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The microstructure of soils is, in general, anisotropic in both the “inherent” and “indu

” senses

described by Casagrande and Carillo”, which yield anisotropic responses for both strength and plastic
deformation. The undrained shear strength of clayey soils, for example, changes greatly depending on
the inclination angle @ of the loading direction with respect to the consolidation plane. In the present
study on constitutive modeling, a tensorial quantity called the fabric tensor is incorporated into the
classical plasticity framework to simulate the effects of microstructure on the variation of undrained
shear strength of Kaolin clay. The effects of inherent and induced anisotropies are considered in terms
of an evolution rule of the fabric tensor. It is shown that the proposed model can simulate well the
variation of undrained shear strength observed in plane strain experiments of normally consolidated

Kaolin clay by Kurukulasuriya®.
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1. Introduction

Studies on the microstructure of clays (e.g., Kazama”;
Kurukulasuriya”) have shown that platy clay minerals tend to align
their faces perpendicular to the direction of consolidation so that the
microstructure of the soil skeleton becomes anisotropic. Anisotropy in
soils is commonly classified into two categories, i.e., inherent and
induced anisotropies (Casagrande and Carillo”). The former is
oconcemed with the anisotropy developed during the sedimentation
process under gravity, while the latter is mainly concerned with the
anisotropy arising from the evolution of microstructure associated
with plastic deformation after sedimentation. From a micro-structural
point of view, however, both are formed by preferred orientation of
constituent elements, such as particles, voids, and contact surfaces
(Oda®). Furthermore, Satake” and Oda et al.® have shown that the
preferred orientation of these elements can be quantified by
introducing a tensorial quantity called the fabric tensor. The structural
anisotropy yields anisotropic responses in both the strength and plastic
deformation of soils. For example, the undrained shear strength c,,
which plays a dominant role in stability analyses of soil foundations,
changes considerably depending on the inclination angle & of the

loading direction against the consolidation plane (normal to the
consolidation axis) (eg, Duncan and Seed”; Kazama”;
Kurukulasuriya®). It is of particular importance that such a relation
between ¢, and & can be different for different soils. Duncan and
Seed”, for example, showed that three different pattems, each of
which was individually found in undrained triaxial tests on natural
soils one-dimensionally consolidated in the field (Fig. 1). Importantly,
such differences exist even though all soils were one-dimensionally
consolidated under a similar condition. How can we explain this
interesting observation? As far as we know, no valid explanation has
yet been presented. However, the initial microstructure and its
subsequent evolution might be closely related to the formation of
such different pattemns.

In a previous study on the modeling of inherent anisotropy (Minh
et al.”), the microstructure of Kaolin clay is taken into account in
terms of a constant fabric tensor. However, the modeling of inherent
anisotropy, which leads to a monotonic increase of undrained shear
strength with 6, is not sufficient to simulate successfully the
approximately bilinear relationship between c, and 6 as being
plotted in Fig. 2 by Kurukulasuriya® for Kaolin clay. In this study, the
modeling of microstructural anisotropy is extended such that the
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effects of both inherent and induced anisotropies can be taken into
acoount with the introduction of an evolution rule of the fabric tensor
during the shearing process as well as its stationary values at the initial
and ultimate conditions. The simulated results using the proposed
constitutive model agree well with the experimental data by
Kurukulasuriya® for normally consolidated Kaolin clay. Furthermore,
the study provides an approach to connect results from
micromechanics research field with conventional continuum

modeling.
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Fig.2 Variations of undrained shear strength
of Kaolin clay (Kurukulasuriya?)

2. Plane Strain Tests of Kaolin Clay

In order to analyze in detail the undrained shear strength
anisotropy of clay, we frequently refer to a series of plane strain tests
carried out by Kurukulasuriya®. Kaolin clay, the material used in the
experiments, was prepared under a K, — consolidation process with a
maximum vertical pressure of 150 kPa. After K, — consolidation was
completed, parallelepiped samples (5% 10X 12.5 cm) for plane strain
tests were made from the material such that the sample axes were
inclined at different angles @ to the consolidation (horizontal) plane.

The sample was next placed in a plane strain test apparatus and
consolidated under an isotropic confining pressure p,. After isotropic
consolidation, the sample was sheared under the undrained plane
strain condition to determine the undrained shear strength (=
maximum shear stresses at failure). There are two points worth noting
here. 1) Experimental evidence suggests that the anisotropic
microstructure developed during the K, — consolidation process is
preserved, to a certain extent, throughout the isotropic consolidation.
2) The isotropic consolidation excludes the effects of the anisotropic
initial stress condition on the variation of undrained shear strength
(see Duncan and Seed”). Accordingly, the undrained shear strength
anisotropy, if it exists, can only develop from the anisotropic
microstructure of Kaolin clay developed during K, — consolidation.
Figure 2 describes the variation of the undrained shear strength of
Kaolin clay as a finction of the inclination angle & for the plane
strain testing condition. The undrained shear strength varies in a
similar manner with a minimum around 6= 30°, irrespective of the
OCR (=150/p,) values.

3. Constitutive Modeling
3.1 Fabric Tensor and the Evolution of Fabric Tensor

Particles in soils are seldom spherical in shape, anisotropy is
consequently produced by the preferred orientation of these
non-spherical particles. In the case of Kaolin minerals, particles are
platy so that the microstructures can conveniently be defined by
considering the spatial distribution of unit vectors n normal to their
major planes. The fabric tensor F;; can be given as:

F, = Ln,njE(n)dQ m

where Q is a solid angle equal to a surface of a unit sphere, #; (i =
1,2,3) are X; - components of a unit normal vector n, and £(n) is a
density function such that F{n)dQ2 corresponds to the rate of unit
vectors oriented within a small solid angle &2. By definition, £(n)

must satisfy LE(n)dQ =1, leading to the trace of the fabric

tensor F;; being equal to 1. Let us assume that the microstructure of
soils is axial-symmetric with a symmetry axis parallel to the
consolidation direction (or vertical direction). That is, the
microstructure is anisotropic on the vertical plane, including the
consolidation direction, whereas it is isotropic on the horizontal plane
perpendicular to the consolidation direction. This assumption is
consistent with the microscopic observations on the microstructure of
natural clay by Kazama® and of sand by Oda®. If this is the case, the
fabric tensor of Eq. (1) can further be simplified. Let x, (o =1,2,3) be
a local coordinate system such that x; is the consolidation direction,
and x, and x; are on the plane perpendicular to x;. Since the
microstructure is axially symmetric with a symmetry axis parallel to
Xy, it agrees with the major principal axis of fabric tensor F ;. (Note
that the subscripts o and £ refer to the principle axes x, (o =1,2,3),
whereas the subscripts i and j in Eq. (1) refer to global coordination
axes X; (i = 1,2,3) defined later.) In this case, F,;, Fy, = F3; are the



principal values. Let r be a ratio of F, to F, (= F3;), then we have:
K, =rF,,F, =F; ()

where r is hereinafter referred to as the degree of anisotropy. Since
the trace of the fabric tensor is equal to 1, we have the following
expression:

Faﬂ=(E1’F22’F;3sE2’F23’F;3) 3)

=(r/2+r)1/(2+7r)1/(2+7),0,0,0)
Ifthe microstructure is isotropic, the degree of anisotropy r is set to

1 with the following isotropic tensor:
Faﬂ =(F, Fy, 3, Fy Fy  Fy)

@
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Fig.3  Principal axes x,, (a=1,2,3) of the fabric tensor
and X; (i=1,2,3) axes of the global coordination system

A global coordination system X; (i = 1,2,3) is introduced such that
X; is parallel to the vertical plane, and X; and .X; are on the horizontal
plane (Fig. 3). In the following numerical simulations, the major
compression direction is always parallel to X. In addition, 8 is
defined as the inclination angle between the global horizontal axis X
and the major principal axis x; of the fabric tensor. (Note that this
definition of @ is equivalent to that in Fig. 1.) Note also that the
components of Egs. (3) and (4) were calculated with respect to the
principal axes x,, of the fabric tensor. The components of the fabric
tensor with respect to the global axes X; (i = 1,2,3) could, if necessary,
be calculated using the coordinate transformation rule of the tensor.

If only the effects of inherent anisotropy are taken into acoount, the
fabric tensor is assumed to be constant through out the shearing
process. In this case, since the fabric tensor at the initial and ultimate
conditions are the same, its value could be calculated from the stress
conditions measured at the ultimate condition from two experiments
with different values of @ (see Minh et al.”). However, for induced
anisotropy, the distribution of the contact normals, which reflects the
microstructure of materials, changes its value in accordance with the
application of the loading increments. Consequently, it is necessary to
define an equation to formularize the evolution of the contact normals
during the shearing process. Note that the induced anisotropy is
different with the stress-induced anisotropy phenomenon. Ohta and
Nishihara', for example, described stress-induced anisotropy as: “an

apparent anisotropy caused by the anisotropic initial stress state”. The
stress-induced anisotropy requires mechanical soil properties to be
isotropic in their nature. On the other hand, the mechanical soil
properties in this model, e.g. the critical parameter M or plastic
modulus, vary dependingon 8 value.

The states of the fabric tensor at the initial and ultimate conditions
must be also quantified so as the fabric tensor at any other state in
between these two extremes ocould be determined using the
aforementioned evolution rule of the fabric tensor. For example, the
fabric tensor at step » could be calculated as follows:

By = (B + S dE! ©
k=1,n-1
where F" dF} are the initial fabric tensor and the increment

of fabric tensor at step ; respectively. It is noted that in Eq. (5), all the
components of the newly updated fabric tensor F;.j" are normalized

with the trace ofitself £ in order to maintain the condition of F;

= 1 from the definition of the fabric tensor in Eq. (1). According to
Oda'"”, the concentration of the contact normals is found to depend on

the increment of deviatoric stress tensor, ds; (Where

S, =0

p y— p§ij ). Furthermore, there exists a limitation for the

value of 1/JZF , (where J s the second deviatoric invariant of

the fabric tensor), which represents a certain saturated value for the
concentration of the contact normals. Based on this observation, it is
assumed that any state of the fabric tensor, including the initial and

ultimate conditions, could be defined in terms of ,/.J %, . The value

of \[JI at ultimate condition, (,/J/),,, and consequently,
(F;) . » could be calculated from the measured stress values at the

critical state. Applying the calculation procedure described by Minh
et al” for the testing data of Kaolin clay by Kurukulasuriya?, we
could obtain the degree of anisotropy r,; = 1.06 at the ultimate

condition, which then could be used to calculate ( F,j) and

ult

consequently, (JJZ) ). = 0.01132. Details on the calculation of
r.a are described later in this paper. On the other hand, the fabric
tensor at the beginning of the shearing process, ( Fy) o which

represents the effects of the inherent anisotropy of Kaolin clay, could
be determined by conducting the simulation of the K;— consolidation
process. For simplicity, however, we assume here the following

rlaton on a tentative bsis; e, (/77 ) = 0.8({7% |- hisis

equivalent to the assumption that when K, — consolidation is
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completed, the microstructural anisotropy is given by r,; = 1.048, and
as the result of the fabric evolution, r consequently reaches 1.06 at the
end of the shearing process. Since the concentration of the contact
normals is related to d;, dF;; can be formulated in the following form:

dF, = kds, ©
where k is a constant of proportionality expressed as:
k =k, p)us T 5p) @

where i is the angle between the major principal axes of /5 and
ds;. It is reasonable to think that large fabric change is likely to occur
when the compressive loading is applied parallel to the direction of
the minimum concentration of the contact normal at the current state.
As the result, k should be an increasing function of  with a
maximum at = 90°. That is, the fabric change occurs faster in the
case of &= (° than that in the case of 8= 90 in the early stage of
deformation at least. Based on the above consideration, we assume
the following function:

k= a(l .2eb’5in W' - 1]((‘];0 )ulr - J;D ) ®

where a is a constant serving as a scaling factor, and b is an
another parameter to control how rapidly & lowers its value with
decreasing . With the introduction of Eqs. (6) and (8) as well as the

values of (F,),, and (F)),,  the evolution of the fabric tensor

from the beginning of the test until the ultimate condition is
completely defined.

It should be noted that Eq. (6) and Eq. (7) were firstly introduced
by Oda' based on microscopic observation of granular material
behavior. In this study, it is an attempt to apply the same results for
Kaolin clay. Since we have no clear experimental evidence on the
microstructural evolution of Kaolin clay, the direct application of Eq.
(6) and Eq. (7) for Kaolin clay in this case may involve some
uncertainties. However, we accept this assumption in order to seek for
an altemative modeling solution. As it is turn out later, the application
of fabric tensor and fabric change for Kaolin clay actually leads to
good prediction of undrained shear strength variation of Kaolin clay.
This phenomenon, otherwise, could not be simulated using
conventional plasticity constitutive models.

X2

unit area plane

enlarged contact
surface

3.2 Modified Stress

In order to acoount for the microstructure of granular materials,
Tobita'” and Oda'” introduced a modified stress tensor 7, in terms of
the fabric tensor F; and the conventional stress tensor . Figure 4a
shows three orthogonal planes having unit area, hereinafter, referred
to as the x,, - plane, the normal directions of which are parallel to the
principal axes x, of the fabric tensor. The hatched and hollow
particles show two groups of particles, the centers of which are
located inside and outside, respectively, of a unit cube enclosed by
three sets of x,, - planes.

Any force applied to these planes would be transferred through
contact areas between the particles belonging to these two groups.
More importantly, sliding and rolling of particles (plastic
deformation) occurs at contacts according to conditions satisfied by
ocontact forces. Accordingly, it appears reasonable to think that in
order to deal with the plastic behavior of granular soils, stress can be
defined with respect to the contact surfaces rather than the unit area of
the x,,- planes in the definition of conventional stress.

Particles are so small that many contact areas are associated with
each orthogonal unit plane. The contact areas associated with the x,, -
planes are projected on the x,, - planes and then summed to obtain the
oontact surface areas ¢, (a=1,2,3). For reasons that will be clarified
later, ¢, (@ =1,2,3) are proportionally enlarged such that the
summation of three enlarged contact areas C,(C,= ac,) is equal to 3
(e, C; +C, +C; = 3). Note that C,, (@ =1,2,3) can reflect the
anisotropic distribution of the contact areas through which the applied
forces are actually transmitted through the assembly. The modified
stress is then introduced as the imaginary stress 7,5 acting on the
enlarged contact surfaces C, (a=1,2,3) (Fig. 4b). The modified stress
tensor is defined for such a condition that the integration of
conventional stress o,z over the x, - planes must equal the
integration of modified stress T, over the x,, - surfaces. This leads to
the following relations:

L, T, T Ve o 0 Yo, o, o5 )
L, Ty|= G 0 Oyp Oy
Sym. Ty Sym. 1/C; \ Sym. Oy
X2

unit area plane

ve»g.///e
///////// %%

@

G21)022

Fig. 4 (a) Orthogonal planes cutting through a particle assembly (b) conventional stress tensor, G,g,
acting on a unit plane and modified stress tensor, 7., acting on enlarged contact surfaces
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Equation (9) is given with respect to the principal axes x, (&
=1,2,3) of the microstructure. Referring to the global axes X; (i =1,2,3),
we can easily generalize Eq. (9) as:

T,=Cjo, or o,=C,T, (10)

where C;' is the inverse tensor of C, and satisfies the

e where & is Kronecker’s delta. Based on

relation Cl.;]ij

statistical considerations, Oda'” derived the following proportional
relation between the tensors C;;and F; for a spherical assembly:

F,=(/3)C, an

Kaolin clay consists of platy particles. For simplicity, however, we
adopt this relation as the first step of the present approach and observe
the results. Equation (10) is then rewritten as:

T, =(13)F,'c, or o, =3F,T, (12)

The scalar 1/3 is chosen such that the modified stress tensor 7;
should reduce to the conventional stress tensor o so long as the soil is
isotropic with the isotropic tensor of Eq. (4). Note, furthermore, that
the modified and conventional stress tensors resulting from Eq. (12)
are not symmetric, which means that 7+ 7; and 6;# o;. This leads to
the characteristics of the Consserat continuum, the nonsymmetry of
the stress tensor of which is related to the spinning of the unit cells
(grain) of the materials (see Schaeffer™). In the present study,
however, we consider the case of symmetric stress tensors. Thus, the
stress tensors calculated by Eq. (12) are symmetrized as follows:

T, =T, =(1/2)T, +T,) (13)

33 Failure Criterion and Yield Function in terms of the
Modified Stress Tensor

The modified stress was introduced based on the idea that, for
granular soils, stress should be defined referring to the contact
surfaces because plastic behaviors of soils occur as a result of sliding
and rolling of particles at contacts. In other words, the yield function
and the failure criterion should be defined in terms of the modified
stress tensor, rather than the conventional stress tensor. Yield
functions for isotropic soils are usually formulated in terms of the
conventional stress tensor o. Here, it is assumed that such a yield
function can be generalized by substituting 7; for oj. Ohta and
Sekiguchi'” introduces a yield function which could take into account
the effects of an anisotropic initial stress condition on the plastic
behavior of the materials. However, in the case of isotropic initial
stress condition, the Ohta and Sekiguchi yield function coincides with
the yield function of the original Cam—clay model (Schofield and
Wroth'”). In this case, the Ohta and Sekiguchi formulation of the
original Cam—clay yield function can be given as:

W

f=lA-x) A +e)|in(p/ p)+ D(g/p)=0 (14

where q= /(3/2)sijs,.j is proportional to the second

invariant of deviatoric stress tensor sij(=o-'_'j_p§’_j) ,

p= (1/3)0-'_'1_5'_1, is the mean effective stress, 0',, =0, -u,0,

is the effective stress tensor, A and x correspond to the compression
and swelling indices, respectively, D is the dilatancy coefficient
representing the effect of the stress ratio increment on the volume
change of clay, e, and p, are the void ratio and mean pressure at the
end of consolidation, respectively. In order to account for anisotropic
behaviors, all of the stress terms are replaced by their equivalences as
calculated from the modified stress tensor 7;;. The yielding function of
Eq. (14) can then be rewritten as:

f=lA-)/1+e)]in(p/ p,)+D(g/p)=0  (15)

where ; ,;0 ,and 5 are the equivalences in terms of modified
stress; ie, g = m is proportional to the second
invariant of deviatoric modified stress tensor Sij(= T;j’ —ﬁé‘”),
p= (1/3)Ty',§ij is the mean effective modified stress, and

TU = T,-j - uw§U is the effective modified stress tensor. Moreover,

similar to the definition by Schofield and Wroth', the critical state
line can be also given in terms of the modified stress as:

M=q/p (16)

where M is the modified critical state parameter. Note that the
present approach, using fabric and modified stress tensors, for
anisotropic soils can be applied for any yielding and failure criterions
proposed for the isotropic soils. The present approach is said to be
general in this sense. Using a parameter » (called the degree of
anisotrupy), we can determine a fabric tensor Fy;  with respect to the
major principal axis of anisotropy (i.e., x, (@=1,2,3)). Referring to the
global axes X; (i =1,2,3), as discussed earlier, the fabric tensor F; is
given in terms of the degree of anisotropy # and the inclination angle
6@ between x; and X,. Note that the conventional stress tensor is

calculated by o, =3F,T, (Eq. (12)). Hence, even ifthe modified
stress tensor 7 is identical, the conventional stress tensor o differs
depending on 6. As a result, the parameter M (=g/p), which represents
a failure line in (g,p) - space, is not constant, but rather is given as a
function of the inclination angle 6. This is true even though A is

constant in the modified stress space (g, p ). Similarly, we could

obtain the same result for the analysis of the stress points satisfying
yielding condition. The same yielding point in terms of 7;; could give



different equivalent yielding stress points in terms of o depending on
6. As the result, this modeling approach could simulate the
experimental observation by Kurukulasuriya® that samples behave
differently as being sheared at different inclination angles 6.

3.4 Constitutive Equations

Since the normality rule plays a dominant role in the classical
plasticity theory, we use it in the present study. The normality rule is
written as:

del = A(of | 0c,) (17)

where dg,.j,’ is the plastic strain increment tensor, and Aisa

scalar parameter of proportionality. Using the consistency condition

of df =0 along with the nommality rule, we can derive the
following constitutive relationship:

_C®
do-a = C,jk,dek,

(18)
- Ce _ Ciqu N Pq N mnCmnkl £
ijkl 6f a; 6f ki
N, C: N, ——=——"2——

mn™~ mnpq*Y pqg —

dp, 0c! 9oy,
where N, =0f /00,,C%, and Cj, are the elastoplastic

and elastic matrixes, respectively and, gv",gij.’,gij are the plastic

volumetric strain, plastic strain, and total strain tensors. Here, ; o

acts as the hardening parameter in this model with the hardening rule
defined as:
dp, 19! = po(1+e,)(A—K) 19

Details for the derivation of Eq. (18) can be found elsewhere (e.g.,
Desai and Siriwardane'®). Note, however, that since the yield
function f in the present model is given in terms of modified stress 7},

the derivative of of/ oo, in Eq. (18) must be calculated as

follows:

of 160, = (of 10T,

mn

)or,, /da, (20)

J

From Eq. (12), o1,/ do,,, canalsobe written as:

o, 186,, = (1/3)F;'S,,0, @

rm* jn

The constitutive equation for anisotropic soils is now completed
with the inclusion of the fabric tensor. The effect of the microstructure

on yielding behavior appears explicitly in the terms of E.JT' in Eq.

(21). Note that in the calculation of Eq. (21), the fabric tensor Fj; is

assumed to be constant, which means aF,.I_ /oo, =0, during a

particular incremental analysis. The components of Fj are only
updated at the end of each loading step in a piecewise linear manner.
The yield function of Eq. (15) is now a function not only of the
conventional stress tensor but also of the fabric tensor. If such a yield
function is used along with the normality rule (Eq. (17)), the principal

axes of plastic strain increment tensor dgl.j’.’ are not coaxial with

those of the stress tensor o, but rather depend on both the principal
axes of gy and Fj; That is, the coaxiality in the classical plasticity
model is not guaranteed in the present model. Gutierrez et al."”, for
example, pointed out that noncoaxiality is one of the most
fundamental aspects of granular soils. In fact, recent experimental
evidence supports the noncoaxiality for clays sheared in undrained
condition (e.g, Lin and Prashant'). The modification of the
conventional plasticity theory in Eq. (20) also leads to non-symmetry

of the term g7 / ao-,,j , which means ij # N_,-,- . However, with

an isotropic elastic constitutive matrix defined as:

Cij’kl =(K- 2G/3)6ij5kl +G(5ik5jl +5i15jk) @2
The product 4; of C ,.j.,d and N, as calculated as below, retains its
symmetry, which means A;=4;:

4, =CiyN, = (K ~2G/3)8,N, +G(N, +N,) (23)

where K and G in Egs. (22) and (23) are the elastic bulk and shear
modulus, respectively. Substituting Eq. (23) into Eq. (18), results in a

final symmetric constitutive matrix C,. Thus, all subsequent

ijkl *

calculation procedures can be kept the same as those in the case of the
conventional plasticity theory.

4. Effects of Induced Anisotropy on the Undrained Shear

Strength Anisotropy
4.1 Determination of Model Parameters

The method by which to determine the parameters involved in the
constitutive model is critical. lizuka and Ohta" discussed in detail
how to determine the parameters A, x and D appearing in Eq. 14. In
addition, in order to define the critical state in terms of the modified
stress, we newly introduce in the present study two parameters which
are the degree of anisotropy at ultimate condition 7, and the critical

state parameter M i (g, p)-stress space. Furthermore, from the

value of 4, we could also obtain #;, (the degree of anisotropy at the
initial condition) using the simple relationship described in the
previous part of the paper. Here, we focus on the determination of 7,4
and M referring to the experimental data of normally consolidated



Kaolin clay. Let us choose a modified stress point (g, p) located

on the critical state line, namely, g/ p = M. Assuming further that

T, Ty, and Ty (=T;,) are the principal stresses with a maximum

principal value equal to T, we can express the critical parameter M
as:

M =gq/p=3(T, -T,)(T, +2T,) 24)
If the minimum stress 73; (=7,) is set to unity, the modified stress
tensor 7,/ on the critical state line can be written in terms of M
as:
T} =(T,, Ty 133,10 T3 T35)
= (L(3+20M) /(3 - 11)1,000) (kPa)
It is of particular importance to know that the stress of Eq. (25) is

@5

representative for many conventional stresses o-,_f at failure

corresponding to various sets of 7., and 6. Since the fabric tensor F;; is

given in terms of r,; and 6, the stress o-UF, at failure corresponding to
T,/ can be calculated using the equation o-if :317“{]’;. By

changing the value of M in Eq. (25), we can obtain various ",
and the corresponding values of ¢ and p” at failure. M is then
calculated as ¢/ for any set of 7., and 6. In this way, we obtain an
entire data set of (7, M, M—) for a given inclination angle 6 Note

that the relation among 7,4, M and M is independent of the choice
of I;jF (Eq. (25)). On one hand, M can also be experimentally

determined using g and p at failure for any selected values of 8 by
using the experimental data conducted by Kurukulasuriya®.
Hereinafter, two values of M experimentally determined at 6 =30°

and 8=90° are denoted as M’ and M;,:w,, respectively.

=30
From the previously calculated data set of (ruh,M,H) for

0=30° and O =95°, we can obtain different combinations of

(r"h,ﬂ)oonmpondingto M!  and M’

6=30" 6=90°

. These values of

(r,,, M ) are separately plotted in Fig. 5 for 6 =30° and 6 =90°. In
each case of @ =30° and & =", a straight line is used to fit the data

pointsof(rh,ﬂ).

Any point on these two lines represent different combinations of
(r,,,M ) which yield the same value of M, . Since M is

uniquely defined imrespective of 6, its value and the corresponding

value of r,; can be determined at the intersection of the two lines
corresponding to & =30° and € =90° in Fig. 5. Consequently, their

values are determined as M = 0935 and F.4= 1.06. (The two values

of M, at &=30°and & =90" were specially chosen to determine

raand M because the effects of the modified stress on the ultimate

parameter in this model lead to the characteristics that Af,, must

increase with increasing @ (see Minh et al,”). Such an increase is
experimentally observed only in the limited range of 6 from 30° to
90°. The decrease of undrained shear strength with 8 from 0° to 30°
in Fig. 2, as will be described later, is due only to the effects of
microstructural anisotropy on the plastic deformation of Kaolin clay.).
It should be noted that since r is calculated using the measured stress
values, the degree of anisotropy is obtained by using a
phenomenological method in this study.

04 T T T T T
1 1.1 1.2 13 14 1.5 16

Degree of anisotropy, r

Fig.5 Parameter determination (Kurukulasuriya®)
Other parameters used in the yield function were calculated
according to the method suggested by lizuka and Ohta', as follows:
A=M/1.75
2=0.015+0.007PL (26)

D=A/M(1+e,)]

where A =(1-x/A) is a parameter related to the irreversible

volume change, as shown by the last equation of Eq. (26), and PL the
plasticity index, which is equal to 512% for Kaolin clay. Generally
speaking, clay might be anisotropic in the elastic response. However,
for simplicity, Young’s modulus £ and the Poisson ratio v were
determined based on the assumption of isotropy, as summarized in
Table 1 for nomally consolidated Kaolin clay.

Table 1 Input parameters for numerical modeling

M Vur A A D v E (kPa)

0935 | 1.060 | 0.534 | 0373 | 0.085 | 0.373 8000
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l Input parameters |
v

I Calculate initial conditions |

Output calculation results |

|
'Y
Input incremental strain, de; |

v

! Update strain tensor

I Output calculation results I € = & + dgj

Calculate modified stress tensor Tj;
from current stress tensor oj;

TNo

v

Calculate constitutive matrix C* or C**

Update strain tensor :Yes

g =g+ dEij

Failure occurs at the current
stress point o;;?

using modified stress values

1 fNo

v

Solve Eq. 18 to calculate stress

Recalculate the hardening
parameter p, in Eq. 15 Yes

Yielding occurs the current
modifed stress point T;?

increment doj; corresponding to de;

t

Update stress tensor o = 6j + doj I

Calculate modified stress tensor T
from current stress tensor oj;

Calculate dF; using Eq. 6 and
consequently, update Fjj using Eq. 5

Fig. 6 Flow chart of the program used for numerical modeling of undrained shear strength anisotropy

4.2 Modeling Results on the Effects of Induced Anisotropy on the
Undrained Shear Strength Anisotropy

Based on the plasticity theory, a program code was written to
calculate numerically the integration of the constitutive equation in Eq.
(18) so as we could obtain the stress and strain behaviors of the soil
samples sheared under the undrained condition. With the
incorporation of the fabric and modified stress tensors into the
conventional plasticity theory, the main target of the written program
is to simulate the undrained shear strength anisotropy of Kaolin clay.
Figure 6 shows a flow chart of the main steps of the program. A
numerical analysis was carried out by means of controlling strain
increments. The requirement of undrained plane strain was

implemented such that dg,, +de,, =0 and dg,, =0.

The elastic matrix C;,k, and the elastoplastic matrix C/y were

first calculated at the current modified stress point, and then Eq. (18)
was solved to obtain the corresponding stress increments. The
modified stress was calculated twice in a complete running loop of

Fig. 6, namely, to calculate the matrixes C ', and to check whether

ijkl ?

the yielding condition of Eq. (15) was satisfied at the current state.
Note, however, that the failure condition was checked in terms of
conventional stress in the same manner as the common approach of
constitutive modeling. Here, M was computed from the value of

M and (Fy)un @ the beginning of the first calculation step and

was then used throughout the simulation process. It should be noted

that the values of 7, and r, which also define ( Fu) and

(F}; ), » are calculated from the experimental data based on the

assumption of transverse anisotropy in Eq. (2). On the other hand, the
fabric tensor at the last loading step, ( F, ), may not be transverse

anisotropic. Its value depends on both the initial fabric tensor
(F; ), and the stress path, which controls the term ds; of the

evolution rule in Eq. (6). As the result, (F, )" should not be
necessarily the same as (Fl.j Vi » however, according to the
evolution rule in Eq. (8), the second deviatoric invariant of (F, )F

will not exceed the value of (,/J[),, calculated from (F)

ij Jult *

In other words, at the ultimate condition of the fabric tensor, the
components of the fabric tensors need not be uniquely defined but
their second deviatoric invariants are uniquely defined as being equal

to (yJ),),, imespective of the stress path leading to failure.

Figure 7 shows the experimental and simulated results of the
undrained shear strength anisotropy of normally consolidated Kaolin
clay, which also includes the simulated result of inherent anisotropy
from Minh et al.” for comparison. It is shown in Fig. 7 that the
modeling of inherent anisotropy could only simulate a monotonic
increase of undrained shear strength with @ and, hence, fail to agree
with the experimental data for @ ranging from 0° to 30°. The



modeling of induced anisotropy, on the other hand, could capture
well the full range of undrained shear strength anisotropic behavior of
Kaolin clay observed by Kurukulasuriya®.

80
— Experiment
75 4| -O-Induced anisotropy (a=6.5E-06, b=17.0)
-4~ Inherent anisotropy
70
g
x 65
o
60 4
s k= a[l.2eb|sm W 1]((,1;) -5
50

o 10 22 3 4 0 e 70 8 9
Inclination angle, & (°)

Fig.7  Experimental and simulated results on the undrained

shear strength anisotropy of NC Kaolin clay

By conducting parametric studies, we could obtain the following
values of @=6.5x10"° and b=17.0 for the evolution
parameters in Eq. (8). With the parameter 4 is set as much as 17.0,

changes very rapidly within 60° <y < 90°, so that the induced

anisotropy develops very quickly parallel to the compression
direction X (see Fig. 3). Note that i equals (90° — &) in an early
stage of deformation at least, hence microstructure changes
significantly if & is within 0° to 30°. Let us consider the case of
6 =0° as a typical example. Initially, the major principal axis x, of the
initial fabric tensor F; is parallel to the global axis .X;. The major
principal axis of df; is parallel to X, since the soil sample is
compressed parallel to the X; axis. Accordingly, i equals 90° so that
the induced anisotropy develops quickly in the direction of X;. As a
result, the major principal axis x; of the (induced) fabric tensor is
rotated so quickly that it becomes parallel to the axis X; (not the axis
X; at the beginning). In other words, the induced fabric looks similar
to the case of & =90°. This explains for the observation that the
undrained shear strength in the case of @ = 0° is drastically improved
until it reaches the shear strength in the case of @ = 90°.

Different 6(°) values
=0 (Simulated)
— 30 (Simulated)
= =90 (Simulated)
O 0 (Experiment)
A 30 (Experiment)
A 90 (Experiment)

T T T
0 0.02 0.04 0.06 0.08 0.1
Vertical strain

Fig.8  Experimental and modeling stress—strain curves
with different 8(°) values

In Fig. 8, the stress—strain curves calculated numerically using

(a,b) =(6.5x107°,17.0) are compared with the results obtained

from plane strain tests of normally consolidated Kaolin clay. The
stress—strain curves in the cases of & =0° and & =90° possess higher
shear strength and stiffness in comparison with the case of 8 =30°.
The constitutive model, however, predicts smaller failure strain as
well as smaller initial stiffhess, as compared with the experimental
results. Figure 9, on the other hand, shows the simulated and
experimental stress paths. Although there are discrepancies regarding
the magnitude of the experimental and simulated results in Fig, 8 and
Fig. 9, there exists similar tendency between the experimental data
and simulation results for the shifting of the stress paths as well as the
stress-strain curves with different @ values. For example, in the case
of & =0° in Fig. 9, both the experimental and simulated stress paths
move along a vertical line in the beginning of shearing process, which
leads to significant higher shear strengths in comparison with the
stress path of 6 =30°. This is consistent with the higher stiffess
observed in Fig. 8. This characteristic can be considered as a merit of
the proposed constitutive model as, for example, if the original Cam
clay model is applied in the simulation then only one unique stress
path can be produced for the same experimental data set irrespective
of the @ value. The prediction of the deformation characteristics of
the sample, on the other hand, can be improved by employing a more
complicated dilatancy relationship in the constitutive model
framework. This is, however, beyond the scope of this study at the
present stage because the study is firstly concentrated on setting up a
continuum modeling approach for the microstructural evolution. In
doing so, it is an attempt to start first with a rather simple and
well-established theoretical framework like the original Cam clay
model.

70 4 Different 6(°) values
=0 (Simulated)
— 30 (Simulated)
= =90 (Simulated)
O 0 (Experiment)
A 30 (Experiment)
A 90 (Experiment)

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220
Mean pressure, p (kPa)

Fig.9  Experimental and modeling stress paths
with different 8(°) values

Since the plastic deformation is closely related to the development
of excess pore water pressure in the undrained condition, the higher
undrained shear strength obtained at 6 =0° could be mainly due to
the anisotropy in terms of excess pore water pressure development.
As 6 gaining higher values from 30° to 90°, the evolution rule
defined in Eq. (8) leads to slower evolution of the fabric tensor, the
effects of the induced anisotropy on the plastic deformation hence
becomes less dominant in this range. Consequently, the effects of



induced anisotropy on the shear strength parameter now become the
controlling factor. This could explain for the tendency that, with &
from 30° to 90°, undrained shear strength increases monotonically
with 6, which is similar to the relationship between the critical
parameter M and 6.

5. Discussion and Concluding Remarks

The microstructure of soils is, in general, anisotropic in both the
“inherent” and “induced” senses, as described by Casagrande and
Carillo”. Therefore, anisotropic responses are obtained for both
strength and plastic deformation. Undrained shear strength of clayey
soils, for example, changes greatly depending on the inclination angle
6 of the loading direction with respect to the consolidation plane. In
the present study, a tensorial quantity (called the fabric tensor) is
incorporated into the framework of the classical plasticity theory to
simulate the microstructure of Kaolin clay. Furthermore, the effects of
both inherent and induced anisotropies can be taken into acoount with
the introduction of an evolution rule of the fabric tensor during the
shearing process as well as its stationary values at the initial and
ultimate conditions. The results of numerical simulations can be
summarized as follows. 1) The anisotropy in the undrained shear
strength of Kaolin clay is caused by both the anisotropy in terms of
shear strength parameters and the anisotropy plastic response, which
leads to anisotropy in excess pore water pressure development. 2) By
taking the evolution of the fabric tensor (induced anisotropy) into
account, the proposed model can simulate well the variation of
undrained shear strength with & observed fiom the plane strain
experiments by Kurukulasuriya? for normally consolidated Kaolin
clay. 3) The incorporation of the fabric tensor into the yield function
in this model naturally leads to noncoaxiality between the plastic
strain increment tensor and the stress tensor, which has been
confirmed experimentally (e.g., Lin and Prashant'®) for Kaolin clay
sheared under the undrained condition. 4) The proposed approach
may be used to incorporate the results of discrete studies into the
continuum constitutive modeling of soils.
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