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Unsteady numerical simulation is carried out for 3D velocity field of a turbulent trailing vortex 

using non-linear k-ƒÃ model. The general features of vortex decay as well as the different time 

periods of turbulence growth/decay captured in present simulation are discussed. The self 

similarity in the radial distribution of tangential velocity and circulation profiles are examined 

for trailing vortex. The simulation is also performed using standard k-ƒÃ model, and comparison 

is shown with non-linear model. Since the rotational effects of vortex were not captured by a 

standard k-ƒÃ model, it predicted extremely rapid and strong turbulence growth and causes a 

rapid decay of tangential and axial velocities. However, the non-linear model shows good 

agreement with previous DNS data. It is observed that the decay rate of axial velocity is much 

higher than tangential velocity. Five different time zones are observed in the growth/decay 

process of turbulent kinetic energy. In the matured stage of a trailing vortex, the turbulent 

normal stresses show two types of anisotropic behavior depending on the radial distance. 
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1. Introduction 

The basic types of plane vortices can be classified into 

two categories: one is slower velocity at center and 

maximum at sides; and another is maximum at center and 

minimum velocity at edges. The rotary fluid motion of first 

one is called the solid body rotation, since it is similar to the 

fluid motion filled in a rotating hollow box. On the other 

hand, if a long circular rod rotates in a fluid with constant 

velocity around its axis, the fluid velocity can be found 

highest and equal to the velocity of rod at the rods surface 

(due to adhesion); and with increasing distance from the rod, 
the velocity is observed to be diminished in inverse 

proportional to the distance. Such a fluid motion is called a 

potential vortex. Fluid motion composed of a potential 
vortex and solid body rotation is called Rankine vortex after 

the fluid dynamicist Rankine. The radial distance from 

center to the maximum tangential velocity is called the 

radius of vortex core. For a steady circular motion without a 

velocity component normal to the plane of rotation, the 

Rankine vortex in the only possible vortex whose velocity is

zero at the center as well as far away from it. In addition to 

these basic vortices, there are other time dependent rotary 

motions that have azimuthal velocity component as well as 

radial and axial components. 

The existence of such vortices is not limited to natural 

activities but also in many engineering applications. The 

Rankine vortex has been used extensively in various studies; 

for instance, to predict the decay of wing-tip vortices, to 

estimate the noise level produced by vortices and vibrations, 

to model the natural phenomena such as hurricanes and 

tornados. Current aircraft spacing in and around airports is 

partially governed by the vortex wake hazard caused by the 

possible interaction of leader aircrafts trailing wake and 
vortices with a following aircraft. However, the vortex 

behavior behind a lifting vehicle is still a topic of debate. 

The understanding about the internal structure as well as the 

mechanism of turbulence growth in the vortex core is also 

debatable. Vortex flows are the major cause of cavitation 

and underwater acoustics in marine propellers. Cavitation 

and hollow core due to pressure deficit at vortex center 

causes air-entraining vortices, which is an important part in
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hydraulics. Therefore, the emphasis on present topic is not 

only due to academic interest, but due to its practical 

importance as well. 

This paper deals with the trailing vortex, which is a 

time dependent vorticity concentration created at the tip of a 

semi-infinite wing with two non-zero velocity components, 

VƒÆ (tangential) and Vz (axial) , and constant circulation at 

infinity. Therefore, the main difference between the trailing 

and line vortex is the presence of axial velocity component. 

It is well known that the RANS (Reynolds Averaged 

Navier Stokes) type turbulence models, such as two 

equation model or Reynolds stress model, are the most 

popular tool used for practical engineering applications1). 

Because, it requires less CPU time and computer memory 

compared to LES and DNS. Therefore, the clarification of 

the possibility, the limitation and areas of improvement of 

RANS models should be still paid attention to. To resolve 

the Reynolds stress term appeared in the averaged 

Navier-Stokes equations, the k-ƒÃ model is one of the most 

frequently adopted one1). However, the standard k-ƒÃ model 

cannot produce satisfactory results for the flow field having 

high rate of strain and rotation because of its isotropic 

assumption of eddy viscosity2). On the other hand, a 

non-linear model predicts superior result by capturing the 

anisotropic turbulence. The non-linear model used in this 

study differs from the standard k-ƒÃ model in two important 

ways: i) the eddy viscosity coefficient (cƒÊ) is not a constant 

but a function of strain and rotation parameters; and ii) 

non-linear terms are added in the Reynolds stress equation 

to account the anisotropy of normal stresses. The model 

constants are tuned considering the realizability conditions 

and the anisotropy of turbulence in simple shear flows (Ali 

et al. 3), 4)). 

In this study, unsteady numerical simulation with 3D 

velocity field is carried out for a turbulent axial vortex using 

non-linear k-ƒÃ model. The simulation is also performed 

using standard k-ƒÃ model, and the performance of the 

models are assessed by comparing the simulated results with 

previous DNS data. The general features of vortex decay as 

well as the different time zones of turbulence growth/decay 

captured in present simulations are discussed. The self 

similarity in radial distribution of tangential velocity and 

circulation profiles are examined for trailing vortex. 

 In previous studies, the turbulent trailing vortex 

forming from a rolling up vortex sheet have been studied 

extensively both in experimentally and numerically. The 

experimental results and theoretical observation by Phillips5) 

and the DNS numerical study by Qin6) are considered here 

to compare the non-linear k-ƒÃ model predictions. Phillips5) 

described the Rankine vortex as a multi-layered structure. 

The innermost region is called as vortex core (Region-I). 

The tangential velocity is zero at the center of the core

where viscosity produces nearly solid body rotation. The 

outer most region (Region-III) can be described by the wake 

diffusion but extended inward to include turbulent diffusion. 

The Region-II is a buffer region between the nearly 

potential outer flow and the solid body rotation of core. This 

region contains the point of maximum tangential velocity 

where the inertial effects are negligible but high strain rate 

exist. Hoffmann & Joubart7) reported that this region is very 

similar to that of turbulent boundary layer near wall, and 

believed to follow a behavior of log law. 

2. Non-Linear k-ƒÃ Model 

2.1 Basic equations 

The basic equations in a k-ƒÃ model for an unsteady 

incompressible flow are as follows. 

Continuity equation:

(1)

Momentum equation:

(2)

(3)

ƒÃ- equation:

(4)
where, xi: the spatial coordinates, Ui and ui: the average 

and turbulent velocities respectively in xi direction, P: the 

pressure, p: the density of fluid, v : the molecular 

kinematic viscosity, k : the averaged turbulent energy, ƒÃ: 

the averaged turbulent energy dissipation rate, vt: the eddy 

viscosity, ƒÐk, ƒÐƒÃ, cƒÃ1, cƒÃ2: the model constants (standard 

values of ƒÐk = 1.0, ƒÐƒÃ= 1.3, cƒÃ1 = 1.44 and cƒÃ2=1.92 are 

used) 2). 

2.2 Constitutive equations 

(a) Standard k-ƒÃ model 

In the standard k-ƒÃ model, the Reynolds stress tensor 

uiuj is solved by linear constitutive equations derived from 

Boussinesq eddy viscosity concept, which does not take into 

account the anisotropy effect.
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(5)

Here, vt is determined from the dimensional consideration 

of k and ƒÃ, and is approximated by

(6)

Here,cƒÊ bears a constant value of 0.09. 

(b) Non-linear k-ƒÃ model 

Including the non-linear anisotropy term in the 

Reynolds stress equation introduced by Yoshizawa8), the 

constitutive equations can be expressed in the following 

forms

(7)

Here, vt is also determined as Eq. (6), but cƒÊ is not a 

constant; cƒÀ is the coefficient of non-linear quadratic term; 

and SƒÀij are defined as follows:

and (8)

It is known that the non-linear terms in equation (7) are 

equivalent to the following mathematical formulation9),10).

(9)

Where, the strain and rotation tensors are defined as

(10)

Comparing Eq. (9) with the non-linear terms of Eq. (7), the 

relations between the coefficients can be derived as

(11)
From this comparison, it is also inferred that the coefficient 

of eddy viscosity (cƒÊ) is a function of strain and rotation 

parameters. The strain parameter (S) and rotation parameter 

(ƒ¶) are defined in Eq. (12), as used in the previous studies 

of Pope9), and Gatski and Speziale10).

(12)

Many kinds of model functions have been proposed for 

the coefficient cƒÊ. Most of them consider only strain 

parameter, and rotation parameter is neglected (such as, 

Cotton & Ismail11), Kato & Launder12)). Craft et. al13) and 

Kimura & Hosoda14) consider one dominant parameter of

two (either S or ƒ¶). Recently, authors have proposed more 

generalized functional form for these coefficients 

considering the effect of both the parameters3),4). The 

proposed functional forms are as follows:

(13)

(14)

Table 1. Values of coefficients for cƒÊ and cƒÀ

Here, Cns, Cnƒ¶, Cds, Cdƒ¶, Cdsƒ¶, Cds1 Cdƒ¶1 Cdsƒ¶1, Mds and mdƒ¶ are 

the model constants. The functional form of cƒÊ used in the 

algebraic stress model by Gatski and Speziale10) or Pope9) 

can be obtained from the above equation simply neglecting 

some of the terms. Moreover, when the strain and rotation 

effects are neglected i.e. S=ƒ¶=0, cƒÊ becomes equal to the 

standard value of 0.09. Neglecting the quadratic term, the 

model reduces to the standard k-ƒÃ model. 

If the effect of strain and rotation parameters on cƒÀ is 

neglected, Eq. 14 gives cƒÀ = CƒÀ0. The values of cƒÀ0 used in 

this study are given below:

(15)

2.3 Tuning of model constants and evaluation of model 

 performance 

The values of model constants are given in Table 1. 

The model constants in Eq. (13) are tuned considering the 

anisotropy of turbulence in plane shear layer, and that in 

Eq. (14) are tuned to satisfy the realizability conditions for 

2D shear flows. 

 Further, the model is tested with some basic turbulent 

flows, such as turbulent jet with and without swirl (Ali et 

al.3)). The analytical results are compared to previous 

experiments, and the model constants are tuned to obtain the 

best fitted comparison. The swirl jet calculation explores the 

model's applicability for a flow field with high strain and 

rotation rate. The applicability of the model is examined for 

large scale vortices considering the spatial distribution and 

topological change of turbulent structures with singular
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points in an idealized vortex street (Ali et al. 4)). 
We also simulated the 3D flow field for compound 

open channel flows, and the performance of model is 

evaluated from the view point of mean flow and bed shear 

stress profiles, structure of secondary currents as well as 

considering the predictability of coherent vortices in the 

interface of main channel and flood plain (Ali et al. 15)). 

3. Simulation Details 

3.1. Initial Conditions 

The q-vortex, for which the direct numerical simulation 

results are available (Qin6)), is considered as initial condition 

of the vortex. Since the axial velocity of this vortex is not a 

function of axial distance but a function of radial distance, 

2D numerical grid became applicable to simulate 3D flow 

field. The details of the flow field is given below.

Tangential velocity

,(16)Radial velocity,(17)

Axial velocity,(18) 

Here, Vo is the scaling velocity, related to the initial mean 

tangential flow, defined as

(19)

Mp, is the initial DNS mach number =0.0009 and y =1.1209 

as used in Qin's simulation. 

As discussed by Lessen et al.16), the stability of 

q-vortex can be related to the value of swirl number q. They 

find that for any values of•@ , the vortex is initially 

unstable and the addition or subtraction of a constant 

velocity to the axial velocity profile, or an inversion of a 

velocity deficit to a velocity excess, does not change the 

temporal stability of the vortex. The initial swirl number q0 

is, thus, chosen to be unity to make the vortex initially 

unstable. 

The time is non-dimensionalized by•@ at t = 

0. Here, r0 is the radial distance where the tangential 

velocity contains the peak value (VƒÆm) in the initial flow 

field (at t = 0 ). The overall vortex behavior is found 

independent on the initial values of k and ƒÃ. In this study, 

their values are given as 10-5 and 10-6 respectively. 

3.2. Flow domain and Computational schemes 

The governing equations for mean velocities and 

turbulent flows are discretized with the finite volume 

method based on a staggered grid system. For the

momentum equation, convective and diffusive fluxes are 

approximated with QUICK and central difference schemes 

respectively. The hybrid central upwind scheme is used for 

k and ƒÃ equations. Time advancement is achieved by 

Adam-Bashforth scheme of second-order accuracy, in each 

equation. The basic equations are discretized as fully 

explicit forms and solved successively with the time 

increment in step by step. The pressure field is solved using 

iterative procedure at each time step.

Unsteady numerical simulations for 3-D velocity field 

are performed under the same hydraulic conditions of Qin's 

DNS computation. 2D numerical mesh with variable grid 

spacing is used with dense grid at centre and coarser 

towards the boundary. The computational domain consists 

of 100 grids in each of two lateral (x and y) directions. The 

size of domain is taken sufficiently large (10m•~10m) to 

overcome the interference of boundary in the vortex decay 

process. 

Cartesian grid is used for computation, and the 

results are finally presented in cylindrical coordinate 

using the geometric conversion.

(a)

(b)

(c)

Fig.1 Distribution of (a) Tangential velocity (b) Axial 

 velocity and (c) pressure at t = 3.72T
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4. Results 

The distribution of tangential and axial velocities as 

well as corresponding pressure distribution in the vortex 

field are shown in Fig.1, for simulation time t=3.72T. The 

case of trailing vortex considered here contains the axial 

velocity with a minimum magnitude at vortex center (at 

center, V, =0 at t=0) that gradually increases in outward 

direction and became constant at a far distance from center. 

In the simulated results, the axial velocity in the center 

region is found to increase with time to reduce the gradient 

with far field. The tangential velocity also decays with time. 

The details of temporal change in flow characteristics are 

explained in next sections. 

The pressure in a vortex is not uniformly constant with 

the radial distance. We know the distribution of pressure for 

a solid body rotation, for instance in a rotating box, is 

parabola17). The minimum pressure exists at center and 
increases towards the wall of the box. On the other hand, for 

a potential vortex the pressure increases from wall to 

outward distance in a concave manner. Therefore, the 

combination of these two gives the pressure distribution in a 

line vortex. The distribution of pressure in a trailing vortex 

is found similar to the line vortex regardless the presence of 

axial velocity. The figure shows that the pressure at vortex 

center is minimum and gradually increasing in outward 

direction and became constant at a far distance from center.

4.1. Decay of vortex 

Figs. 2, 3 and 4 show the profiles of tangential velocity, 

circulation and axial velocity for different times calculated 

by using Non-linear k-ƒÃ model. Figs. 5, 6 and 7 show those 

for standard k-ƒÃ model. It is observed that the standard 

model shows faster decay of tangential and axial velocity 

than the non-linear model. Since the rotational effects of 

vortex were not captured by a standard k-ƒÃ model, it 

predicted extremely rapid and strong turbulence growth and 

causes a rapid decay of tangential and axial velocity. 

The circulation is zero at vortex center line and found 

to increase toward the radial direction that reached a free 

stream value at some radius outside the vortex core (at ry/r0 

>5). A circulation overshoot is observed after the adjustment 

of initial conditions and when the vortex is well matured (at 

about t >3.0T). Qin's DNS simulation also shows a brief 

overshoot after the vortex adjusts itself to the unphysical 

initial conditions. Saffman18) claimed that the circulation 

overshoot is a general feature of turbulent vortices. However, 

Phillips5) argued that the circulation overshoot is unlikely. 

Some research pointed out that the overshoot does not 

appear to be enough to produce a visible instability. 

 Uberoi19) added that overshoot is possible if vortex diffusion

rate is greater than that for a laminar vortex.

Fig. 2 Radial distribution of tangential velocity and its 

decay with time (Non-linear k-ƒÃ model)

Fig. 3 Radial distribution of normalized circulation for 

different times (Non-linear k-ƒÃ model)

Fig. 4 Radial distribution of axial velocity and its decay with 

time (Non-linear k-ƒÃ model) 

In the tangential velocity, maximum decay occurs at the 

point of maximum velocity, while for axial velocity the 

maximum decay is at center of vortex. Fig. 8 compared the 

percentage change of axial velocity and peak tangential 

velocity with initial time. It is observed that the decay rate
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of axial velocity is much higher than tangential velocity. 
Since the vortex takes some time to adjust with initial 

condition, it is observed that the decay rate is small at initial 

times, approximately t< 1.25T. For both the velocities, the 

high decay rate is observed in intermediate time period of 
1.25T> t <4.25T. After that the decay slows down and the 

slope of trajectories shows to proceed towards minimum.

Fig. 5 Radial distribution of tangential velocity and its 

decay with time (Standard k-ƒÃ model)

Fig. 6 Radial distribution of normalized circulation for 

different times (Standard k-ƒÃ model)

Fig. 7 Radial distribution of axial velocity and its decay with 

time (Standard k-ƒÃ model)

Fig. 8 Comparison between time decay of axial velocity 

and tangential velocity (Non-linear k-s model)

Fig. 9 Self-similar profile of circumferential velocity 

compared with Phillips' model.

Fig. 10 Self-similarity in the circulation profile compared 

 with Phillips' model
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4.2. Self-similarity of profiles 

 From dimensional analysis, Hoffmann & Joubart7) 

showed that for fully-developed flow

(20)

Here, r1 is the radial distance of maximum tangential 

velocity VƒÆm . ƒ¡ is the circulation defined as ƒ¡ =2ƒÎrVƒÆ, and ƒ¡

1 is its value at a radial distance of r1. 

 By plotting experimental results of VƒÆ/ VƒÆm, versus r/r1, 

Phillips5 showed that for a fully developed flow the data 

collapse in a single curve, and independent of the outer flow 

characteristics. Comparing with experiments, Phillips5) 

proposed following equations to fit the self similar profile. 

Region-I:

(21) 

(22)

Logarithomic part of Region-II:

(23)

 In Fig. 9, it is observed that for tangential velocity the 

self similarity solution embraces all the regions I, II and III. 

Here the profiles are shown for t > 3.0T. Eq (21) proposed 

by Phillips5) is perfectly fitted with the simulation results by 

non-linear k-ƒÃ model. For t<3.0T, region I and II are found 

to show self similarity, but region III does not collapse with 

the data shown in Fig. 9. Therefore, region III shows the 

similarity form only for a particular flow conditions and in 

the fully developed flow case. 

 Fig. 10 shows the self-similar circulation profile. It is 

observed that although the simulated results for region I and 

region II collapse in a single curve, region III does not show 

the self similarity form. Eqs. (22) and (23) also show 

excellent fitting with the simulated data. From previous 

studies it is found that region I is weakly dependent on 

initial and hydraulic conditions. Phillips noted that this 

self-similar profile exists in the region I and II, regardless 

the presence of axial velocity component. Present result also 

support the argument and found that this region shows 

self-similarity form for all the times including t<3.0T. The 

logarithmic region near r/r1 =1 is reported as truly universal 

region. Dissimilarity in region III observed in Figure is also 

reported in previous studies. Due to circulation overshoot, 

there does not seem to be any scope for the self-similarity 

solution in region III.

4.3. Instability vortices 

 The non-linear model shows the occurrence of 

instability in a well grown vortex field (i.e. at t >3.0T for 

this case) after the self-similar form of flow field is attained. 

Fig. 11 shows the flow velocity vectors and the instability 

vortices in the flow field at t= 3.1T and 7.01T. Note that the 

instability vortex field is calculated by subtracting the mean 

velocity field from the main flow field. Phillips' multi-

layered structure is shown in the figure. Due to tangential 

velocity gradient between region I and II, as well as between 

II and III, instability vortices are found to form in those 

regions. Although at lower time (t=3.1T) the vortices 

between region I and II are not visible, they are clearly 

observed at t=7.01T. In these figures, the instability vortices 

are observed at a radial distance of about 0.7r1 and 1.2r, 

respectively (locations are shown as dotted circular lines).

(a) Calculated velocity vector of the flow field at t= 3.1T

(b) Instability vortices in the flow field at t= 3.1T
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(c) Calculated velocity vector of the flow field at t= 7.01T

(d) Instability vortices in the flow field at t= 7.01T 

Fig. 11 Non-linear k-ƒÃ model prediction of velocity vectors 

 and instability vortices in the flow field

4.4. Turbulence growth with time 

Production of turbulence is due to the tangential and 

axial velocity gradients. In the vortex lifetime, five different 

growth/decay rates of turbulent kinetic energy as reported in 

DNS calculation6) is also observed in the simulation of 

non-linear k-ƒÃ model. Fig. 12 shows the growth/decay of 

turbulence kinetic energy with approximated five different 

time zones. Initially (zone (i)), the vortex changes very 

slowly, as it requires to adjust with any unphysical nature of 

initial conditions. In time zone (ii), an exponential growth of 

turbulent kinetic energy is observed. The growth slows 

down in the next time period of zone (iii). It is observed that 

the decay of axial velocity gradient is significantly high in 

time zone (ii) and (iii). The turbulent kinetic energy reaches

in its peak value and remains about constant throughout a 

short period of zone (iv). It reveals that in this stabilization 

period the flow field became saturated and cannot support 
additional turbulence. Finally, the decay of turbulence is 

started as predicted by most of the previous researches (such 

as, Uberoi19), Bachelor20), etc.). The logarithmic plot shows 

that the decay rate in zone (v) is much slower than the 

growth rate in zone (ii).

Fig. 12 Growth of turbulent kinetic energy at ry/r0 =0.7 with 

different time periods (Non-linear k-ƒÃ model) 

Fig. 13 shows the radial distribution of turbulent 

normal stresses (Rii) in axial, radial and tangential directions 

for different times; those are noted as•@ and no, 

respectively. Here, the radial distance is normalized by r1 

=r0(t)
, which is the radial distance of maximum tangential 

velocity. For a round jet in a stagnant surroundings,

•@over the radius of jet (Ali et al.3),

Wygnanski & Fielder21)). However, in the matured stage of 

a trailing vortex, the turbulent normal stresses show two 

types of anisotropy depending on the radial distance. Inside 

the vortex core (r/r1<1) up to certain distance from center, 

the relation is•@ and beyond that distance 

the stresses follows•@ The latter case is the 

situation where turbulence production is significantly less 

than diffusion, such as in the central region of an 

axisymmetric wake. These anisotropic behaviors of 

turbulence are also reported in previous studies by 

Devenport et al.22) and Phillips & Graham 23). 

In the growth stage of time zone (ii), all the normal 

stresses are found to increase simultaneously. In Fig. 13, the 

distribution of turbulent normal stresses are shown for 

different times (t= 3.72 T, 5.0 T and 7.013T), which are 

belongs to time zones (iii), (iv) and (v), respectively. 

Comparison of turbulent intensities between time zones (iii) 

and (iv), it is observed that only the axial velocity

•\ 876•\



component shows significant decay. On the other hand, 

comparison between (iv) and (v), shows the simultaneous 

decay of turbulent intensities in all the velocity components. 

It is observed that at the center of vortex (i.e. at r =0), 

throughout the simulation time. It confirms the 

axisymmetric condition of the flow field.

Fig. 13 Radial distribution of turbulent intensities in three 

directions at (a) t 3.72 T (b) t 5.0 T (c) t-7.013T

Fig. 14 k-e model prediction of tangential velocity profile 

 compared with Qin's6) DNS results ( t = 3.72T)

Fig. 15 k-ƒÃ model prediction of circulation profile compared 

with Qin's6) DNS results (t = 3.72T)

Fig. 16 k-ƒÃ model prediction of axial velocity profile 

compared with Qin's6) DNS results ( t = 3.72T) 

4.5. Comparison with Qin's DNS data 

The circumferential velocity, the circulation and the 

axial velocity are compared with the DNS calculation of 

Qin6) at time t =3.72 T as shown in Figs. 14, 15 and 16 

respectively. At this stage the vortex already overcome the 

effect of initial conditions and shows self-similar behavior. 

Also, the turbulent flow field became saturated and
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stabilized gaining a peak value of turbulent kinetic energy 

after passing its growth periods. From Figs. 14 to 16, it is 

observed that the non-linear model shows well comparison 

with DNS data. Although the axial velocity decay is fitted 

well, the magnitude and position of maximum tangential 

velocity shows slightly faster decay than DNS data. A very 

high decay rate is observed for the standard model in 

comparison to the non-linear model and DNS simulation. 

Such discrepancy also observed in the comparison of 

circulation profile. Comparing the turbulence kinetic energy 

in Fig. 17, it is observed that the non-linear model shows 

much better comparison over standard model. However, the 

model slightly over-predicts the kinetic energy near its 

maximum point, and it is the cause of decay of tangential 

velocity slightly faster than DNS data as observed in Fig.14. 

Further refinement of the model, such as fine tune of model 

constants and/or addition of 3rd order terms, are necessary to 

minimize this small disagreement.

Fig. 17 k-ƒÃ model prediction of turbulent kinetic energy 

with Qin's6) DNS results ( t = 3.72T)

5. Conclusion 

The unsteady numerical simulations are performed for 

an isolated turbulent axial vortex using standard and 

non-linear k-ƒÃ models. Since the rotational effects of vortex 

were not captured by a standard k—s model, it predicted 

extremely rapid and strong turbulence growth and causes a 

rapid decay of tangential and axial velocities. However, the 

non-linear model shows good agreement with DNS data. 

For the tangential velocity, the self similarity solution 

embraces regions I, II (defined by Phillips) for all the time 

periods, however region-III collapse in a single curve only 

for fully developed flow. Phillips' model equations for 

similarity solution of velocity and circulation profiles are 

perfectly fitted with the simulated results. Circulation 

overshoot is observed in the well grown vortex field. Due to 

this overshoot, the self similarity solution seems to be not 

possible in region III. 

It is observed that the decay rate of axial velocity is

much higher than tangential velocity. Since the vortex takes 

some time for initial adjustments, it is observed that the 

decay rate is small at initial times, approximately t< 1.25T. 

For both the velocities, the high decay rate observed in 

intermediate time period of 1.25T> t <4.25T. After that the 

decay slows down, and the slope of decay shows to proceed 

towards minimum. 

Five different time periods are observed in the 

growth/decay profile of turbulence kinetic energy. Initially 
the vortex changes very slowly to adjust with initial 

conditions, then an exponential growth is observed that 

slows down before gaining its peak value. The peak value of 

turbulent kinetic energy remains about constant for a short 

period that finally follows the period of turbulence decay. 
After the maturity of vortex, the turbulent normal 

stresses show two types of anisotropic behavior depending 

on the radial distance. Although the radial component is 

always greater than other two, the tangential component is 

greater near the center and smaller around the region of 
maximum tangential velocity in comparison to axial 

component. The decay rate of energy after the period of 

stabilization is much slower than the growth rate in the time 

zones before the stabilization. The decay of velocity field 

slows down as the turbulence decay period starts.
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