
Journal of Applied Mechanics Vol.11, pp.399-410 (August 2008) JSCE

Laboratory Model Test and Numerical Analysis of Bearing Capacity of Rigid Strip Footing on Slope

Liang LU*, Katsuhilco ARAI**, Zongjian WANG* and Ryuji Nishiyama***

*Nonmember, Doctoral Program, University of Fukui (Bunkyo 3-9-1, Fukui 910-8507)
**Fellow, Dr. Eng., Prof, Dept. of Architecture and Civil Eng., University of Fukui

***Nonmember, M. Eng., Kozo-sekkei Co., LTD

This paper focuses on the estimation of bearing capacity of rigid strip footing on slope by performing a number of

laboratory model tests and the numerical analysis. The laboratory model tests, including unreinforced and reinforced subsoil, 

are carried out using three types of subsoil. A numerical procedure is proposed which is based on a smeared shear band

approach and a modified initial stress method, employing Mohr-Coulomb yield criterion with a simple plastic flow rule.

The proposed procedure is capable of estimating not only the bearing capacity for natural subsoil, but also under complex

conditions, for example, reinforced subsoil considering stiffness and deformation of materials. In most cases, a fairly good

agreement is obtained between the experimental and analytical results.
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1. Introduction

When constructing structures on slope, engineers must solve

complicated bearing capacity problem. Some analytical

methods are available for estimating the bearing capacity on

slope. The most fundamental approach is to apply the limit

equilibrium method or the circular slip surface method

considering the bearing capacity problem as a slope stability

problem. The limit equilibrium method represents kinematical
conditions only by using the mechanically acceptable shape of

a slip surface, and evaluates the material properties only by its

final strength. It does not allow considering the stiffness and

deformation of materials, which seem to play an important role

for evaluating earth reinforcement method, and which may

affect the global collapse mode.

Due to these defects, some methods are proposed, for

instance, finite element method, and limit analysis method

which is founded on the upper and lower bound theorems in

plasticity. Many researches indicate that classical finite element
method does not necessarily provide a reasonable collapse

mechanism1),2). Subjected to Mohr -Coulomb material, the limit

analysis has not completely overcome the difficulty that the

limit theorems cannot be proven without the normality rule in

plasticity, and that the normality rule may not hold for the
material, although it is known that the analysis provides a

suitable solution in most cases despite of the difficulty. In spite

of many researches, the accurate description of localization

phenomenon in soils is still open to question. For instance, the

bifurcation analysis that tries to simulate actual localized

deformation seems to give a promising view, while the analysis

may not give reasonable solutions for complicated boundary

value problems such as bearing capacity3),4). This may be

because in bearing capacity problems it is not easy to duplicate

the rotation of principal stresses from the below part of footing

to the peripheral region. Adaptive finite element method

appears to require a lot of numerical efforts and to contain a

certain numerical difficulty in some cases5),6).

In recent decades, a number of analytical methods and

experiments are performed to the bearing capacity problems on

slope. Kusakabe et al.7) carried out the model tests considering

various factors affecting bearing capacity on slope and

presented a practical solution based on the upper bound

approach. They compared the solution with the results by

circular slip surface method, lower bound approach, etc.

Narita8) applied the limit equilibrium analysis using log-spiral

slip surface and concluded that the analysis somewhat

overestimates the bearing capacity. Shields et al.9) carried out

large-scale experiments on loaded slopes of sand and compared

the results with some computational results. Sugano"

performed the model tests of strip footing on slope under

various loading conditions and compared the result with the

bearing capacity on level ground. Kimura et al.11) performed the
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unit: mm

(a) saturated clay

unit: mm

(b) mountain sand A and B

Fig. 1 Soil container

centrifuge model tests and showed a good agreement with the

results of other's tests on a prototype scale. Yoo) and

Mostafa13) practiced the laboratory model tests and FE analysis

for estimating the bearing capacity on slope reinforced by

geotextile, and ascertained the accordance between the

experimental and analytical results. Their main concern is the

suitable distribution and properties of geotextile to establish

maximum reinforcing effect rather than the simulation of

ultimate bearing capacity behavior.

In this paper, laboratory model tests are carried out to

evaluate the actual behavior of soil and collapse mode of soil

stratum on slope under footing pressure, and to study practical

evaluation of the bearing capacity. Then, we propose a

numerical procedure which is based on a smeared shear band

approach14) and a modified initial stress method15 16). The

numerical procedure assumes Mohr-Coulomb yield criterion

with a simple non-associated plastic flow rule and attempts to

provide an appropriate bearing capacity which is supported by

an explicit collapse mechanism represented by stress yield

condition. The calculated results by the proposed procedure are

compared with those obtained from the laboratory model tests,

to examine the numerical characteristics and applicability of the

proposed procedure.

2. Laboratory Model Test

2.1 Test Equipment

Fig. 1 shows the steel soil container used in the laboratory

model test, which is 700mm wide, 100mm thick and 550mm

high. One of the lateral sides has a composite glass plate with

grids of 5cm size so that the deformation of subsoil can be

observed obviously. Earth pressure sensors are installed in the

subsoil as shown in Fig. 2, to measure the vertical earth pressure.

Two dial gauges are used to measure the average settlement of

loading plate. Many markers are settled on the side wall of soil

container to observe the deformation of subsoil. Considering

the friction between soil stratum and soil container, we use a

thin rubber membrane smeared with a thin layer of silicon

Fig. 2 Distribution of earth pressure sensor

Case 1

Case 2

Case 3

Case 1

Case 2

Case 3

Fig. 3 Layout of geotextile for three cases

Table 1 Material properties

Table 2 Particle size distribution (%)
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grease on the surface of sidewalls of soil container. Loading

pressure is applied to a rigid loading plate with 150mm in width

using a Bellofram Cylinder. A sand paper is glued onto the

undersurface of loading plate, so that it may simulate rough

condition on base friction.

2.2 Soil Materials

Model tests are canied out respectively for saturated clay and

two types of mountain sand. Table 1 lists the soil parameters

and properties of geotextile, where B: width of loading plate, c,ƒÓ

: Mohr-Coulomb strength parameters, E: Young's modulus, ƒÁ:

unit weight and v: Poisson's ratio. Two types of sandy soil are

used and called mountain sand A and mountain sand B which

particle size distribution is given in Table 2. In the model tests, c

and ƒÓ are obtained by a direct shear test. E is back-calculated

from the footing settlement observed in the model test. The

model tests for discussing the effect of reinforcement material

are also performed for three cases as shown in Fig. 3, where

Case 1 is for the natural subsoil in which there is no

reinforcement material, while Case 2 is for the reinforced

subsoil with one layer of geotextile and Case 3 is for that with

two layers. The placement of geotextile for each case is also

illustrated by dotted lines in Fig. 3. As shown in Table 1, two

sorts of geotextile are applied, non-woven and woven

geotextiles corresponding to the saturated clay and the

mountain sand, where E is determined by a tensile test

2.3 Test Procedure

Foundation subsoil is made respectively of three types of soil

material as shown in Table 1. For the saturated clay, clay slurry

is thoroughly remoulded at water content of 65% considerably

greater than the liquid limit, which is composed of sand of

17.6%, silt of 77.6% and clay of 15.3%. The clay slurry, earth

pressure sensors, matters, geotextile and so on, are placed on

prescribed height of soil container in tum. Note that, for each

layer of setting gauge or geotextile, it is necessary to put a

loading plate which has the same width and thickness as the

horizontal plane of soil container. The plate is used for

consolidation for one day to ensure the stable status of gauges.

After setting all gauges and geotextile, the soil is put on the

height a little higher than that shown in Fig. 3 (a), and then is

consolidated by the way of step loads until the final pressure

reaches 49kPa. Under the load steps the soil is consolidated

until the completion of primary consolidation.

In tenns of mountain sand, two types of sandy soil are

distinguished by the density or consolidated pressure. Different

from the saturated clay, which overall height is 370mm,

mountain sand is put to the height of 420mm as shown in

Fig. 3 (b). As above-mentioned procedure of saturated clay, the

earth pressure sensors and geotextile are put into mountain sand

footing pressure (kPa)

(a) saturated clay

(b) mountian and A

(c) mountian sand B

Fig. 4 Footing pressure-settlement relationship (experiment)

(a) saturated clay (footing pressure 39kPa)

(b) mountian sand A (footing pressure 137kPa)

(c) mountain sand B (footing pressure 147kPa)

Fig. 5 Vertical earth pressure distribution (experiment)

in turn. The consolidation of mountain sand A is performed by

four stepwise loads of 9.8kPa, 19.6kPa, 29.4kPa and 34.3kPa,

in which each loading step is kept constant for 3 minutes for

well consolidation of subsoil. For mountain sand B the loading

stages of consolidation of subsoil are 24.5kPa, 49kPa, 73.5kPa

and 98kPa. The first three stages are kept for 2 minutes and the

final is kept constant for 5 minutes. After the subsoil has been
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consolidated, the portion of subsoil near one edge is removed

from the subsoil and a model slope is carefully formed.

The loading tests of saturated clay are performed by putting

the loading pressure at an increment of 4.9kPa to the loading

plate until the subsoil reaches failure, while mountain sand A
with the increment of loading pressure of 9.8kPa and mountain

sand B with 49kPa respectively. Because the soil cannot deform

immediately, each loading pressure stage is stipulated to keep

constant for 5 minutes. The settlement of loading plate, earth

pressure of soil layer and tension of geotextile are measured at
the interval of one minute until the next loading pressure stage.

Photographs are taken 4 minutes after a new loading pressure is

applied, in order to record the movements of the displacement

markers. From these photographs, the magnitude of

displacements in the slope is obtained.

2.4 Test Results

The observed footing pressure-settlement relationships are

given in Fig. 4 for the three types of subsoil. As seen in Fig. 4(a),
the relationships become remarkably non-linear at a certain

footing pressure and may reach the bearing capacity with this

turning point while tests are continued until large settlement

takes place. The results of saturated clay in Fig. 4 (a) show that

the earth reinforcement tends either to restrict the settlement of

subsoil or to improve the bearing capacity. Compared with

Case 1 of natural subsoil, in which the subsoil collapses when

footing pressure reaches 44kPa, Case 2 with one layer of

geotextile or Case 3 with two layers of geotextile has a higher
failure load of 49kPa or 54kPa respectively. Because the

placement of geotextile in Case 2 is much deeper than the
region of collapse mode in Case 1 as shown later in Fig. 16 (a),

the geotextile little improves bearing capacity. While the

geotextile of upper layer in Case 3 largely improves bearing
capacity, for its placement restricts the formation of collapse

mode. Fig. 4 (b) shows the experimental results for mountain

sand A. Concerning mountain sand B shown in Fig. 4 (c), the

settlement is restrained by geotextile, while no clear collapse

point is observed. It is difficult to evaluate quantitatively the
effect of geotextile on bearing capacity for mountain sand A and

B. These phenomena will be discussed later in the numerical

analysis of test results. Fig. 5 shows the monitored vertical earth

pressures and illustrates the comparison among three cases
defined above. The figure shows that the earth pressure on the

centerline of loading plate increases evidently in any instances

and decreases to zero on the side of slope. For the saturated clay,

near the left side of soil container the earth pressure in three

cases are almost the same, except the region below geotextile.

However, for mountain sand A and B, the earth pressure near

lateral sidewall have a little change. The detailed discussion is

made later in the numerical analysis.

3. Numerical Procedure

3.1 Outline

The proposed procedure can be used to estimate the bearing

capacity directly by a development of collapse mode. The

conditions to get such a collapse mode are as follows: 1)

Assume an active wedge below footing, 2) Treat the yielding

mass as a stratified material resulting from the smeared shear

band approach, and 3) Perform rigorously the nonlinear FE

analysis based on the modified initial stress method17). The

proposed procedure employs a simple constitutive model
which requires a small number of material parameters, so that it

may be applied to practical design work.

3.2 Yield Criterion

To relate the proposed procedure to conventional stability

analysis, Mohr-Coulomb and Coulomb yield criteria are

employed respectively to plane strain soil mass and friction

interface between structure and soil. For the friction interface

we employ the thin layer finite element as shown in Fig. 618).

Mohr-Coulomb:

(1)

(2)

where, ƒÐx, ƒÐy and ƒÑxy: stress components, and ƒÐt and ƒÑst: normal

and shear stresses in friction interface as shown in Fig. 6.

3.3 Constitutive Relationship

(1) Stress-strain relationship for coulomb interface

Subjected to Coulomb interface, Fig. 7 schematically

illustrates the relationship between shear stress vector {ƒÑst} and

strain vector {yst}. We employ a simple non-associated flow

rule or plastic potential Qc defined as19)

(3)

where g: a hypothetical parameter which is not cited actually,

because Qc is used only by its differential form. For the thin

layer element, as shown in Fig.6, the elasto-plastic stress-strain

relationship is given as15)

(4)

where•@
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Fig. 6 Coordinates in interface element Fig. 7 Stress-strain relationship

where {ƒÂƒÐ} and {ƒÂƒÃep} : stress and elasto-plastic strain

increments (see Fig. 7), [Dep] and [D]: elasto-plastic and elastic

stress-strain matrix referred to coordinate s-t here, and dij:

component of [Dep].

(2) Stress-strain relationship for Mohr-Coulomb material

When shearing a finite size of soil element, it is well known

that we often observe a shear band or slip surface as shown in

Fig. 8 (a). In this paper, the term shear band is used as the

meaning of a slip surface occurred in the yield element Since

our main concern is to get a practical design procedure, we

employ the most fundamental expression of inclination of angle

of shear band as

(5)

Pietiuszczak et al.14) proposed the smeared shear band

approach which evaluated the average stress-strain response of

solid and shear band When the thickness of shear band exceeds

a certain thickness, the yield plane strain element becomes close

to the stratified or cross-anisotropic aterial, as shown in

Fig. 8 (b). Modified this smeared shear band approach and

combined a plastic stress-strain relationship with a simple

plastic flow rule as shown in Fig. 7 for Mohr-Coulomb soil
mass, to get a collapse mode analogous to Fig. 10, the proposed

procedure assumes the yield soil element as a stratified element
and considers its elasto-plastic matrix [Dep] to be equal to that

as given by Eq. (4).

(3) Selection of shear band
Generally a set of two shear bands or slip surfaces A-A' and

B-B' are possible for a finite soil element according to the

principal stress state as shown in Fig. 9 (a). Considcring the
formation of active wedge, we assume the shear band B-B'

defined in Fig. 9 (a) within the active wedge in Fig. 10, and

assume the shear band A-A' outside of the active wedge as seen

in Fig. 10. The direction of A-A' or B-B' line in Fig. 9 (a) is

generally determined as (see Fig. 9 (b))

: A-A' line

: B-B' line (6)

where 13: inclination angle of shear band from horizontal axis,

(a) shear band (b) stratified material

Fig. 8 Shear band formation

(a) two slip surfaces (b) direction of slip surface in an element

Fig. 9 Direction of shear band

Fig. 10 Isolation of slip surface

and ƒÆ: angle of the major principal stress from vertical axis.

Note that compressive stress is positive here and that shear

stress ƒÑst is negative along A-A' line in Fig. 9 (a) and positive

along B-B' line.

3.4 Definition of Loading State

As stated above, a stress state is assumed to move along the

yield surface after yielding. The linear stress-strain relationship

also happens to make the shear stress ƒÑst decrease in Fig. 7

when applying the relationship to a boundary value problem.

Such a movement sometimes produces exceedingly high

tensile stress for some finite elements20). To avoid this confusion,

we introduce a constraint with respect to ƒÐt, which compels a

stress state to move along right side in Fig. 7.

(7)

Eq. (7) means that normal stress perpendicular to the slip

surface never decreases. The finite element, in which stresses

violate Eq. (7), is called tensile element hereafter.

3.5 Modified Initial Stress Method

The original initial stress method is based on an iterative

procedure. From mathematical viewpoint it is a special
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application of the modified Newton-Raphson method. When

applying the original initial stress method together with the

constitutive model described above, the numerical results are

considerably affected by the finite element subdivision system,

and unreasonable distributions of stress and displacement are

often observe& This method treats the nonlinearity as piecewise

linear, does not create the collapse mode as illustrated in Fig. 10,

even though assuming the stratified material. These difficulties

are avoided by introducing a modified initial stress method,

which finds directly the initial stresses without iterative

procedure. Fig. 11 (a) defines the actual stress of initial state

{ƒÐI}, yield stress {ƒÐA}, actual stress of plastic equilibrium state

{ƒÐB}, elastic stress {ƒÐE}, virtual initial stress {ƒÐ0}, total strain

{ƒÃ}, elastic strain {ƒÃe}, and elasto-plastic strain {ƒÃep}. Yield

stress {ƒÐA} is isolated by Nayak et al 16). To determine the

direction of shear band, the major principal stress 0 is

determined by using yield stress {ƒÐA}, and use it throughout

the succeeding loading stages, because the other methods do

not necessarily provide a collapse mode as shown in Fig. 10.

Firstly initial stress vector in s-t coordinate is

(8)

Referring to Eq. (4), component dij in [Dep] is the same as the

component of elastic matrix [D] except the third row

components. This means that both ƒÐs0 and ƒÐt0 in Eq. (8) vanish

both in interface and plane strain yield elements. The

application of Eq. (8) reduces the numerical effort and clarifies

the mechanical meaning of initial stresses. Referring to

Fig. 11 (b), in which the stress state has attained to yield state at

the present loading stage, the basic equation in the initial stress

method is given as

(9)

where, {ƒÐE}={ƒÐ}n-1+[D] [B] 184 {r}i: residual, [B]i: matrix

for calculating strain components from nodal displacements,

[K]: global stiffness matrix, {ƒÐf}: load increment vector, Aj:

area of the element, and suffixes i and j denote element number.

ƒÐ{ƒÃe} in Eq. (9) and Fig. 11 is calculated as [D]-1({ƒÐA}-{ƒÐ}n-1).

The constraint given by Eq. (7) is represented as

(10)

where {ƒÐA}={ƒÐA}i or {ƒÐC}={ƒÐ}in-1 respectively when the

element has yielded at the present loading stage n or when the

element yielded at the preceding stage. Since both Eqs. (9) and

(10) are linear equations with respect to unknown {ƒÐst0}, it is

possible to directly solve Eqs. (9) and (10) as a set of

simultaneous equations. For instance, Eq. (9) for finite element i

(a) initial stress method (b) initial stress method at a loading stage

Fig. 11 Modified initial stress method

(a) saturated clay (ƒÓ=0)

(b) mountain sand A (ƒÓ=15.9•‹)

(c) mountain sand B (ƒÓ=27.76•‹)

Fig. 12 FE meshing

Fig. 13 Verification of shape of active wedge 

with respect to unknown {ƒÐst0}j given as

(11)
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where||3 denotes the third component of vector, etc. When

solving Eqs. (9) and (10), we must assume the constant

numbers both of unknown ƒÑst0 and ƒÐt0. Thus the following

additional iteration is required for determining the yield finite

elements and tensile elements. The numerical steps during a

typical loading stage are summarized as follows. 1) Performing

an elastic analysis by using actual load increment {ƒÂf},

calculate {ƒÐE} and {ƒÂƒÃ} in Fig. 11 (b). 2) Find the yield finite

elements in which {ƒÐE} violate the yield criterion, and tensile

elements in which stresses violate Eq. (7). 3) For the yield

elements, calculate yield stress {ƒÐA} both from {GE} and the

preceding stress state. 4) Concerning {ƒÐA}, calculate direction

of the major principal stress ƒÆ, and find shear band inclination

angle ƒÀ by Eq. (6). 5) Determine {ƒÐast0} by solving Eqs. (9) and

(10). 6) Again, find the yield and tensile elements by

performing an elastic analysis by use of both {ƒÂf} and {ƒÐst0}

determined at 5). When finding new yield or tensile elements,

determine {ƒÐst0} subjected to the total yield and tensile

elements including the new yield and tensile elements. Repeat

this procedure until neither new yield nor tensile element is

found 7) Based on the final results at 6) calculate necessary

state variables {ƒÐB}, settlements, and so on.

4. Numerical results and discussions

4.1 Preparations

The numerical procedure proposed above is applied to the

laboratory model tests. Fig. 12 shows FE meshing of three

sub-soils used in our analyses, in which the footing or loading

plate is modeled by beam elements and represented by its

elastic modulus E=2.1•~107kPa, cross area A=0.012m2 and

moment of inertia I=1.44•~10-7m4. Interface elements as shown

in Fig. 6, are set between footing and subsoil, in which shear

modulus G is given as E/2(1+u) by using E and of subsoil.

The material parameters are given in Table 1. When

considering anisotropic initial stresses, the proposed procedure

provides much lower bearing capacity than conventional

solutions in which anisotropic initial stresses are not taken into

consideration. Thus we give isotropic initial stresses for

comparing our solutions with the conventional solutions.

To get a global collapse mode, the proposed procedure

requires to assume the shape of active wedge as shown in

Fig. 12, because it is difficult to duplicate the rotation of

principle stresses from the below part of footing to the

peripheral region. Many experimental researches have

observed actually the active wedge developing below footing.

A lot of analyses also assumed the active wedge. For example,

Kusakabe et al.7) employs the active wedge determined by

angle ƒ¿ similar with Eq. (5). These researches may verify the

validity of the active wedge specified by Eq. (5). In our analysis,

as the first method angle a is given by Eq. (5), regarding the

vertical footing pressure as the major principle stress. However,

for practical design, the minimum bearing capacity must be

(a) saturated clay

(b) mountain sand A

(c) mountain sand B

Fig. 14 Effect of shape of active wedge

(a) saturated clay

(b) mountain sand A

(c) mountain sand B

Fig. 15 Footing pressure-settlement relationship

(Case 1, analysis)
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e=0, h

qu1=39.521kPa

e=1.5cm, 1/3h

qu2=35.89kPa

(a) saturated clay
e=0, h

qu1=85.76kPa

e=1.5cm, 1/3h

qu2=75.96kPa

(b) mountain sand A
e=0, h

qu1=115.4kPa

e=0, 1/3h

qu2=93.21kPa

(c) mountain sand B

Fig. 16 Yield region (Case 1, analysis)

(a) saturated clay (q=49kPa)

(b) mountain sand A (q=137kPa)

(c) mountain sand B (q=147kPa)

Fig. 17 Major principle stress field (Case 1, analysis)

(a) saturated clay (q= 49kPa)

(b) mountain sand A (q=137kPa)

(c) mountain sand B (q=147kPa)

Fig. 18 Displacement field

(Case 1, analysis)

(a) saturated clay

(b) mountain sand A

(c) mountain sand B

Fig. 19 Footing pressure-settlement relationship

(Case 2, analysis)

(a) saturated clay

(b) mountian sand A

(c) mountain sand B

Fig. 20 Footing pressure-settlement relationship

(Case 3, analysis)

selected by changing the shape of active wedge to ensure th 

bearing capacity given by the proposed procedure is

conservative. In our analysis, as the second method the shape of

active wedge is assumed to depend on variation of its height

and eccentricity. Fig. 13 gives the patterns of active wedge

assumed in our analysis. Based on the FE meshing shown in

Fig. 12 with some changes for shape of active wedge in Fig. 13,

the proposed procedure provides the relationship between

footing pressure and settlement for Case 1 as shown in Fig. 14.

It demonstrates that the calculated results are affected by the

variation of active wedge in a certain extent, in which e

represents the eccentricity of active wedge and h denotes the

height of active wedge as denoted in Fig. 13.

Because the proposed procedure cannot perfectly duplicate

the strain localization behavior, it cannot produce an infinite

plastic shear flow of subsoil. It determines the bearing capacity

by the stress condition of soil mass. Because of the assumption

of the smeared shear band for yield element, it may create an

estimated collapse mode by the distribution of yield element.

As an example, Fig. 16 shows the yield region given by the

 proposed procedure, where a solid line in some finite elements

represents the direction of shear band or slip surface, and that

these elements have yielded. Since the shear band means the

slip surface in each yield element, the line connected by shear
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band is thought to correspond to a continuous

slip surface. It can be seen from the figure that

the yield elements connect to form a collapse

mode when current footing pressure reaches

the denotative value. This means that the

bearing capacity is determined as the value

when a global collapse mode is created

initially. In Fig. 16, qu1 represents the bearing

capacity when the active wedge is deteimined

by Eq. (5) and qu2 is the minimum solution of

various shapes of active wedge. In this paper,

we will calculate the bearing capacity for all

shapes of active wedge as shown in Fig. 13,

and then select the minimum solution as the

bearing capacity.

4.2 Case 1 (natural subsoil)

(1) Saturated clay
The solutions calculated by the proposed

procedure are compared with the results of
experiments as shown in Fig. 15 (a), where

the bearing capacity qu1 and qu2 are defined 

above and where analyses 1 and 2 correspond 

to qu1 and qu2 respectively. Fig. 15 contains

also the upper bound solution presented by

Kusakabe et al.7) Fig. 16 (a) shows the yield

region or collapse mode by the proposed

procedure corresponding to the value of qu1
and qu2. The collapse mode is supported by

the principal stress filed shown in Fig. 17 (a)

and the displacement field shown in Fig.
18(a) which appear mechanically reasonable.

Note that Figs. 17 and 18 show the result only

for qu2. As shown in Fig. 15 (a), the proposed

procedure does not provide a clear turning point of settlement
but gives the bearing capacity close to that of experiment by the

way as stated before. The reason why the experimental result is

slightly larger than the analytical values may be attributed to the

influence of side friction between subsoil and container. The

proposed procedure overestimates the bearing capacity only for
the saturated clay than the solution by Kusakabe et al.

(2) Mountain sand
For two types of mountain sand, the properties are given in

Table 1. As shown in Figs. 15 (b) and (c) corresponding to

mountain sand A and B respectively, the bearing capacity qu1

and qu2 are defined in the same way as stated before, which

depend on the collapse mode represented by the yield region as

shown in Figs. 16 (b) and (c). The collapse mode is supported

by the principal stress field shown in Figs. 17 (b) and (c) and the

displacement field shown in Figs. 18 (b) and (c). As seen in

e=1.5cm, 1/3h

qu2=36.6kPa

(a) saturated clay
e=1.5cm. 1/3h

qu2=80.86kPa

(b) mountain sand A

e=0, 1/3h

qu2=165.72kPa

(c) mountian sand B

e=0, 1/3h

qu2=69.51kPa

(a) saturated clay

e=1.5cm, 1/3h

qu2=111.5kPa

(b) mountain sand A

e=0, 2/3H

qu2=284.82kPa

(c) mountian sand B

Fig. 21 Yield region (Case 2, analysis) Fig. 22 Yield region (Case 3, analysis)

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 23 Collapse mode by shear strain distribution (experiment)

(a) Case 2 (b) Case 3

Fig. 24 Displacement field in reinforced subsoil (analysis)
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Figs. 15 (b) and (c), the determined bearing

capacity is in good accordance with

experimental result and that by Kusakabe et al.

Different from the saturated clay, the mountain

sand does not form an explicit timing point of

settlement both in analysis and experiment.

(3) Discussions
The collapse mode provided by the proposed

procedure is created by considering the weight
of subsoil, stiffness of footing and subsoil,

friction between footing and subsoil, and stress

concentration at the edge of rigid footing, most

of which are ignored in the limit equilibrium

approaches. The yield region in Fig. 16 tends to

distribute more deeply below footing than that

assumed in the conventional limit equilibrium 

analysis. This is because the vertical pressure

must reach lower subsoil due to the vertical 

equilibrium condition, and because the pressure

makes lower subsoil yield. From Fig. 18, we

observe little deformation of lower subsoil.

Fig. 16 shows that the collapse mode

corresponding to qu1 is close to that by 

Kusakabe et al. This is because the active wedge

for qu1 given by Eq. (5) is the same as that

assumed by Kusakabe et al. However, the

collapse mode for qu2 is shallower than that for

qu1. This is because the corresponding active
wedge to qu2 is shallower than that of qui so that

the obtained global collapse mode shrinks along

with such an active wedge as shown in Fig. 16.

The laboratory model tests cannot provide the yield region as
stated above, but it visualizes a tendency of collapse mode

represented by the shear strain distribution which is calculated

from the monitored displacement of subsoil. Fig. 23 shows the

observed collapse mode represented by the shear strain

distribution. As shown in Fig. 23 (a) the large shear strain

distribute along the collapse mode shown in Fig. 16. Fig. 25 (a)

shows the monitored displacement for Case 1, which gives

similar tendency with the calculated displacement field shown

in Fig. 18. Fig. 26 (a) compares the vertical earth pressures

calculated by the proposed procedure with that monitored in the

model tests. For upper subsoil the calculated earth pressure is

generally in good agreement with monitored results. For lower
subsoil, the calculated earth pressure is a little higher than the

monitored one because the foundation subsoil is assumed to be

elasto-plastic continuum in the numerical analysis.

4.3 Case 2 and Case 3 (reinforced subsoil)

(1) Saturated clay

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 25 Displacement field (experiment)

saturated clay (q=39kPa) mountian sand A (q=78kPa) mountian sand B (q=147kPa)

(a) Case 1

(b) Case 2

(3) Case 3

Fie. 26 Vertical earth pressure distribution

saturated clay (q=39kPa)

mountain sand A (q=137kPa)

mountain sand B (q=196kPa)

saturated clay (q=39kPa)

mountain sand A (q=137kPa)

mountain sand B (q=196kPa)

(a) Case 2 (b) Case 3

Fig. 27 Distribution of tensile force of geotextile
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Figs. 19 (a) and 20 (a) illustrate the reinforcement effect on

the bearing capacity in Case 2 or Case 3 comparing with Case 1

(natural subsoil). FE meshing and soil parameters are the same
as those in Case 1 except the geotextile is placed as shown in

Fig. 3. The properties are given in Table 1. As shown in

Fig. 19 (a) for the saturated clay the reinforcement has no large

improvement in Case 2. 1) The place of geotextile cannot

restrict the development of collapse mode as shown in

Fig. 21 (a), namely, the collapse mode is created in the upper

subsoil than the location of geotextile. 2) The stiffness of

non-woven geotextile used is not high. However, in Case 3 we

can observe larger improvement on bearing capacity than Case

2 because the geotextile placed on the upper subsoil can

effectively restrict the collapse mode as shown in Fig. 22 (a).

Similar to the experimental results, the proposed procedure

evaluates not only the reinforcing effect of geotextile on bearing

capacity but also the restriction of settlement of foundation.

(2) Mountain sand
Figs. 19 (b), (c) and Figs. 20 (b), (c) show that the geotextile

can improve the bearing capacity greatly for each of mountain

sand, which agrees well with the experiment. This

improvement is more evident in Case 3 than in Case 2. Such a

result can be explained by the collapse mode as shown in

Figs. 21 (b), (c) and Figs. 22 (b) and (c). The collapse mode is

observed to be restricted to a narrow limit and to restrain the

unconstrained plastic flow by geotextile especially by the upper

geotextile. It is also noticeable in these figures that the geotextile
of two layers restrict the development of collapse mode to a

great extent The figures show the reduction of settlement after
failure of foundation for any case besides the improvement of

bearing capacity. With the increase in stiffness, the controls of

geotextile on settlement become clear. This tendency agrees

qualitatively with the experiments.

(3) Discussions 
In all cases the bearing capacity in reinforced subsoil is larger

than that in natural subsoil, because the collapse mode is
restricted by geotextile especially in Case 3. As seen in

Figs. 21 and 22, the yield elements are mainly concentrated on

the region upper the geotextile. As the experimental result,

Figs. 23 (b) and (c) provide the yield region represented by the

shear strain in Case 2 and 3. Compared with that in natural

subsoil on the same footing pressure, the shear strain in

reinforced subsoil decreases evidently for the restrained effect

of geotextile. The shear strain zones in Case 2 are concentrated

on the region upper the geotextile, and the largest shear strain is

produced at the region below the loading plate. The trend that
the shear strain in Case 3 extends widely, resembles the collapse

mode created by the yield elements shown in Fig. 22. Fig. 24

shows the displacement field for these two cases. Compared

with Case 1 (Fig. 18), the vertical displacement distinctly

decreases due to geotextile except for the saturated clay. The

reason why the vertical displacement of saturated clay has no

the distinct tendency for reinforced subsoil is due to two

aspects: 1) Different loading pressure is applied to each case,

while for mountain sand the same footing pressure is given. 2)

Non-woven geotextile used for the saturated clay has little

effect for restraining the vertical displacement. The horizontal

displacements in Case 2 or Case 3 decrease evidently in all

cases, particularly below the geotextile. This means that the

geotextile mainly restricts horizontal displacement. The
monitored vertical and lateral displacements in Fig. 25 have a

fairly good agreement with the calculated those, under the

footing base and on the edge of slope in most cases. Figs. 26 (b)

and (c) show the vertical earth pressures in Case 2 and Case 3.

In Case 2 the calculated results agree fairly well with the

experimental results. In Case 3 the monitored earth pressure at

centerline is considerably larger than the calculated one

especially for the mountain sand, because the subsoil is

particulate media which induces the concentration of stress.
Fig. 27 shows the distribution of tensile force acting on

geotextile. There is a little difference between the calculated and
monitored results for mountain sand. This is because the

stiffness of geotextile is estimated from the assumption that the

stress-strain relationship is linear elastic. For the saturated clay,

the large difference between them is attributed to the difficulty

to evaluate the stiffness of non-woven geotextile.

5. Conclusions

This paper performed the laboratory model tests for

simulating the bearing capacity of rigid strip footing on slope

and proposed a numerical procedure for estimating the bearing

capacity considering stiffness of material and collapse pattern.

The procedure aims to fill a gap existing between conventional

stability analysis and classical FEM. The procedure employs
Mohr-Coulomb and Coulomb yield criteria respectively for soil

mass and friction interface between soil and structure. By

assuming a shear band for yield element and by employing a

modified initial stress method, the procedure provides a

collapse mechanism analogous to a slip surface assumed in

conventional stability analysis. At the collapse mode created, a

stress yield criterion is satisfied as well as along the slip surface

supposed in conventional stability analysis. Such a definition of

collapse mode is different from most applications of FEM

which tend to express the collapse mode by the distribution of

shear strain or displacement. The procedure produces a collapse

mechanism as assumed in conventional stability analysis, and

that the mechanism is supported by a displacement field and a

stress field. This characteristic indicates the possibility of

applying the procedure to the stability analysis which takes
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stiffness and deformation of material into consideration.

Most case studies show that the bearing capacity obtained by

the proposed procedure agrees fairly well with the laboratory

model tests. These results suggest that the proposed procedure

provides an appropriate solution for general problem, and that

the procedure can be applied quantitatively to experimental or

actual bearing capacity problems, because it requires some only

fundamental soil parameters such as elastic modulus and

Mohr-Coulomb strength parameters. Some case studies

demonstrate that the proposed procedure can be applied to the

subsoil reinforced by geotextile because it considers the

stiffness and deformation of materials. The effect of

reinforcement on bearing capacity is based on restricting the

development of collapse mode, which leads to an increase in

the bearing capacity. All the calculated results show that the

earth reinforcement improves not only the bearing capacity but

also the settlement after failure, which is well compatible with

the monitored results. Comparisons with experimental and

other analytical results show the possibility that the proposed

procedure gives realistic predictions and provides a useful

engineering tool for the design of foundation on slope.
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