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 Effect of fiber fatigue rupture on monotonic and cyclic crack bridging laws 

in discontinuous fiber reinforced composites
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This paper presents the micromechanical modeling of fiber bridging constitutive laws of a 

discontinuous fiber reinforced composite (DFRC) under monotonic and cyclic loading with 

the effects of fiber fatigue rupture. Based on the considerations of fatigue damage on 

randomly distributed fibers under the fatigue loading of constant crack opening amplitude, the 
monotonic and cyclic fiber bridging constitutive laws are derived. It is shown that, as fiber 

fatigue rupture proceeds, maximum bridging stress as well as crack opening displacement at 

which bridging stress vanishes are decreased. Also, the critical normalized number of cycles, 
n*crit, at which crack bridging degradation takes place, is analytically derived, and its role is 

explained for the design of a DFRC against fatigue. 
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1. Introduction 

Recently, short fiber reinforced cementitious composites are 

increasingly applied into civil engineering structures. These 

composites are placed in structural members in such a way that 

their high strength, ductility, and fracture toughness in tension are 

utilized in order to increase the safety, ductility, and durability of 

structures. It is known that those beneficial composite properties 

are thanks to bridging fibers that transfer stresses across a crack, 

and it is important to understand a fiber bridging constitutive law, 

which is the relation between bridging stress and crack opening 

displacement, based on micromechanical parameters such as 

fiber length, fiber diameter, fiber modulus, interfacial fictional 

bond strength, and so on. 

Some of the structural applications show that the composites 

are used in structural members where severe load repetitions are 

present, and that the composites are expected to yield long-term 

durabilities with their high fatigue strength, high crack resistance, 

and crack width control ability. In order to evaluate the 

long-term durabilities under load repetitions, it is necessary to

understand a fiber bridging constitutive law under cyclic loading 
and also understand the long-term degradation of fiber bridging 

itself. The fiber bridging constitutivelaw under cyclic loading 

has been derived already, and it has shown the validity in 

comparison to experimental measurements1). The next step is 

the consideration of the long-term degradation in fiber bridging 
itself This is because fiber bridging itself can be considered to 

degrade in the long run, namely the transferred stresses decay as 

load repetitions continue. For degradation, there can be two 

possible mechanisms. One is interfacial bond degradation, and 
the other is fiber fatigue rupture. 

Under cyclic loading, there is ample evidence to show that 

interfacial fictional bond strength changes under a large number 

of cyclic loads, e.g. in aligned continuous fiber reinforced 

ceramic matrix composites such as SiC/CAS2)3)4)5)6) and 

SiC/SiC7)8) and in steel fiber reinforced concrete9). The 

interfacial bond degradation has been implemented into the 

bridging constitutive law in a fatigue crack growth analysis, and 

an experimental crack growth measurement was successfully 

reproduced10). Furthermore, the stress-life (S-N) relation of
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various kinds of fiber reinforced concrete were reproduced with 

this analysis11)12).

On the other hand, for fiber fatigue rupture under cyclic 

loading, there are fewer evidences. 

Aligned continuous SiC fibers in a titanium alloy were 

observed to fracture under tensile fatigue loading13). Crack 

growth behavior of this fiber composite is significantly 

influenced by the fiber fracture, namely, the fiber fracture 

coincides with the onset of final accelerated crack growth. This 

study shows that the fiber fatigue rupture leads to the degradation 

of crack bridging stress and in turn to the final failure. 

The presence of fiber fatigue rupture can be readily proven 

by the comparison of crack surfaces of static and fatigue 

Specimens14)15)16). 

Randomly distributed discontinuous polyethylene fibers in a 

cement matrix exhibited severe fatigue rupture in fatigue tests14). 

Close-up pictures of the crack surfaces of static and fatigue 

specimens are clearly different in terms of fiber protrusion length. 

The static specimen showed that fibers were pulled out with no 

rupture as the crack opened up. On the other hand, the fatigue 

specimen showed that fibers were gradually ruptured during 

fatigue loading and that almost all the fibers were ruptured by the 

final failure of the specimen. This comparison reveals the 

susceptibility of the polyethylene fibers to fatigue damage, 

because the fibers are gradually ruptured during fatigue loading, 

although the length of fibers is designed so that no fiber rupture 

can take place during static loading (i.e. the fiber length is less 

than the critical length based on fiber diameter, strength and 

interface friction consideration). 

Similarly, polyvinyl alcohol fibers in a cement matrix suffer 

from fiber rupture more in the fatigue specimens than in the static 

specimens15)16). However, it should be noted that this composite 

is designed so that fiber rupture is allowed dtu-ing static loading. 

Therefore, having observed these evidences of fiber fatigue 

rupture, it is necessary to evaluate the effect of fiber fatigue 

rupture on monotonic and cyclic crack bridging laws in 

discontinuous fiber reinforced composites. The evaluation will 

be done by constructing a micromechanical model of the fiber 

bridging constitutive laws. 

This paper addresses on the fatigue damage on fibers. 

Progressive fiber fatigue rupture during the fatigue loading of 

constant crack opening displacement amplitude is taken into 

account, and the analytical expressions of fiber bridging stress -

crack opening displacement (•@ ) and fiber bridging stress 

amplitude - crack opening displacement amplitude (•@ )

relation with fiber fatigue rupture are obtained. 

2. Review of Single Fiber and CompositeBehavior under 

Monotonic and Cyclic Loading 

Before the derivation of af- Sand My- AS relations with

Fig. 1 Single fiber loading-unloading curves with corresponding 

equations (insert for complete curves)17) 

fiber fatigue rupture, a brief review will be done in this 

section1)17)18). Since fiber bridging stress is a sum of the pull-out 

loads carried by individual fibers, single fiber pull-out load - crack 

opening displacement (P - ƒÐ) relation is reviewed17)18) (see Fig. 

1). 

The P - ƒÐrelation during debonding stage is given by

(1)

where Ef = fiber modulus, df = fiber diameter, r = interfacial 

frictional bond strength,•@ ,l= embedment 

length, and during sliding stage by

(2)

Under cyclic loading, pull-out load amplitude - crack opening 

displacement amplitude (•@ ) relation is given as follows1). 

For fibers that have been in debonding stage under the 

preceding pull-out loading, we have:

(3)

and for fibers that have been in sliding stage under the preceding 

pull-out loading, the fibers undergo unstretching and contracting 

according to

(4)

Furthermore, when these fibers slide back into the matrix 

after unstretching and contracting, the•@ relation is given 

by

(5)

where ƒÐmax = crack opening displacement at which unloading
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starts and Pmax=ƒÎƒÑdf(l-ƒÑƒÂmax)

Based on the above single fiber behavior (P-ƒÂand •¢P-•¢ƒÂ

relations), the fiber bridging constitutive laws under monotonic 

and cyclic loading were derived. The details of the laws can be 

found elsewhere1). Here, only the definitions of parameters are 

introduced for the later use. Fig. 2 shows the bridging stress -

crack opening displacement behavior of a cracked composite. 

Under monotonic loading, the bridging stress increases with 

crack opening displacement until it reaches a peak value, ƒÐ0, at 

the corresponding crack opening displacement, 8 *, and it decays 

to zero together with fiber pull-out Here,•@

where Vf = fiber volume fraction and Lf= fiber length, and ƒÐ* 

corresponds to the maximum value of ƒÐo with l= Lf / 2, at which 

all fibers have completed debonding. For cyclic loading, we 

consider unloading and reloading. The unloading starts from a 

point on the monotonic relation, and the coordinates of the point 

are denoted by ƒÐmax and ƒÐmax. The fiber bridging constitutive 

law is defined with this point the origin. Namely, bridging stress 

amplitude, ƒ¢ƒÐ, and crack opening displacement amplitude, ƒ¢ƒÐ 

are measured from this point, as shown in Fig. 2. Therefore, the 

normalized fiber bridging constitutive laws will be expressed in 

terms of ƒ¿=ƒÂmax/ƒÂ*and ƒÀ=ƒ¢ƒÂ/ƒÂmax.

3. Fatigue Damage on Randomly Distributed Fibers 

It is assumed that fiber fatigue rupture takes place on a 

deterministic basis according to the stress-life (S-N) relation of a 

fiber (Fig. 3) and that surviving fibers determined in this manner 

exert fiber bridging stress across a crack under either monotonic 

or cyclic loading. Here, ƒ¢ƒÐsf is stress amplitude in a single fiber, 

cis fiber ultimate strength, nf is cycles to failure, and b is a 

coefficient. The derivation of the constitutive laws with the 

effect of fiber fatigue rupture is summarized below, and details of 

the derivation can be found in Appendix. 

Under cyclic loading of a given fiber composite, each of 

fibers is subjected to cyclic pull-out/push-in loading. The 

amplitude and magnitude of the resulting single fiber load depend 

not only on the overall load amplitude and magnitude, but also on 

the fiber location and orientation at a designated crack plane, and, 

in turn, the fatigue life of each fiber is dependent on these initial 

conditions and the number of cycles applied. From the 

viewpoint of each cyclically loaded fiber, there can be two 

loading conditions: with or without load redistribution among 

fibers.

Load redistribution takes place among fibers, when the lost 

load due to gradually fatigue ruptured fibers has to be taken by 

surviving fibers under the same or larger overall load. For 

example, this is the case when a bridged crack with uniform 

crack profile is cyclically loaded under constant load amplitude or 

when a bridged crack with non-uniform crack profile grows 

under constant cyclic load amplitude.

Fig. 2 Definitions of parameters

Fig. 3 Assumed stress-life (S-N) relation of a fiber 

On the other hand, no load redistribution happens when a 

fiber composite cyclically loaded under the condition of constant 

crack opening displacement amplitude of a uniform profile crack. 

Comparing these two loading conditions (with or without load 

redistribution), fatigue damage on fibers is certainly more severe 

with load redistribution, since surviving fibers have to sustain 

increasing load amplitude as fibers are gradually lost due to 

fatigue rupture. In this study, we will focus on the case of no 

load redistribution (constant crack opening displacement 

amplitude). This is because the problem can be simplified, but it 

provides fundamental insights and a basis even for the case of 

load redistribution. 

First, we will consider the group of remaining fibers under 

monotonic and cyclic loading with or without fiber fatigue 

rupture. For the fiber location, z, and orientation,•@

 uniform randomness is assumed, and, before any loading 

happens, all the fibers are included in the domain of fiber location 

(•@ ), hereafter•@ is 

denoted as w) and orientation•@ shown in Fig. 5. 

When monotonic loading takes place and the crack is opened up 

to•@ the domain of remaining fibers is 

reduced•@ due to the pull-out of fibers which 

starts from those with short embedment length, l (large w, note 

that•@ The domain of remaining 

fibers is divided into two: fibers in debonding•@ and 

sliding•@ and fiber bridging stress under 

monotonic loading can be obtained by integrating (1) and (2) in 

the two divided domains respectively. Upon unloading of this
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loaded fiber composite, the domain is not reduced, but divided 

into three with respect to w (Fig. 5). The fibers that have been in 

debonding (•@ ) in the preceding monotonic loading are 

unloaded according to (3), and the fibers that have been in sliding 

(•@ ) undergo unstretching and contracting (4), 

followed by sliding-in (5). The subdomain for the fibers that 

have been in sliding is now divided into two by

(6)

Fig. 4 Fiber centroidal distance, ; and orientation, q5

Fig. 5 Domain of the fiber centroidal distance, z, and orientation,

Fig. 6 Reduced domain of the fiber centroidal distance, z, and 

orientation, 4, due to fiber fatigue rupture

Fiber bridging stress under cyclic loading can be obtained by 

integrating (3), (4), and (5) in the three divided domains 

respectively, and thus it is dependent on ƒÐmax.

As fatigue loading proceeds, the domain is gradually reduced 

by fiber fatigue rupture, resulting in degradation of fiber bridging 

stress under either monotonic or cyclic loading. In this study, it 

is assumed that fibers are ruptured not under monotonic loading, 

but under fatigue loading, so the domain is reduced in such a way 

that fatigue ruptured fibers are discounted according to the S-N 

relation of a fiber. The S-N relation of a fiber is assumed to be

(7)

(see Fig. 3). This simple assumption does not account for 
fatigue limit, below which fatigue failure never occurs, so every 

fiber fails in fatigue at a finite number of cycles. It also does not 

account for mean stress effect, which changes the coefficient, b, 

of the S-N relation under different mean stress of a load cycle. 

According to the assumed S-N relation of a fiber, the condition 

for fibers to have survived for n cycles of fatigue loading is given 

by

(8)

The stress amplitude in a single fiber,ƒ¢ƒÐsf, can be obtained 

through dividing the fiber pull-out/push-in load by the fiber cross 

sectional area:

(9)

where ƒ¢P = fiber pull-out/push-in load amplitude applied for n 

cycles and is either ƒ¢P1, ƒ¢P2, or ƒ¢P3 depending on the 

embedment length of a fiber (Fig. 5). The factor efƒ³ refers to a 

snubbing effect which describes the mechanical interactions 

between a loaded inclined fiber and the matrix material19). It is 

assumed that the ƒ¢P-ƒ¢ƒÐrelation is approximated in the same way 

by Matsumoto1). From (8) and (9), the survival condition of a 

fiber after n cycles becomes

(10)

First, fibers within w = 0 •` z0 are loaded according to AP = ƒ¢P1, 

then from (10) we have

(11)

where•@ normalized
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crack opening displacement amplitude applied for n cycles,•@

Alternatively, in a normalized 

form, we have

(12)

where•@ and•@ .

Therefore, the domain of surviving fibers is reduced, and only the 

fibers with•@ and•@ can survive for n cycles 

under the normalized constant crack opening displacement 

amplitude of•@ (Fig. 6). Second, fibers within•@

are also loaded according to•@ , since it is assumed that 

•@. Hence the domain of surviving fibers is again 

limited by ƒ³1 , and only the fibers with•@ and•@

can survive (Fig. 6). Finally, fibers are loaded according to•@

, when they belong to•@ . Here, from (10), 

we have

(13)

or, in a normalized form,

(14)

Therefore, the domain of surviving fibers is limited by (13) or 

(14), and only the fibers that satisfy •@ , and

•@can survive (Fig. 6). In the case of •@ , the limit 

is dependent also on•@ . 

Based on the domain of the surviving fibers after n cycles of 

constant crack opening displacement amplitude loading with 

•@and•@ , we can construct the monotonicand cyclic 

fiber bridging constitutive laws. Details of the derivation can be 

found in Appendix.

Fig. 7 Domain of the fiber centroidal distance, z, and orientation, 

ƒ³, for monotonic bridging constitutive law after fiber fatigue 

rupture

4. Monotonic Constitutive Law with Fiber Fatigue Rupture 

The monotonic fiber bridging constitutive law with the effect 

of fiber fatigue rupture is given below, and the domain of 

surviving fibers is shown in Fig. 7 (see Appendix for details). 

When a fiber composite is fatigue-loaded for n cycles in the 

prepeak region•@ and afterwards it is further 

loaded under monotonic loading, the monotonic constitutive law 

for the prepeak•@ is given by, for•@

,

(15)

and, for•@

(16)

where

(17)

and

(18)

And the monotonic bridging constitutive law for the postpeak•@

is given by, for•@ ,

(19)
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(20)

When a fiber composite is fatigue-loaded in the postpeak

region (1•…ƒ¿f) with the crack opening displacement amplitude

less than the value for all-fibers-sliding-in (ƒÀf<ƒÀo) and afterwards

it is further loaded under monotonic loading, the monotonic

constitutive law (1•…ƒ¿f<ƒ¿) is given by(19) for ƒ¿<(1-z1(ƒÀf))/ƒÂ*

and by (20) for(1-z1(ƒÀf))/ƒÂ*•…ƒ¿.ƒÀo is given by

(21)

When a fiber composite is fatigue-loaded in the postpeak

region (1•…ƒ¿f) with the crack opening displacement amplitude

greater than the value for all-fibers-sliding-in (ƒÀo•…ƒÀf) and

afterwards it is further loaded under monotonic loading, the

monotonic constitutive law (1•…ƒ¿f<ƒ¿) is given by

(22)

It should be noted that for all ƒÓi's

(23)

where i = 1•`5 (Appendix for definitions).

Fig. 8 Domain of the fiber centroidal distance, z, and orientation,

ƒÓ, for cyclic bridging constitutive law after fiber fatigue rupture

5. Cyclic Constitutive Law with Fiber Fatigue Rupture

The cyclic fiber bridging constitutive law with the effect of

fiber fatigue rupture is given below in a similar manner to the

previous subsection. The domain of surviving fibers is shown in

Fig. 8 (see Appendix for details).

When a fiber composite is fatigue-loaded for n cycles in the

prepeak region (ƒ¿f•…1) and afterwards it is loaded under cyclic

loading, the cyclic constitutive law is given by, for ƒÀ•…ƒÀf,

(24)

and, for ƒÀf<ƒÀ,

(25)

When a fiber composite is fatigue-loaded for n cycles in the

postpeak region (1<ƒ¿f) and afterwards it is loaded under cyclic

loading (ƒÀf•…ƒÀo), the cyclic constitutive law is given by (24) for ƒÀ

•…ƒÀf and by (25) for ƒÀf<ƒÀ.

When a fiber composite is fatigue-loaded for n cycles in the

postpeak region (1<ƒ¿f) and afterwards it is loaded under cyclic

loading (ƒÀo<ƒÀf), the cyclic constitutive law is given by, for ƒÀ•…
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(26)

and, for ƒÀf<ƒÀ,

(27)

It should be noted that for all ƒÓ'is

(28)

where i =1•`5 (Appendix for definitions).

6. Bridging Stress Degradation due to Fiber Fatigue Rupture

Bridging stress degradation induced by fiber fatigue rupture

during fatigue loading is evaluated under monotonic and cyclic

loading with the use of the constitutive laws derived above.

Fatigue loading can be defined by three parameters: ƒ¿f, which is

the normalized maximum crack opening displacement in a load

cycle, ƒÀf, which is the normalized crack opening displacement

amplitude, and n*, which is the normalized number of cycles. In

the study of crack bridging degradation due to fiber fatigue

rupture, fatigue loading means constant crack opening

displacement amplitude applied to a cracked fiber composite,

Fig. 9 Monotonic bridging stress degradation (ƒ¿f=0.1, ƒÀf=0.5)

Fig. 10 Monotonic bridging stress degradation (ƒ¿f=0.1, ƒÀf=1.0)
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Fig. 11 Monotonic bridging stress degradation (ƒ¿f= 100.0, ƒÀf=

 1.0)

where ƒ¿f and ƒÀf are fixed throughout the fatigue loading. Also,

the composite system parameter is set to ƒÂ* = 0.0028 for the

case of a polyethylene fiber reinforced cementitious composite.

Fig. 9 through Fig. 11 show how the normalized fiber bridging

stress,ƒÐf=ƒÐf/ƒÐo, changes with the normalized crack opening

displacement, a; under monotonic loading, after fatigue loading

is applied under various conditions (ƒ¿f= 0.1, 100.0, ƒÀf= 0.5, 1.0,

and n* = 0.1•`10.0). When ƒ¿f = 0.1 and ƒÀf= 0.5 (half crack

closure), the degradation takes place when n* reaches 1.8

(hereafter referred to critical noimalized number of cycles, n*crit),

and there are no surviving fibers when n* surpasses 10.0. When

ƒ¿f=0.1 and ƒÀf= 1.0 (full crack closure), the critical value of n* is

smaller (n*crit = 1.27), and the total loss of the bridging stress

happens above n* = 5.0. The difference is due to the crack

opening displacement amplitude applied in the two cases. Also,

the critical value of n* decreases when ƒ¿f increases. For ƒ¿f= 1.0,

n*crit is 0.57 (ƒÀf= 0.5) and 0.4 (ƒÀf= 1.0), and, for ƒ¿f= 100.0, n*crit is

0.36 (ƒÀf= 0.5) and 0.33 (ƒÀf=1.0).

One consequence of fiber fatigue rupture is the decreased

bridging strength which appears when n* reaches n*crit, as

exemplified above. Another consequence of fiber fatigue

rupture is the decreased crack opening displacement at which the

bridging stress vanishes, as seen in Fig. 9 through Fig. 11. Note

that at a larger n* the bridging stress vanishes at a smaller a than

the original bridging stress, since only fibers with relatively

shorter embedment length can survive.

Fig. 12 through Fig. 14 show how the normalized fiber bridging

stress amplitude, , changes with the normalized

crack opening displacement amplitude, ƒÀ, under cyclic loading,

after fatigue loading is applied under various conditions (ƒ¿f= 0.1,

100.0, ƒÀf = 0.5, 1.0, and n* = 0.1•`10.0). The trends are the

same as in monotonic loading cases. The bridging stress

degrades when either ƒ¿f, ƒÀf, or n*crit is increased

The value of n*crit is the same for both of monotonic and

cyclic loading case, since the monotonic and cyclic bridging

stresses are exerted by the same surviving fibers in the reduced

Fig. 12 Cyclic bridging stress degradation (ƒ¿f= 0.1, ƒÀf= 0.5)

Fig. 13 Cyclic bridging stress degradation (ƒ¿f= 0.1, ƒÀf= 1.0)

domain. Indeed, n*crit can be readily obtained (Appendix).

When fatigue loading is applied in the prepeak (ƒ¿f<1) or when

fatigue loading is applied in the postpeak(ƒ¿f>1) and its

amplitude is small (ƒÀf<ƒÀo),n*crit is given by, in a normalized

form,

Fig. 14 Cyclic bridging stress degradation (ƒ¿f=100.0, ƒÀf=1.0)

(29)

or
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(30)

When fatigue loading is applied in the postpeak (ƒ¿f>1) and

its amplitude is large(ƒÀo<ƒÀf), n*crit, is given by, in a normalized

form,

(31)

(32)

As shown above, the degradation of fiber bridging stresses

starts when n*crit. exceeds n*crit. The two equations above are the

condition for a single fiber inclined at 90 degrees to the crack

plane to be fatigue-ruptured and are for a fiber in debonding and
sliding respectively. This n*crit tells the point at which fibers start

to be ruptured not only under constant crack opening

displacement amplitude condition, but also under constant stress

amplitude condition, since two conditions are the same until load

redistribution takes place upon the rupture of the first fiber.

However, when n*>n*crit under constant stress amplitude

condition, bridging stress curves are different from those under

constant crack opening displacement amplitude condition. Also,

it should be noted that, under variable stress amplitude condition,

n*crit does not hold valid.

7. Concluding Remarks

This paper presented a theoretical formulation of the cyclic
constitutive law for a discontinuous fiber reinforced composite

with the effects of fiber fatigue rupture. The formulation is based

on the micromechanics of fiber bridging under cyclic loading,

 enabling the effects of microstructural parameters to be

evaluated.

The single fiber behavior ( relation) was
reviewed. Also, the notations of fiber bridging constitutive law

under cyclic loading ( ) were introduced based on the

previous studies.
Effects of fiber fatigue rupture are included in the constitutive

laws under monotonic and cyclic loading, accounting for the

fatigue rupture of randomly distributed fibers under constant

crack opening displacement amplitude. As fiber fatigue rupture

proceeds, maximum bridging stress as well as crack opening
displacement at which bridging stress vanishes are decreased.

The critical normalized number of cycles, n*cri , t at which crack

bridging degradation takes place, is analytically derived.

For the future tasks, it is necessary to conduct experimental

measurements to show the validity of the derived fiber bridging

constitutive law, to apply the fiber bridging constitutive law to

progressive crack occurrence and growth in a structural analysis,
and also to extend the constitutive law beyond the assumptions of

frictional bond controlled interface and no fiber rupture under

static loading.

Appendix Derivation of the Monotonic and Cyclic Fiber
Bridging Constitutive Laws with Effect of Fiber Fatigue

Rupture

The monotonic and cyclic fiber bridging constitutive laws

with effect of fiber fatigue rupture can be derived in a similar way

to the cyclic fiber bridging constitutive law derived by

Matsumoto1). The difference is the integration domain reduced

due to progressive fiber fatigue rupture (Fig. 7 for monotonic and

Fig. 8 for cyclic constitutive law). defined in Fig.

7 and Fig. 8 determine the integration domain and have

expressions as follows:

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

and

(A8)

It should be noted that, for all ƒÓi's in the equations below,
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(A9)

wherei=1～5.

Monotonic Constitutive Law

The monotonic constitutive law after fiber fatigue rupture can

be obtained by integrating the contribution of surviving fibers in

the integration domain of w and shown in Fig. 7. The

surviving fibers again divided into two groups: fibers in

debonding and sliding. As the bridged crack opens up under

monotonic loading, fibers will undergo debonding, sliding, and

pulled-out Only fibers in debonding and sliding contnbute to

the bridging stress. The relation between the fiber pull-out load,

P, and the crack opening displacement, ƒÂ, of a single fiber in

debonding is given by (1) and the relation for a single fiber in

sliding is given by (2).

When a fiber composite is fatigue-loaded for n cycles in the

prepeak region  and afterwards it is further

loaded under monotonic loading, the monotonic constitutive law

for the prepeak can be obtained by, for ƒ¿

(A10)

which reduces to (15), and, for

(A11)

which reduces to (16). And the monotonic bridging constitutive

law for the postpeak ( ) can be obtained by, 

(A12)

which reduces to (19), and, for 

(A13)

which reduces to (20).

When a fiber composite is fatigue-loaded in the postpeak

region (1•…ƒ¿f) with the crack opening displacement amplitude

less than the value for all-(ƒÀf<ƒÀo) and afterwards

it is further loaded under monotonic loading, the monotonic

constitutive law (1•…ƒ¿f<ƒ¿) can be obtained by (A12) for 

and by (A13) for

When a fiber composite is fatigue-loaded in the postpeak 

region (1<ƒ¿f) with the crack opening displacement amplitude

greater than the value for all-fibers-sliding-in (ƒÀo•…ƒÀf) and

afterwards it is further loaded under monotonic loading, the

monotonic constitutive law (1•…ƒ¿f<ƒ¿) can be obtained by

(A14)

which reduces to(22).

Cyclic Constitutive Law

The cyclic constitutive law after fiber fatigue rupture can be

obtained in a similar way to the monotonic law above. The

surviving fibers are divided into two groups: fibers in

unstretching and contracting and in sliding-in, and the division is

made by z1 (ƒÀ) in Fig. 8. All surviving fibers contribute to the

bridging stress, since none of them will be discounted (no

pull-out in cyclic loading).

When a fiber composite is fatigue-loaded for n cycles in the

prepeak region (ƒ¿f<1) and afterwards it is loaded under cyclic

loading, the cyclic constitutive law can be obtained by, for ƒÀ•…ƒÀf,
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(A15)

whichreducesto(24),and,for βf<β,

(A16)

which reduces to (25).

When a fiber composite is fatigue-loaded for n cycles in the

postpeak region (1<ƒ¿f) and afterwards it is loaded under cyclic

loading (ƒÀf<ƒÀo), the cyclic constitutive law can be obtained by

(A15) for ƒÀ•…ƒÀf and by (A16) for ƒÀf<ƒÀ.

When a fiber composite is fatigue-loaded for n cycles in the

postpeak region (1<ƒ¿f) and afterwards it is loaded under cyclic

loading (ƒÀo<ƒÀf), the cyclic constitutive law can be obtained by,

 for ƒÀ•…ƒÀf,

(A17)

which reduces to(26)and,for βf<β,

(A18)

which reduces to(27).
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