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A computational method for multiphase fields, MICS 1), was applied to estimate the

shielding effects on the fluid forces acting on a complicated-shaped object surrounded
by other objects. In the MICS, arbitrarily-shaped objects are treated with tetrahedron

elements, through which the momentum interactions between objects and fluids are ac-

curately taken into account with a tetrahedron sub-cell method. The applicability of the
MICS was discussed with the experimental results obtained in some arrangements of the

 objects which surround a target  object in a flume equipped with a wave generator. As a

result, it was shown that the MICS enables us to predict reasonably the shielding effects
on the fluid forces in all cases of the present experiments.
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1. Introduction

It is important to estimate accurately the fluid

forces caused by free surface flows against a compli-

cated shaped object like a wave breaking block. In

such evaluations, it is necessary to take account of

the shielding effect, which means the variation of fluid

forces due to the deformation of the free-surface flows

caused by the surrounding objects, since it is rare that

such an object exists alone in the actual conditions.

Although in many cases some empirical coefficients,

such as the drag and lift coefficients Cd and CL, have

been utilized in the evaluation of fluid forces, it is ob-

vious that such evaluations are inaccurate since the

empirical coefficients are usually derived in a uniform

flow with a single object and the shielding effects are

not taken into account.

In the present paper, a computational method for

multiphase fields, MICS 1), is applied to estimate

the shielding effects on the fluid forces acting on a

complicated-shaped object, which is surrounded by

other objects. In contrast to the usual numerical

methods, the MICS enables us to deal with the free-

surface flows around arbitrarily-shaped objects. Since

the fluid-solid interactions are taken into account in

this method, it is possible to estimate the fluid forces

acting on the complicated-shaped objects as well as

the shielding effects on it.

 The predicted free-surface profiles and fluid forces

with the MICS are compared with the experimental

results, which were obtained in a flume equipped with

a wave generator. Some arrangements of the objects

surrounding the target object are examined and it is

shown that the MICS allows us to estimate reasonably

the fluid forces and shielding effects on them in all

cases of the present experiments.

2. Numerical Procedures

2.1 Basic Equations

 The multiphase field consisting of gas, liquid and

solid phases is treated as a mixture of fluids ƒ¶, which

is the collection of the immiscible and incompressible

fluids as shown in Fig.1. The fluid components ƒ¶i

in Fig.1 have different physical properties equivalent 

to the corresponding phases. This treatment enables
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us to deal with the complicated-shaped objects in-

cluded in free surface flows easily.

Fig.1 Mixture of immiscible and incompressible flu-

ids

The mass-conservation equations in the Eulerian

and Lagrangian forms for the fluid mixture ƒ¶ are

given as follows:

(2)

where pk and uk,i are density and velocity component

in the xi direction of the fluid-k respectively. From

the above two equations, the incompressible condition

is derived as

(3)

The momentum equation for ƒ¶ is given by

(4)

where fi is the acceleration component of the external

force and the second term on the right-hand side of

Eq. (4) means the surface integration of the surface

tension Fs,i acting in the xi direction. The stress Tk,ij

is defined as

(5)

where ƒÐij, pk,uk, ek,ij are the Kronecker delta, pres-

sure, viscous coefficient and deformation tensor of

fluid-k, respectively.

Assuming that the volume of ƒ¶ is sufficiently small, 

a variable ƒÓ'k (t, x) in each fluid is approximated as its

spatially-representative value ƒÓk(t) as follows:

(6)

With this relationship, Eq.(1) is rewritten as

(7)

where p and ui are volume-average density and mass-

average velocity component:

(8)

Similarly, with the relationship uk,i = ui+uk,i, Eq.(2)
is represented as

(9)

Assuming that the third term on the left-hand side of

the above equation is negligible, the following incom-

pressible condition is derived from  Eqs.(7) and (9):

(10)

With the similar procedures, Eq.(4) is rewritten as

(11)

In Eq.(11), as proposed by a CSF model 2) , the surface

force is treated as

(12)

This relationship means that the surface force is trans-

formed to the body force. Putting the third term on

the right-hand-side of Eq.(11) Di, it is written with

Eq.(5) as

(13)

where p and u are volume-average pressure and vis-

cous coefficient defined as follows:

(14)

Finally, assuming that the non-linear term of

in Eq.(11) and surface tension are negligible, the con-

servative form of the momentum equation is derived

as

(15)
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The governing equations of the MICS consist of Eqs.

(7), (10) and (15).

2.2 Computational Method

The discretized governing equations of the fluid-
mixture are solved after determining the volume-

average physical properties with the sub-cell method,
which will be described later. The three-dimensional

velocity components ui and the pressure variable p of

the discretized equations are defined on the collocated

grid points in the computational fluid cell.
The numerical procedures of the incompressible

fluid-mixture consist of three stages; prediction,

pressure-computation and correction stages. At the
prediction stage, the tentative -velocity components

ui* are calculated at the center of the cells with a

finite-volume method. In this procedure, Eq.(15)
is discretized with the C-ISMAC method 3) , which
is based on the implicit SMAC method 4) that allows

us to decrease computational time without decreasing
numerical accuracy. The equation discretized with re-

spect to time by the C-ISMAC method is given by

(16)

where ƒ¿ and ƒÀ are the parameters whose ranges are

0 •… ƒ¿, ƒÀ •… 1. With the following relationship,

(17)

Eq.(16) is transformed to the following equation:

 18)

where ui becomes nearly zero when the flow field is

almost steady or the time-scale of the flow field is suf-

ficiently larger than the time increment At. Thus,

we can apply a simple first-order spatial discretiza-

tion method to the left-hand side of Eq.(18), while

higher-order scheme to the right-hand side. The con-

vection terms are evaluated with a fifth-order con-

servation FVM-QSI scheme 5) and numerical oscilla-
tions are removed by a flux-control method 5) . The

C-ISMAC method enables us to derive the simultane-
ous equation system easily from the implicit form of

the left-hand side of  Eq.(18) as well as to preserve nu-
merical accuracy by applying a higher-order scheme 

to the explicit form on the right-hand side Eq.(18).

After solving the equation system of ui, which is
derived from the discretized equation of Eq.(18), we

obtain u*i with Eq.(17). The u*i derived at the cen-
ter of the computational cell is then spatially interpo-

lated on the cell boundary. Before this interpolation,

pressure-gradient term evaluated at the cell center is
removed from u*i in order to prevent pressure oscilla-
tion as

(19)

The cell-center velocity ui, which does not include the

pressure-gradient term, is spatially interpolated on
the cell boundaries by fb, which is a linear function in

the present study. After this procedure, the pressure-

gradient terms that are estimated on the cell bound-
aries are added to the interpolated velocity, fb(ui)
Thus, we obtain the cell-boundary velocity compo-

nent ub,i as follows:

(20)

The velocity component un+1b,i at n+ 1 time-step is

defined by

(21)

Subtracting Eq.(20) from Eq.(21), we have

(22)

where ƒÓ = pn+i-pn. Substitution of Eq.(22) into

the incompressible condition given by Eq.(10) that

is estimated at n+1 time-step yields the following

equation of ƒÓ :

(23)

At the pressure-computation stage, Eq.(23) is

solved with the C-HSMAC method. The C-HSMAC
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method enables us to obtain the pressure and cell-

boundary velocity components, which satisfy the in-

compressible condition |D| •ƒ ƒÆD in each computa-

tional cell, where ƒÆD is a given threshold. While 

the final results of the C-HSMAC method are simi-

lar to those of the SOLA or HSMAC method 6), it

has been proved that the computational efficiency of

the C-HSMAC method is largely improved 1). The

relationships in the C-HSMAC method are given by

(24)

(25)

(26)

where the superscript k stands for the iteration step-

number of the C-HSMAC method. The initial values

of ukb,i and pk are ub,i given by Eq.(20) and Pn respec-
tively.

The discretization of Eq.(24) yields simultaneous

linear equation system of ƒÓ, which is solved with the

BiCGSTAB method 7). The iterative computation

using the above three equations is completed when

|D|•ƒƒÆD is satisfied in all cells.

2.3 Sub-Cell Method

As shown in the derivation of the governing equa-

tions, the physical values of the mixture of fluids need

to be determined for each computational cell. Since

the computational cell is based on the Eulerian grid

which is fixed in the space, the volume-average physi-

cal value ƒÕ in the cell is estimated with the following

equation:

(27)

where ƒÕg and ƒÕl are physical values in the gas and

liquid phases respectively  and ƒÕbk is that of the

object—k. The volume fraction of the liquid and solid

phases in a computational fluid cell is given by f and

the fraction of the solid part is defined by ƒ¿k. The

fraction ƒ¿k is approximated with a sub-cell method,

as shown in Fig.2. As shown later, a solid object is

represented by multiple tetrahedron elements. When

the element is completely included in a single fluid

cell as shown in Fig.2 (a), ak is easily determined

from the element volume. In contrast, when the el-

ement is included in multiple fluid cells as shown in 

Fig.2 (b), a fluid cell is divided into multiple sub-cells

and ak is determined from the number of sub-cells in-

cluded in the element, which are shown as gray cells

in Fig.2 (b). The accuracy of the sub-cell method can

be improved using the smaller sub-cells.

(a) Tetrahedron element
included in a fluid cell

(b) Tetrahedron element
in multiple fluid cells

Fig.2 Sub-cell method (thick grid lines stand for

fluid cell and thin lines in (b) indicate sub-

cells )

2.4 T-Type Solid Model

A solid object in the flow is numerically represented

using T-type solid model. The  object surface model,

created with a CAD software as shown in Fig.3 (a),

is divided into multiple tetrahedron elements shown

in Fig.3 (b). Compared with the "sphere-connected

model" , which represents an object with multiple

sphere elements, T-type model is advantageous in re-

spect that its approximations of volume, mass and in-

ertia tensors are more accurate. The contact spheres,

shown in Fig.3 (c), are used only in the collision de-

tection between objects.

2.5 Movements of Solid Objects

The movements of the T-type solid model are cal-

culated with the basic equations for translational and

rotational motions. The basic equation of the trans-

lational motion is given by

(28)

where Mb is the mass of an object, v is the velocity

vector of its center and dot means time differentiation.
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(a) Surface model

(b) Polygon model

(c) Contact spheres

Fig.3 T-type solid model

The basic equation of the rotational motion, Euler

equation, can be written as the following form:

(29)

where ƒÖ is the angular velocity vector, I is inertia

tensor in the basic attitude of the object, R is a ro-

tation matrix and N is the external torque imposed

on the  object. The numerical processes related to

the rotation are actually performed with quaternions

instead of the multiplication of the matrix R. The lo-

cation and attitude of the object are determined form

Eqs.(28) and (29).

2.6 Fluid Forces Acting on Objects

The fluid forces acting on the objects are calculated

with the pressure and viscous terms obtained from the

computational results of Eq.(15):

(30)

where FCk is the fluid force vector in fluid cell C

acting on object-k and its xi component is given by

FCki•E The component Fcki is calculated from Eq. 

(30) with the volume of a fluid cell AC, density of

the body ƒÐk and volume fraction ak calculated with

the sub-cell method.

In the T-type solid model, as shown in Fig.4, the

summation of FCk in all fluid cells is the force vector

F on the right hand side of Eq.(28). Similarly, the

torque N in Eq.(29) is obtained from the summation

of the moments rGC •~ Fck, where rGC is the vector

from the object center xc ,k to the center of a fluid cell

C as shown in Fig.4.

Fig.4 Fluid force acting on a tetrahedron element

in a fluid cell
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3. Application of prediction method

3.1 Experiments

The fluid forces acting on the target object sur-

rounded by multiple  objects were measured in a wave-

generator flume, in order to understand the shielding

effects on the fluid forces.

The schematic view of the flume equipped with a

wave generator is shown in Fig.5. The horizontal

movements of the vertical plate on the left side of the

flume can be controlled by a PC, so that it can gen-

erate the wave flows above the box fixed on right side

of the flume. The target object and the surrounding

objects are placed on the box as detailed later.

The lengths L1 and L2 of the flume are both 0.7m.

The width of the flume B is 0.19m. The height of

the box in the flume hb is 0.1m and the width of the

flume is 0.19m. The initial water depth ho was set at

0.104m and the water level is same as the height of

the bottom edge of the target  object. The maximum

water depth due to the generated wave was about 147

mm at the point 100 mm apart from the front edge of

the box.

The target object, as shown in Fig.6, is a four-leg

wave breaking block, whose height is about 56mm

and specific density is around 2.14. The target object

was supported by a steel plate on which four strain

gages are fixed to measure the streamwise component

of the fluid forces acting on the  object. On the other

hand, the other objects surrounding the target block

are six-leg blocks as shown in Fig.7. The side length

d shown in Fig.7 is about 20mm.

Three cases of experiments were carried out with

the different arrangements of the surrounding blocks,

as shown in Fig.8. In case-F, three six-leg blocks are

placed in front of the target four-leg block. Similarly,

three six-leg blocks are fixed behind the target block

in case-B. In case-S, two six-leg blocks are placed next

to the target block as shown in Fig.8. The positions

of the surrounding blocks are shown in Fig.9. The

distances of the block edges from the side walls, b1

and b2 are 10mm and 15mm respectively, while the

distance from the front end of the box, d1 and d2 are

100mm and 50mm respectively. The attitudes of the

surrounding blocks in case-S are different from case-

F and case-B, so that they can approach the target

block as much as possible in case-S.

Fig. 5 Experimental flume (plane and side views)

Fig. 6 Target four-leg block with supporting plate

Fig.7 Six-leg block
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Fig.8 Arrangement of surrounding blocks

Fig.9 Positions of the surrounding blocks

3.2 Conditions of computations

In the numerical predictions, 140 •~ 38 •~ 50 computa-

tional cells are set up in the three-dimensional volume

of 1.4 •~ 0.19 •~ 0.25 m, including the air region. The ini-

tial conditions are same as those of the experiments.

The unsteady computations proceed with time incre-

ment •¢t = 1.0 •~ 10-2 second.

The numerical models for the blocks were created

with the CAD software and a mesh generator to set

up the tetrahedron elements. The target block is rep-

resented with 416 tetrahedron elements and 152 node

points, while the surrounding six-leg block consists of

244 elements and 78 nodes. The tetrahedron sub-cell

number was 125 in each fluid cell. The kinematic vis-

cosity of the water and air were set at 1.0 •~ 10-6 and

1.0 •~ 10-5m2 /sec., respectively. The density of the

blocks in the computations are same as that of the

experiments.

3.3 Comparison between experiments and

predictions

The computational results obtained with only a sin-

gle target block are shown in Fig.10 and Fig.11, which

are taken from our previous paper 8). It has been con-

firmed that the agreements of the time histories for

the fluid forces shown in Fig.11, acting in the stream-

wise direction, are satisfactory in case that there is no

surrounding objects.

Fig.10 Predicted free-surface profiles around a

single block, t = 1.1 (s)

Fig.11 Time histories of fluid forces acting on a

single block

On the other hand, the predicted free surface pro-

files obtained in case-F, case-S and case-B are shown

in Fig.12, Fig.13 and Fig.14, respectively. It can be

seen that the wave flows are largely distorted due to

the existence of the surrounding blocks.
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(a) t = 0.9 (s)

(b) t = 1.0 (s)

(c) t = 1.1 (s)

(d) t = 1.2 (s)

Fig.12 Predicted results of free-surface flows

(case-F)

(a) t = 0.9 (s)

(b) t = 1.0 (s)

(c) t = 1.1 (s)

(d) t = 1.2 (s)

Fig.13 Predicted results of free-surface flows

 (case-S)
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(a) t = 0.90 (s)

(b) t = 1.05 (s)

(c) t = 1.20 (s)

(d) t = 1.35 (s)

Fig.14 Predicted results of free-surface flows

(case-B)

In case-F, as shown in Fig.12, the wave flows are

trapped by the three six-leg blocks in front of the
target block. Thus the free surface level in front of

the target block in Fig.12 (c), which was taken at t =

1.1 sec., is smaller than that of the single target block
shown in Fig.10. It can be seen that the shielding

effects of three six-leg blocks are so large that only the
weakened wave flows that pass through them collide

with the target block.
 The time histories of the fluid forces against the tar-

get block in case-F are shown in Fig.15. It is obvious
that the peak value of the fluid forces is about 1/3
compared with the maximum value shown in Fig.10.
It is also seen that the experimental values and predic-

tions shown in Fig.15 are in good agreement. Conclu-

sively, the shielding effects in case-F are reproduced
well in the present computational method.

On the other hand, in case-S shown in Fig.13, since
there are no obstacles in front of the target block, the

wave flows acting on it are almost same as those in the
case of the single block as shown in Fig.10. However,

the flows passing through the side of the target block

are trapped by two six-leg blocks next to the target
one. This fact makes the velocity and pressure dis-

tributions around the target block different from the
single block as shown in Fig.10. Thus, the maximum

value of the fluid forces shown in Fig.16 is slightly
smaller than that in Fig.11. The shielding effect is
certainly admitted in case-S, while the influence is

smaller than case-F.

Similarly to case-S, there are no obstacles in front
of the target block in case-B, as shown in Fig.14. Nev-
ertheless, it can be thought that the flow conditions
are different from the single block in the following two

points: 1) the gradient of water level and the fluid ve-
locity become smaller due to the six-leg blocks behind

the target one, and 2) the reflected waves occur due to
the blocks behind. As shown in Fig.17, the peak value
of the fluid forces is smaller than that in Fig.11 due

to the above effect 1). In addition, it is demonstrated
that the negative fluid force occurs in the experimen-

tal results in Fig.17 following the positive one. The
negative fluid force is caused by the reflected wave
flows due to the effect 2). This negative fluid force

is also predicted in Fig.17, while it is underestimated

compared with the experiments.
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Fig.15 Time histories of fluid forces in case-F

Fig.16 Time histories of fluid forces in case-S

Fig.17 Time histories of fluid forces in case-B

The shielding effect is also admitted to some ex-

tent in case-B, meanwhile the fluid forces due to the

reflected waves are additionally caused by the blocks

behind.

4. Conclusion

The computational method MICS was applied to

estimate the shielding effects on the fluid forces acting

on a complicated-shaped object surrounded by other

objects. The predicted free surface profiles and fluid

forces for three arrangements of the surrounding ob-

jects, case-F, S and B, were discussed with the ex-

perimental results. It has been shown that the MICS

enables us to predict reasonably the shielding effects

on the fluid forces in all three cases, which seems to

be difficult to predict with the usual computational

methods.
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