that the fluid is viscous and the fluid motion is rotational

will bring to false prediction on the hydrodynamic loads and

lead to inaccurate added mass and damping coefficients.

Potential theory is applicable for motion analysis of the

floating body. However the inherent assumptions of potential

theory, which are inviscid flow and irrotational fluid motion, are

the main reasons of why this method is unfavorable in case of

rolling motions. The flow at the corner of hull section is

separated and affects the hydrodynamic forces acting on the

body. Significant effects occur especially if the body is

rectangular-shaped or has sharp  comers such as bilge keels fitted

on hull sections.

Experimental approach to the evaluation of roll damping due

to viscous and vortex-making was presented by Chakrabarti et

al.1). Empirical formulae and/or by the experiment give good

approach but the direct numerical evaluation is still more

favorable. Yeung et a1.22 and Yeung3) have developed numerical

approach called the Free-Surface Random-Vortex Method

(FSRVM) for evaluation of the effect of vorticity. Kinnas et
al.4) have evaluated the flow around the FPSO (Floating
Production, Storage and Offloading vessel) hull section by

unsteady Navier-Stokes solver. Ogura and Utsunomiya5) solved

the viscous flows around a floating body subject to heave and
roll motions by using the Navier-Stokes solver. But for the

applications to large motion amplitudes, convergence is still

difficult to gain. Further investigation of the hydrodynamic
coefficients of a floating body undergoing roll motions is
considered to be necessary. Thus, a new numerical method to

solve the Navier-Stokes equations is still necessary to be
developed. In this research, a finite volume method incorporated

with moving unstructured grids is the selected numerical 

approximation.

2.Two-dimensional Navier-Stokes Solver

2.1 Governing Equations

The governing equations employed in the computational

domain are the conservation law of mass and the conservation

law of momentum,

(1)
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Fig.1 Geometry details of cell center based scheme

(2)

where ui represents the total velocity vector, xi the spatial

coordinates, t the time, p the density of the fluid, ƒÊ the

viscosity of the fluid, Xi the body force per unit volume, and

p the pressure. In the following formulations, p is 

considered to be a constant, and the body force Xi is

neglected.

2.2 Finite Volume Method
In the cell center based finite volume method, the

Navier-Stokes equations in Eq.(2) can be written in the

following semi-discrete integral form.

(3)

Here,ƒ¢ƒ¶p is the volume of the cell (or the control volume)

P, Sfm the area of the cell surface fm and (nj) fm the

outward normal vector at the cell surface. The geometry details

of the cell P and its neighbors N1, N2, N3 are shown in

Fig. 1. The convective flux in Eq. (3) is approximated by the

midpoint rule integration. The midpoint rule itself has the

second-order accuracy6).

(4)

(5)

where mkfm is the mass flux passing through the cell surface

fm at the iterative step k. The symbol (Sj)fm is defined by

(Sj)fm=Sfm(nj)fm.
To avoid convergence problem during the iteration, the

deferred correction approach is used to interpolate the

convective flux at the cell face center fm:

Fig.2 Irregularity in unstructured grids

(6)

(7)

(8)

where UDS and CDS mean the upwind difference scheme

and the central difference scheme, respectively. ƒÀ is a blending

factor which determines the interpolation scheme. The range of

the blending factor is 0•…ƒÀ•…1. ƒÀ=1 is for central

difference scheme and ƒÀ=0 is for upwind scheme. In the

numerical examples presented below, ƒÀ=0 is used.

Interpolating the velocity field at the cell face f1 by linear

interpolation assumes that the line connecting nodes P and

N1 passes through the cell face center f1. In that case the

approximation of the  surface integral is second-order  accurate.

When the grid is irregular, the line connecting nodes P and

N1 may not pass the cell face center. In order to preserve the

second-order accuracy of the midpoint rule, we use the values at

auxiliary nodes P' and N1' instead of those at nodes P

and N1, see Fig. 2. Thus, the convective flux approximated by

the central difference scheme is modified to include the

irregularity term in order to keep the second-order accuracy.

(9)

(10)

where LNm,p is the distance between cell centers Nm and
P, and Lfm',p the distance between fm' and P.

Approximation of diffusive fluxes requires the values of

gradient of ui in the direction normal to cell face.
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(11)

By using the Gauss' theorem, one can approximate the gradients

at the cell center and interpolate them to the cell faces. The

gradients at the cell center are approximated by the average
value over the cell:

(12)

Due to oscillation problem during the iteration procedure,

diffusive flux is approximated by applying the

deferred-correction term as follows:

(13)

The term of 'impl' here denotes the implicit, and 'expl' denotes

the explicit flux approximation. Approximation of the implicit

term is calculated by Eq. (11), and approximation of the explicit
term is:

(14)

The pressure term in the momentum equation is

approximated by the midpoint rule integration:

(15)

The unsteady term is discretized by using the implicit

three-time level method:

(16)

Here, the upper-script n indicates the time step, and

ƒ¢t =tn+1-tn is the time interval.

The body moves every time step, therefore the grids attached

at the body have to move as far as the body movements. If the

flux change due to moving grids is accounted in the

computation, the velocity in the convective flux  term is not the

total velocity but the relative velocity and the modified

momentum equation is,

(17)

where grid velocity is expressed in the following equations,

(18)

2.3 Pressure-Correction Scheme

The pressure-correction scheme based on SIMPLE7)

algorithm is applied to couple the momentum equations

with the continuity equation. The predicted values, uk*i

obtained from the linearized momentum equation have

to be corrected so that mass at each control volume is

conserved.

uki=uk*i+u'i,(19)pk

=pk-1+p',(20)

where u'i and p' are the correction terms for the

velocity and the pressure. These values are determined

such that the following mass conservation at each

control volume is satisfied:

(21)

In the actual implementation to the computer program,

an approach invented by Rhie and Chow8) is used.

2.4 Boundary Conditions
The boundary conditions for a floating body

oscillating at a frequency  co in otherwise calm water

(without incident wave) are given in Ogura and
Utsunomiya5). In the following, the x-axis is taken
horizontally on the free surface, and the y-axis taken

vertically upward. The velocity components in the x-
and y-axes are given by the symbols u and v,

respectively.

(1) Free surface boundary
From the linearized kinematic and dynamic free

surface boundary conditions, one can obtain

(22)

Using the linearized Bernoulli's equation, one obtains

(23)
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where g is the gravity acceleration. Note that the these
conditions are applied on the undisturbed free surface,

i.e., on y=0.

(2)Far boundary
At the far boundary, there is no fluid particle

movement. Thus,

u=v=0, (24)

(25)

Fig. 3 Numerical model

Fig. 4 Configurations of the bilge keels

Table 1 Dimensions of the model

(3)Hull surface
At the hull surface, the velocity of the floating body

is assigned:

u=uhull(t), V=Vhull(t),(26)

where uhull(t) and Vhull(t) are the velocity

components of the hull surfaces. The pressure working
at the hull surface may be given as,

(27)

where n is the normal direction and s the tangential

direction on the hull surface.

3. Numerical Results and Discussions

3.1 Numerical Model

A 2D floating barge with its boundary conditions is

modeled to approximate the real condition in calm water.

The numerical model used in our computation is

depicted in Figs. 3 and 4. The dimensions of the hull

section and the boundary length are shown in Table 1.A

flating hull with or without bilge keels is presented
here. The A-type barge has sharp edges without bilge

keels. The C-type barge has horizontal bilge keels of

10mm length and 5mm thickness. The D-type barge has
horizontal bilge keels of 20mm length and 5mm

thickness. In Figs. 5 and 6, the details of the grid

construction used for the analysis of A-type barge and
C-type barge are shown. The number of elements for

A-type barge is 6534 (384 for structured mesh and 6158

for unstructured mesh) and that for C-type barge is 7554

(unstructured mesh only).
The harmonic roll motions around the center of floatation are

given: 

ƒ¿ =A0 sinƒÖt. (28)

The range of oscillation frequencies, f, is from 0.8 Hz to 1.7

Hz, and the range of roll angles, A0, from 0.01 rad to 0.04 rad.

The initial conditions are specified as u=v=0 and p=0

for entire fluid domain.

Fig. 5 (a) Grid construction around A-Type barge, (b) Close-up
view of grid around the corner of hull section.

Fig. 6(a) Grid construction around C-Type barge, (b) Close-up
view of grid around the corner of hull section.
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3.2 Roll Hydrodynamic Coefficients

The moment working on the center of floatation due to roll

motion is calculated by

(29)

where S is the wetted-surface of the floating body, and

(nx,ny) is the outward  normal vector on the body surface. In

the viscous fluid, the viscous stress components also affect the

resulting moment. However, Yeung and Ananthalcrishnan9)

showed that the pressure component is much larger than the

viscous components, the shear-stress contribution is about 10%,

and the normal-stress contribution is only about 1% of the

pressure components for a heaving body. Thus, the viscous

stress components are neglected in the calculation of the

moment acting on the floating body, as has usually been made 

in similar studies2)-5),9).

Fig. 7 shows the moment histories at f=1.7 Hz for A-type

and C-type barges. As can be seen in Fig. 7, the moment

histories can be fitted well with the following harmonic curve:

M=M0 sin(ƒÖt+ƒÀ),(30)

where M0 is the moment amplitude and ƒÀ the phase angle

with respect to the roll excitation. According to the linear theory,

the hydrodynamic roll moment can be written as a linear

combination of the inertia and damping terms.

(31)

where a44 is the roll added mass and b44 the roll damping

coefficient. Substituting Eq. (28) into Eq. (31), and equating it

with Eq. (30), one obtain, 

a44=M0 cos ƒÀ/(A0ƒÖ2), (32)

b44=-M0 sin ƒÀ/(A0ƒÖ). (33) 

In Figs. 8-10, the roll added mass and the roll damping

coefficient evaluated by the N-S solver are plotted for

non-dimensionalized wave number, ka (k:wave number, a: half

width of the floating body). In the same figures, the roll added

Fig. 7 Comparison of the moment histories between C-type and

A-type barge

(a) Roll added mass

(b) Roll damping coefficient
Fig. 8 Roll added mass (a) and damping coefficient (b) of

A-type barge (A0=0.01 rad-0.04 rad)

(a) Roll added mass

(b) Roll damping coefficient
Fig. 9 Roll added mass (a) and damping coefficient (b) of

C-type barge (A0=0.01 rad-0.04 rad)
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(a) Roll added mass

(b) Roll damping  coefficient
Fig. 10 Roll added mass (a) and damping coefficient (b) of

D-type barge (A0=0.01 rad-0.04 rad)

(a)t=0.5T

(b)t=1.25T
Fig. 11 The velocity vectors  around A-type barge predicted by

N-S solver at different times (A0=0.01 rad)

(a)t=0.5T

(b)t=1.25T
Fig. 12 The pressure contour plots of A-type barge predicted by

N-S solver at different times (A0=0.01 rad)

(a)t=1.0T

(b)t=2.25T
Fig. 13 The velocity vectors around C-type barge predicted by

N-S solver at different times (A0=0.04 rad)
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(a)t=1,0T

(b)t=2.25T
Fig. 14 The pressure contour plots of C-type barge predicted by

N-S solver at different times (A0=0.04 rad)

(a)t=1.0T

(b)t=2.25T
Fig. 15 The vorticity contour plots of C-type barge predicted by

N-S solver at different times (A0=0.04 rad)

mass and the roll radiation damping coefficient evaluated by the

linear potential theory are plotted for

comparison. The reasons why the hydrodynamic coefficients

computed by the presented scheme are compared with those

derived by the potential theory are 1) the potential theory is most

frequently employed and most established for evaluation of

hydrodynamic forces acting on a hydrodynamically compact 

structure10), and 2) the effect of viscosity and vorticity in the roll

damping coefficient may be captured as the difference between

both methods.

When bilge keels installed, the flow separates at the tip of the

bilge keels, and it modifies significantly the moment (Fig.7).

Downie et al.11) studied on the effect of vortex shedding on the

hydrodynamic damping of a floating barge undergoing forced

roll motion. The results show that for a floating body with sharp

edges and appendages, the damping coefficients due to vortex

shedding is proportional to the square of both the frequency and

amplitude of the motion. This is consistent with the numerical

results obtained in this research in terms of the non-linear
manner of the damping coefficients with respect to the roll angle

and also frequency of motion (Figs.8-10).

The resulting damping coefficients evaluated in this research
also show the same trend with the roll-damping coefficients

presented by Kinnas et al.4). As the roll angle of a floating body
increases, the damping coefficient increases significantly (Figs.

8(b)-10(b)). The values of added mass also change as the roll
angle increases but they do not change substantially as much as

in the case of roll damping (Figs.8(a)-10(a)). This significance is

more severe if the hull installed with bilge keels.

33 Prediction of Flow Field around Floating Sections

The predicted velocity vectors and vorticity contour plots
around the A-type barge and C-type barge oscillating with

frequency of 1.7 Hz are plotted in Figs. 11-15. The pressure

contour plots are also presented to show the linear free surface

condition at the mean surface of water.
It can be seen from Fig.11 that large velocity vectors around

the A-type barge exist near the corner of the hull section. Small

vortices are also generated but stronger vortices are generated
near the comer of the floating hull fitted with bilge keels. The

vortex becomes stronger when the roll angle increases (Fig.15).

The plots show that the developed vortex is located behind
the moving direction of the structure (Fig.13). If the structure

rolls away (counterclockwise), a strong negative (clockwise)

vortex exists to damp out the rolling motion. The vortex rolls in
a counterclockwise way when the structure rolls in (clockwise).

The developed vortex alters the pressure distribution, and thus

results in larger damping coefficients than predicted by the linear

potential theory.

4. Conclusions

In the current work, the Navier-Stokes solver has been

developed, and applied for laminar flows. The free surface

condition is approached by using the linear wave theory. The

structure is under roll motions with different roll angles and the

dependence of the resulting hydrodynamic coefficients are

investigated. The numerical results show that the values of the

added mass and damping coefficients depend on the amplitude

of the roll motion. The viscosity also affects the non-linear

behavior of the moment amplitudes as well as the phase

differences with respect to the angle of roll. This non-linear

behavior is more significant at larger roll amplitudes.

The results of added mass predicted by using the

Navier-Stokes solver compare well with those obtained from the

linear potential theory in both cases, a floating body with or

without bilge keels. This shows that the values of added mass

are not influenced by fluid viscosity. But significant results are

•\1061•\



obtained for values of damping coefficients. Fluid viscosity

affects the flow especially near the boundary layers and
therefore, increases the values of damping coefficients. This

indicates that viscosity plays important role for problems of

floating bodies subject to roll motions. The validation of the

added mass and damping coefficients by comparison with the

experiment is under way, and will be presentedin a near future.
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