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The microstructure of soils is, in general, anisotropic in both the "inherent" and "induced" senses

described by Casagrande and Carillo1), which yield anisotropic responses for both strength and plastic

deformation. The undrained shear strength of clayey soils, for example, changes greatly depending on

the inclination angle ƒÆ of the loading direction with respect to the consolidation plane. In the present

study on constitutive modeling, a tensorial quantity called the fabric tensor is incorporated into the

classical plasticity framework to simulate the effects of microstructure on the variation of undrained

shear strength of Kaolin clay. The effects of inherent and induced anisotropies are considered in terms

of an evolution rule of the fabric tensor. It is shown that the proposed model can simulate well the

variation of undrained shear strength observed in plane strain experiments of normally consolidated

Kaolin clay by Kurukulasuriya2).
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1. Introduction

Studies on the microstructure of clays (e.g., Kazama3);
Kurukulasuriya2)) have shown that platy clay minerals tend to align
their faces perpendicular to the direction of consolidation so that the

microstructure of the soil skeleton becomes anisotropy. Anisotropy in

soils is commmonly classified into two categories, i.e., inherent and

induced anisotropies (Casagrande and Carillo1)). The former is
concerned with the anisotropy developed during the sedimentation

process under gravity, while the latter is mainly concerned with the

anisotropy arising from the evolution of microstructure associated

with plastic deformation after sedimentation. From a micro-structural

point of view, however, both are formed by preferred orientation of
constituent elements, such as particles, voids, and contact surfaces

(Oda4)). Furthermore, Satake and Oda et al.6) have shown that the
preferred orientation of these elements can be quantified by

introducing a tensorial quantity called the fabric tensor. The structural

anisotropy yields anisotropy responses in both the strength and plastic

deformation of soils. For example, the undrained shear strength cu,

which plays a dominant role in stability analyses of soil foundations,

changes considerably depending on the inclination angle ƒÆ of the

loading direction against the consolidation plane (normal to the 

consolidation axis) (e.g., Duncan and Seee7),8); Kazama3);

Kurukulasuriya2)). It is of particular importance that such a relation

between cu and ƒÆ can be different for different soils. Duncan and

Seed8), for example, showed that three different patterns, each of

which was individually found in undrained triaxial tests on natural

soils one-dimensionally consolidated in the field (Fig. 1). Importantly,

such differences exist even though all soils were one-dimensionally

consolidated under a similar condition. How can we explain this

interesting observation? As far as we know, no valid explanation has

yet been presented. However, the initial microstructure and its

subsequent evolution might be closely related to the formation of

such different patterns.

In a previous study on the modeling of inherent anisotropy (Minh 

et al.9)), the microstructure of Kaolin clay is taken into account in

terms of a constant fabric tensor. However, the modeling of inherent

anisotropy, which leads to a monotonic increase of undrained shear

strength with ƒÆ, is not sufficient to simulate successfully the

approximately bilinear relationship between Cu and ƒÆ as being

plotted in Fig. 2 by Kurukulasuriya2) for Kaolin clay. In this study, the

modeling of microstructural anisotropy is extended such that the
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effects of both inherent and induced anisotropies can be taken into

account with the introduction of an evolution rule of the fabric tensor

during the shearing process as well as its stationary values at the initial

and ultimate conditions. The simulated results using the proposed

constitutive model agree well with the experimental data by

Kurukulasuriya2) for normally consolidated Kaolin clay. Furthermore,

the study provides an approach to connect results from

micromechanics research field with conventional continuu 

modeling.

Angle between loading direction and consolidation plane (ƒÆ•‹)

Fig. 1 Variations of strength using UU tests

(Duncan and Seed8))

Fig. 2 Variations of undrained shear strength

of Kaolin clay (Kurukulasuriya2))

2. Plane Strain Tests of Kaolin Clay

In order to analyze in detail the undrained shear strength

 anisotropy of clay, we frequently refer to a series of plane strain tests

carried out by Kurukulasuriya2). Kaolin clay, the material used in the

experiments, was prepared under a K0-consolidation process with a

maximum vertical pressure of 150 kPa. After K0-consolidation was

completed, parallelepiped samples (5•~10•~12.5 cm) for plane strain

tests were made from the material such that the sample axes were

inclined at different angles ƒÆ to the consolidation (horizontal) plane.

The sample was next placed in a plane strain test apparatus and

consolidated under an isotropic confining pressure po. After isotropi 

consolidation, the sample was sheared under the undrained plane

strain condition to determine the undrained shear strength (= 

maximum shear stresses at failure). There are two points worth noting

here. 1) Experimental evidence suggests that the anisotropic

microstructure developed during the K0-consolidation process is

preserved, to a certain extent, throughout the isotropic consolidation.
2) The isotropic consolidation excludes the effects of the anisotropic

initial stress condition on the variation of undrained shear strength

(see Duncan and Seed). Accordingly, the undrained shear strength
anisotropy, if it exists, can only develop from the anisotropic

microstructure of Kaolin clay developed duringK0-consolidation.

Figure 2 describes the variation of the undrained shear strength of

Kaolin clay as a function of the inclination angle ƒÆ for the plane

strain testing condition. The undrained shear strength varies in a

similar manner with a minimum around ƒÆ=30•‹, irrespective of the

OCR(=150/p0) values.

3. Constitutive Modeling

3.1 Fabric Tensor and the Evolution of Fabric Tensor

Particles in soils are seldom spherical in shape, anisotropy is

consequently produced by the preferred orientation of these

non-spherical particles. In the case of Kaolin minerals, particles are

platy so that the microstructures can conveniently be defined by

considering the spatial distribution of unit vectors n normal to their

major planes. The fabric tensor Fij can be given as:

(1)

where ƒ¶ is a solid angle equal to a surface of a unit sphere, ni (i=

1,2,3) are Xi-components of a unit normal vector n, and E(n) is a

density function such that E(n)dƒ¶ corresponds to the rate of unit

vectors oriented within a small solid angle dƒ¶. By definition, E(n)

must satisfy  E(n )dƒ¶=1, leading to the trace of the fabric

tensor Fii being equal to 1. Let us assume that the microsbucture of

soils is axial-symmetric with a symmetry axis parallel to the

consolidation direction (or vertical direction). That is, the

microstructure is anisotropic on the vertical plane, including the

consolidation direction, whereas it is isotropic on the horizontal plane

perpendicular to the consolidation direction. This assumption is

consistent with the microscopic observations on the microstructure of

natural clay by Kazame and of sand by Oda4). If this is the case, the

fabric tensor of Eq. (1) can further be simplified. Let xƒ¿ (ƒ¿=1,2,3) be

a local coordinate system such that x1 is the consolidation direction,

and x2 and x3 are on the plane perpendicular to x1. Since the

microstructure is axially symmetric with a symmetry axis parallel to

x1, it agrees with the major principal axis of fabric tensor Fƒ¿ƒÀ. (Note

that the subscripts ƒ¿ and ƒÀ refer to the principle axes xƒ¿ (ƒ¿=1,2,3),

whereas the subscripts i and j in Eq. (1) refer to global coordination

axes Xi, (i=1,2,3) defined later.) In this case, F11, F22 = F33 are the
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principal values. Let ƒÁ be a ratio ofF11 to F22 (=F33), then we have:

(2)

where ƒÁ is hereinafter referred to as the degree of anisotropy. Since

the trace of the fabric tensor is equal to 1, we have the following

expression:

(3)

If the microstructure is isotropic, the degree of anisotropy ƒÁ is set to

1 with the following isotropic tensor:

(4)

Fig. 3 Principal axes xƒ¿(ƒ¿=1,2,3) of the fabric tensor

and Xi(i=1,2,3) axes of the global coordination system

A global coordination system Xi(i=1,2,3) is introduced such that

X2 is parallel to the vertical plane, and X1 and X3 are on the horizontal

plane (Fig. 3). In the following numerical simulations, the major

compression direction is always parallel to X2. In addition, ƒÆ is

defined as the inclination angle between the global horizontal axis X1 

and the major principal axis x1 of the fabric tensor. (Note that this

definition of ƒÆ is equivalent to that in Fig. 1.) Note also that the

components of Eqs. (3) and (4) were calculated with respect to the

principal axes xƒ¿ of the fabric tensor. The components of the fabric

tensor with respect to the global axes Xi, (i=1,2,3) could, if necessary,

be calculated using the coordinate transformation rule of the tensor.

If only the effects of inherent anisotropy are taken into account, the

fabric tensor is assumed to be constant through out the shearing

process. In this case, since the fabric tensor at the initial and ultimate

conditions are the same, its value could be calculated from the stress

conditions measured at the ultimate condition from two experiments

with different values of ƒÆ (see Minh et al.9)). However, for induced

anisotropy, the distribution of the contact normals, which reflects the

microstructure of materials, changes its value in accordance with the

application of the loading increments. Consequently, it is necessary to

define an equation to formularize the evolution of the contact normals

during the shearing process. Note that the induced anisotropy is

different with the stress-induced anisotropy phenomenon. Ohta and

Nishihara10), for example, described stress-induced anisotropy as: "an

apparent anisotropy caused by the anisotropic initial stress state". The

stress-induced anisotropy requires mechanical soil properties to be

isotropic in their nature. On the other hand, the mechanical soil

properties in this model, e.g. the critical parameter M or plastic

modulus, vary depending on ƒÆ value.

The states of the fabric tensor at the initial and ultimate conditions

must be also quantified so as the fabric tensor at any other state in

between these two extremes could be detemined using the

aforementioned evolution rule of the fabric tensor. For example, the

fabric tensor at step n could be calculated as follows:

(5)

where F inoij, dFkij are the initial fabric tensor and the increment

of fabric tensor at step k, respectively. It is noted that in Eq. (5), all the

components of the newly updated fabric tensor Fun are normalized

with the trace of itself FL in order to maintain the condition of Fii

=1 from the definition of the fabric tensor in Eq . (1). According to

Oda1), the concentration of the contact normals is found to depend on

the increment of deviatoric stress tensor,dsij (where

sij=ƒÐ'ij-pƒÂij). Furthermore, there exists a limitation for the

value of.•@ (where JF2D is the second deviatoric invariant of

the fabric tensor), which represents a certain saturated value for the

concentration of the contact normals. Based on this observation, it is

assumed that any state of the fabric tensor, including the initial and

ultimate conditions, could be defined in terms of•@ . The valu 

of•@ at ultimate condition, (•@) ult, and consequently,

(Fij) ult could be calculated from the measured stress values at the

critical state. Applying the calculation procedure described by Minh

et al9). for the testing data of Kaolin clay by Kurukulasuriya2), we

could obtain the degree of anisotropy rult=1.06 at the ultimate

condition, which then could be used to calculate (F
ij)ult and

consequently, (•@)ult=0.01132. Details on the calculation of

rult are described later in this paper. On the other hand, the fabric

tensor at the beginning of the shearing process, (Fij)ini, which

represents the effects of the inherent anisotropy of Kaolin clay, could

be determined by conducting the simulation of the K0-consolidation

process. For simplicity, however, we assume here the following

relation on a tentative basis; i.e., (•@)ini=0.8(•@)ult. This is

equivalent to the assumption that when K0-consolidation is
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completed, the microstructural anisotropy is given by rult=1.048, and

as the result of the fabric evolution, ƒÁ consequently reaches 1.06 at the

end of the shearing process. Since the concentration of the contact

normals is related to dsij, dFij, can beformulated in the following form:

(6)

where k is a constant of proportionality expressed as:

(7)

where ƒµ is the angle between the major principal axes of Fij and

dSij. It is reasonable to think that large fabric change is likely to occur

when the compressive loading is applied parallel to the direction of

the minimum concentration of the contact normal at the current state.

As the result, k should be an increasing function of ƒµ with a

maximum at ƒµ=90•‹. That is, the fabric change occurs faster in the

case of ƒÆ=•‹ than that in the case of ƒÆ=90•‹ in the early stage of

deformation at least Based on the above consideration, we assume

the following function:

(8)

where ƒ¿ is a constant serving as a scaling facctor, and b is an

another parameter to control how rapidly k lowers its value with

decreasing ƒµ. With the introduction of Eqs. (6) and (8) as well as the

values of (Fij) and (Fij)ult' the evolution of the fabric tensor

from the beginning of the test until the ultimate condition is

completely defined.

It should be noted that Eq. (6) and Eq. (7) were firstly introduced

by Oda11) based on microscopic observation of granular material

behavior. In this study, it is an attempt to apply the same results for

Kaolin clay. Since we have no clear experimental evidence on the 

microstructural evolution of Kaolin clay, the direct application of Eq.

(6) and Eq. (7) for Kaolin clay in this case may involve some

uncertainties. However, we accept this assumption in order to seek for

an alternative modeling solution. As it is turn out later, the application

of fabric tensor and fabric change for Kaolin clay actually leads to

good prediction of undrained shear strength variation of Kaolin clay.

This phenomenon, otherwise, could not be simulated using

conventional plasticity constitutive models.

3.2 Modified Stress

In order to account for the microstructure of granular materials,

Tobita12) and Oda11) introduced a modified stress tensor Ty in terms of

the fabric tensor Fij and the conventional stress tensor ƒÐij Figure 4a

shows three orthogonal planes having unit area, hereinafter, referred

to as the xƒ¿-plane, the normal directions of which are parallel to the

principal axes xƒ¿ of the fabric tensor. The hatched and hollow

particles show two groups of particles, the centers of which are

located inside and outside, respectively, of a unit cube enclosed by

three sets of xƒ¿-planes.

Any force applied to these planes would be transferred through

contact areas between the particles belonging to these two groups.

More importantly, sliding and rolling of particles (plastic

deformation) occurs at contacts according to conditions satisfied by

contact forces. Accordingly, it appears reasonable to think that in

order to deal with the plastic behavior of granular soils, stress can be

defined with respect to the contact surfaces rather than the unit area of

the xƒ¿-planes in the definition of conventional stress.

Particles are so small that many contact areas are associated with

each orthogonal unit plane. The contact areas associated with the xƒ¿-

planes are projected on the xƒ¿-planes and then summed to obtain the

contact surface areas cƒ¿ (ƒ¿=1,2,3). For reasons that will be clarified

later, cƒ¿ (ƒ¿=1,2,3) are proportionally enlarged such that the

summation of three enlarged contact areas Cƒ¿ (Cƒ¿=acƒ¿)is equal to 3

(i.e., C1+C2+C3=3). Note that Cƒ¿ (ƒ¿=1,2,3) can reflect the

anisotropic distribution of the contact areas through which the applied

forces are actually transmitted through the assembly. The modified

stress is then introduced as the imaginary stress Tƒ¿ƒÀ acting on the

enlarged contact surfaces Cƒ¿ (ƒ¿=1,2,3) (Fig. 4b). The modified stress

tensor is defined for such a condition that the integration of

conventional stress ƒÐƒ¿ƒÀ over the xƒ¿-planes must equal the

integration of modified stress To over the xƒ¿-surfaces. This leads to

the following relations:

(9)

(a) (b)

Fig. 4 (a) Orthogonal planes cutting through a particle assembly (b) conventional stress tensor, ƒÐƒ¿ƒÀ,

acting on a unit plane and modified stress tensor, Tƒ¿ƒÀ, acting on enlarged contact surfaces
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Equation (9) is given with respect to the principal axes xƒ¿ (ƒ¿

=1
,2,3) of the microstructure. Referring to the global axes Xi (i=1,2,3),

we can easily generalize Eq. (9) as:

(10)

where C-1ik is the inverse tensor of Cik and satisfies the

relation C-1ikCkJ=„qiJ, where „qij is Kronecker's delta. Based on

statistical considerations, Oda11) derived the following proportional

relation between the tensors Cij and Fij for a spherical assembly:

(11)

Kaolin clay consists of platy particles. For simplicity, however, we

adopt this relation as the first step of the present approach and observe

the results. Equation (10) is then rewritten as:

(12)

The scalar 1/3 is chosen such that the modified stress tensor

should reduce to the conventional stress tensor „qijc so long as the soil is

isotropic with the isotropic tensor of Eq. (4). Note, furthermore, that

the modified and conventional stress tensors resulting from Eq. (12)

are not symmetric, which means that Tij•‚Tji and „qij•‚„qji. This leads to

the characteristics of the Consserat continuum, the nonsymmetTy of

the stress tensor of which is related to the spinning of the unit cells

(grain) of the materials (see Schaeffer13). In the present study,
however, we consider the case of symmetric stress tensors. Thus, the

 stress tensors calculated by Eq. (12) are symmetrized as follows:

(13)

3.3 Failure Criterion and Yield Function in terms of the

Modified Stress Tensor

The modified stress was introduced based on the idea that, for

granular soils, stress should be defined referring to the contact

surfaces because plastic behaviors of soils occur as a result of sliding

and rolling of particles at contacts. In other words, the yield function

and the failure criterion should be defined in terms of the modified

stress tensor, rather than the conventional stress tensor. Yield

functions for isotropic soils are usually formulated in terms of the

conventional stress tensor „qij. Here, it is assumed that such a yield

function can be generalized by substituting Tij for „qij. Ohta and

Sekiguchi14) introduces a yield function which could take into account

the effects of an anisotropic initial stress condition on the plastic

behavior of the materials. However, in the case of isotropic initial

stress condition, the Ohta and Sekiguchi yield function coincides with

the yield function of the original Cam-clay model (Schofield and

Wroth15). In this case, the Ohta and Sekiguchi formulation of the

original Cam-clay yield function can be given as:

(14)

where q=•@ is proportional to the second

invariant of deviatoric stress tensor sij(=„qij-p„qij)

p=(1/3)„qij„qij is the mean effective stress, „qij=„qij-uw„qij

is the effective stress tensor, ƒÉ and K correspond to the compression

and swelling indices, respectively, D is the dilatancy coefficient

representing the effect of the stress ratio increment on the volume

change of clay, e0 and p0 are the void  ratio and mean pressure at the

end of consolidation, respectively. In order to account for anisotropic

behaviors, all of the stress terms are replaced by their equivalences as

calculated from the modified stress tensor Tij The yielding function of

Eq. (14) can then be rewritten as:

(15)

where p, p0, and q are the equivalences in temis of modified

stress; i.e., q=•@ is proportional to the second

invariant of deviatoric modified stress tensor Sij(=T'ij-p„qij),

p=(1/3)T'ij„qij is the mean effective modified stress, and

T'ij=Tij-uw„qij is the effective modified stress tensor. Moreover,

T'ij=Tij-uw„qijsimilar to the definition by Schofield and Wroth15, the critical state

line can be also given in terms ofthe modified stress as:

(16)

where M is the modified critical state parameter. Note that the

present approach, using fabric and modified stress tensors, for

anisotropic soils can be applied for any yielding and failure criterions

proposed for the isotropic soils. The present approach is said to be

general in this sense. Using a parameter r (called the degree of

anisotropy), we can determine a fabric tensor Fƒ¿ƒÀ with respect to the

major principal axis of anisotropy (i.e., xa(a=1,2,3)). Referring to the

global axes Xi(i=1,2,3), as discussed earlier, the fabric tensor Fij is

given in terms of the degree of anisotropy r and the inclination angle

ƒÆ between x1 and X1. Note that the conventional stress tensor is

calculated by „qij=3F
ikTkj (Eq. (12)). Hence, even if the modified

stress tensor Tij is identical, the conventional stress tensor „qij differs

depending on ƒÆ. As a result, the parameter M(=q/p), which represents

a failure line in (q,p) - space, is not constant but rather is given as a

function of the inclination angle ƒÆ. This is  true even though M is

constant in the modified stress space (q,p,). Similarly, we could

obtain the same result for the analysis of the stress points satisfying

yielding condition. The same yielding point in terms of Tij could give
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different equivalent yielding stress points in terms of „qij depending onƒÆ

. As the result, this modeling approach could simulate the

experimental observation by Kurukulasuriye2) that samples behave

differently as being sheared at different inclination angles ƒÆ.

3.4 Constitutive Equations

Since the normality rule plays a dominant pole in the classical

plasticity theory, we use it in the present study. The normality rule is

written as:

(17)

where dƒÃpij is the plastic strain increment tensor, and ƒÉ is a

scalar parameter of proportionality. Using the consistency condition

of df=0 along with the normality rule, we can derive the

following constitutive relationship:

(18)

where Nij=•Ýf/•ÝƒÐij,Cepijkl and Ceijkl are the elastoplastic

and elastic matrixes, respectively and, ƒÃpv,ƒÃpij,ƒÃij, are the plastic

volumetric strain, plastic strain, and total strain tensors. Here, p0

acts as the hardening parameter in this model with the hardening rule

defined as:

(19)

Details for the derivation of Eq. (18) can be found elsewhere (e.g.,

Desai and Siriwardanen. Note, however, that since the yield

function f in the present model is given in terms of modified stress Tij,

the derivative of of •Ýf/•ÝƒÐij in Eq. (18) must be calculated as

follows:

(20)

From Eq. (12), •ÝTij/•ÝƒÐmn, can also be written as:

(21)

The constitutive equation for anisotropic soils is now completed

with the inclusion of the fabric tensor. The effect ofthe microstructure

on yielding behavior appears explicitly in the terms of F-1ij in Eq.

(21). Note that in the calculation of Eq. (21), the fabric tensor Fij is

assumed to be constant, which means •ÝFij/•ÝƒÐmn=0, during a

particular incremental analysis. The components of Fij are only

updated at the end of each loading step in a piecewise linear manner.

The yield function of Eq. (15) is now a function not only of the

conventional stress tensor but also of the fabric tensor. If such a yield

function is used along with the  normality rule (Eq. (17)), the principal

axes of plastic strain increment tensor dƒÃpij are not coaxial with

those of the stress tensor but rather depend on both the principal

axes of ƒÐij and Fij. That is, the coaxiality in the classical plasticity

model is not guaranteed in the present model.  Gutierrez et al.17), for

example, pointed out that noncoaxiality is one of the most

fundamental aspects of granular soils. In fact, recent experimental

evidence supports the noncoaxiality for clays sheared in undrained

condition (e.g., Lin and Prashant18). The modification of the

conventional plasticity theory in Eq. (20) also leads to non-symmetry

of the term•Ýf/•ÝƒÐij, which means Nij•‚Nji. However, withii

an isotropic elastic constitutive matrix defined as:

(22)

The product Aij of Cei
jkl and Nkb as calculated as below, retains its

symmetry, which means Aij=Aji:

(23)

where K and G in Eqs. (22) and (23) are the elastic bulk and shear

modulus, respectively. Substituting Eq. (23) into Eq. (18), results in a

final symmetric constitutive matrix Cepijkl. Thus, all subsequent

calculation procedures can be kept the same as those in the case of the

conventional plasticity theory.

4. Effects of Induced Anisotropy on the Undrained Shear

Strength Anisotropy

4.1 Determination of Model Parameters

The method by which to determine the parameters involved in the

constitutive model is critical. Barka and Ohta19) discussed in detail

how to determine the parameters ƒÉ, K and D appearing in Eq. 14. In

addition, in order to define the critical state in terms of the modified

stress, we newly introduce in the present study two parameters which

are the degree of anisotropy at ultimate condition rult and the critical

state parameter M in (q,p) -stmss space. Furthermore, from the

value  of rult, we could also obtain rini (the degree of anisotropy at the

initial condition) using the simple relationship described in the

previous part of the paper. Here, we focus on the determination of rult

and M referring to the experimental data of normally consolidated
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Kaolin clay. Let us choose a modified stress point (q,p) located

on the critical state line, namely, q/p=M. Assuming further that

T11, T22 and T33 (=T11) are the principal stresses with a maximum

principal value equal to T22, we can express the critical parameter M
as:

(24)

If the minimum stress T33 (=T11) is set to unity, the modified stress

tensor TFij on the critical state line can be  written in terms of M

as:

(25)

It is of particular importance to know that the stress of Eq. (25) is

representative for many conventional stresses  „qFij at failure

corresponding to various sets of rult and ƒÆ. Since the fabric tensor Tij is

given in terms of rult, and ƒÆ, the stress „qFij at failure corresponding to

TFij can be calculated using the equation „qFij=3FikTFkj. By

changing the value of M in Eq. (25), we can obtain various „qFij,

and the corresponding values of qF and pF at failure. M is then

calculated as qF/pF for any set of rult and ƒÆ. In this way, we obtain an

entire data set of (rult,M,M) for a given inclination angle ƒÆ. Note

that the relation among rult, M and M is independent of the choice

of TFij (Eq. (25)). On one hand, M can also be experimentally

determined using q and p at  failure for any selected values of ƒÆ by

using the experimental data conducted by Kurukulastwiya2).

Hereinafter, two values of M experimentally determined at ƒÆ=30•‹

and ƒÆ=90•‹ are denoted as MtƒÆ =30•‹and MtƒÆ=90•‹, respectively.

From the previously calculated data set of (rult, M, M) for

ƒÆ=30•‹and •@ƒÆ=90•‹, we can obtain different  combinations of

(rult,M) corresponding to MtƒÆ=30•‹and MtƒÆ =90•‹. These values of

(rult, M) are separately plotted in Fig. 5 for ƒÆ=30•‹and ƒÆ=90•‹. In

each case of ƒÆ=30•‹and ƒÆ=90•‹, a straight line is used to fit the data

points of (rult, M).

Any point on these two lines represent different combinations of

(ruly, M) which yield the same value of MtƒÆ. Since M is

uniquely defined irrespective of ƒÆ, its value and the corresponding

value of ruly can be determined at the intersection of the two lines

conesponding to ƒÆ=30•‹and ƒÆ=90•‹in Fig. 5. Consequently, their

values are determined as M=0.935 and rut= 1.06. (The two values

of MtƒÆ at ƒÆ=30•‹and ƒÆ=90•‹were specially chosen to determine

rult and M because the effects of the modified stress on the ultimate

parameter in this model lead to the characteristics that MtƒÆ must

increase with increasing ƒÆ (see Minh et al,9)). Such an increase is

experimentally observed only in the limited range of ƒÆ from 30•‹to

90•‹. The decrease of undrained shear strength with ƒÆ firm 0•‹to 30•‹

in Fig. 2, as will be described later, is due only to the effects of

microstructural anisotropy on the plastic deformation of Kaolin clay.).

It should be noted that since r is calculated using the measured stress

values, the degree of anisotropy is obtained by using a

phenomenological method in this study.

Fig. 5 Parameter determination (Kurukulasuriya2)

Other parameters used in the yield function were calculated

according to the method suggested by Iizuka and Ohta19), as follows:

(26)

where A=(1-K/ƒÉ)) is a parameter related to the ineversible

volume change, as shown by the last equation of Eq. (26), and PL the

plasticity index, which is equal to 51.2% for Kaolin clay. Generally

speaking, clay might be anisoiropic in the elastic response. However,

for simplicity, Young's modulus E and the Poisson ratio v were

determined based on the assumption of isotropy, as summarized in

Table 1 for normally consolidated Kaolin clay.

Table 1 Input parameters for numerical modeling
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Fig. 6 Flow chart ofthe program used for numerical modeling of undrained shear strength anisotropy

4.2 Modeling Results on the Effects of Induced Anisotropy on the

Undrained Shear Strength Anisotropy

Based on the plasticity theory, a program code was written to

calculate numerically the integration of the constitutive equation in Eq.

(18) so as we could obtain the stress and strain behaviors of the soil

samples sheared under the undrained condition. With the

incorporation of the fabric and modified stress tensors into the

conventional plasticity theory, the main target of the written program

is to simulate the undrained shear strength anisotropy of Kaolin clay. 

Figure 6 shows a flow chart of the main steps of the program. A

numerical analysis was carried out by means of controlling strain

increments. The requirement of undrained plane strain was

implemented such that dƒÃ11+dƒÃ=0 and dƒÃ33=0. 

The elastic medrix Ciejki and the elastoplastic matrix Cepijkl were

first calculated at the current modified stress  point, and then Eq. (18)

was solved to obtain the corresponding stress increments. The

modified stress was calculated twice in a complete running loop of

Fig. 6, namely, to calculate the matrixes Cepijkl, and to check whether

the yielding condition of Eq. (15) was satisfied at the current state.

Note, however, that the failure condition was checked in terms of

conventional stress in the same manner as the common approach of

constitutive modeling. Here, M was computed from the value of

M and (Fij)uly at the beginning of the first calculation step and

was then used throughout the simulation process. It should be noted

that the values of rini and ruly, which also define (Fij)in
i, and

(Fij)ult are calculated from the experimental data based on the

assumption of transverse anisotropy in Eq. (2). On the other hand, the

fabric tensor at the last loading step, (Fij)F, may not be transverse

anisotropic. Its value depends on both the initial fabric tensor

(Fij)ini and the stress path, which controls the term dsij the

evolution rule in Eq. (6). As the result, (Fij)F should not be

necessarily the same as (Fij)ult however, according to the

evolution rule in Eq. (8), the second deviatoric invariant of (Fij)F

will not exceed the value of (•@ )ult,calculated horn (Fij)ult.

In other words, at the ultimate condition of the fabric tensor, the

components of the fabric tensors need not be uniquely defined but

their second deviatoric invariants are uniquely defined as being equal

to (•@ )ult irrespective of the stress path leading to failure.

Figure 7 shows the experimental and simulated  results of the

undrained shear strength anisotropy of normally consolidated Kaolin

clay, which also includes the simulated result of inherent anisotropy

from Minh et al.9) for comparison. It is shown in Fig. 7 that the

modeling of inherent anisotropy could only simulate a monotonic

increase of undrained shear strength with ƒÆ and, hence, fail to agree

with the experimental data for ƒÆ ranging from 0•‹to 30•‹.The
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modeling of induced anisotropy, on the other hand, could capture

well the full range of undrained shear strength anisotropic behavior of

Kaolin clay observed by Kurukulasuriya2).

Fig. 7 Experimental and simulated results on the undrained

shear strength anisotropy of NC Kaolin clay

By conducting parametric studies, we could obtain the following

values of a=6.5•~10-6 and b=17.0 for the evolution

parameters in Eq. (8). With the parameter b is set as much as 17.0, k

changes very rapidly within 60•‹•…ƒÕ•…90•‹, so that the induced

anisotropy develops very quickly parallel to the compression

direction X2 (see Fig. 3). Note that ƒÕ equals (90-ƒÆ) in an early

stage of deformation at least, hence microstructure changes

significantly if ƒÆ is within 0•‹ to 30•‹. Let us consider the case of

ƒÆ=0•‹as a typical example . Initially, the major principal axis x1 of the

initial fabric tensor is parallel to the global axis X1. The major

principal axis of dsij is parallel to X2 since the soil sample is

compressed parallel to the X2 axis. Accordingly, ƒÕ equals 90•‹so that

the induced anisotropy develops quickly in the direction of X2. As a

result, the major principal axis x1 of the (induced) fabric tensor is

rotated so quickly that it becomes parallel to the axis X2 (not the axis

X1 at the beginning). In other words, the induced fabric looks similar

to the case of ƒÆ=90•‹. This explains for the observation that the

undrained shear strength in the case of ƒÆ=0 (•‹is drastically improved

until it reaches the shear strength in the case of ƒÆ=90•‹.

Fig. 8 Experimental and modeling stress-strain curves

with different ƒÆ(•‹) values

In Fig. 8, the stress-strain curves calculated numerically using

(a,b)=(6.5•~10-6,17.0) are compared with the results obtained

from plane strain tests of normally consolidated Kaolin clay. The

stress-strain curves in the cases of ƒÆ=0•‹ and ƒÆ=90•‹possess higher

shear strength and stiffness in comparison with the case of ƒÆ=30•‹.

The constitutive model, however, predicts smaller failure strain as

well as smaller initial stiffness, as compared with the experimental

results. Figure 9, on the other hand, shows the simulated and

experimental stress paths. Although there are discrepancies regarding

the magnitude of the experimental and simulated results in Fig. 8 and

Fig. 9, there exists similar tendency between the experimental data

and simulation results for the shifting of the stress paths as well as the

stress-strain curves with different 9 values. For example, in the case

of ƒÆ=0•‹in Fig. 9, both the experimental and simulated stress paths

move along a vertical line in the beginning of shearing process, which

leads to significant higher shear strengths in comparison with the

stress path of ƒÆ=30•‹. This is consistent with the higher stiffness

observed in Fig. 8. This characteristic can be considered as a merit of

the proposed constitutive model as, for example, if the original Cam

clay model is applied in the simulation then only one unique stress

path can be produced for the same experimental data set irrespective

of the ƒÆ value. The prediction of the deformation characteristics of

the sample, on the other hand, can be improved by employing a more

complicated dilatancy relationship in the constitutive model

framework. This is, however, beyond the scope  of this study at the

present stage because the study is firstly concentrated on setting up a

continuum modeling approach for the microstructural evolution. In

doing so, it is an attempt to start first with a rather simple and

well-established theoretical framework like the original Cam clay

model.

Fig. 9 Experimental and modeling stress paths

with different ƒÆ(•‹) values

Since the plastic deformation is closely related to the development

of excess pore water pressure in the undrained condition, the higher

undrained shear strength obtained at ƒÆ=0•‹ could be mainly due to

the anisotropy in terms of excess pore water pressure development.

As ƒÆ gaining higher values from 30•‹to 90•‹, the evolution rule

defined in Eq. (8) leads to slower evolution of the fabric tensor, the

effects of the induced anisotropy on the plastic deformation hence

becomes less dominant in this range. Consequently, the effects of
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induced anisotropy on the shear strength parameter now become the

controlling factor. This could explain for the tendency that, with ƒÆ

from 30•‹to 90•‹, undrained shear strength increases monotonically

with ƒÆ, which is similar to the relationship between the critical

parameter M and ƒÆ.

5. Discussion and Concluding Remarks

The microstructure of soils is, in general, anisotropic in both the

"inherent" and "induced" senses
, as described by Casagrande and

Carillo1). Therefore, anisotropic responses are obtained for both

strength and plastic deformation. Undrained shear strength of clayey

soils, for example, changes greatly depending on the inclination angle

ƒÆ of the loading direction with respect to the consolidation plane. In

the present study, a tensorial quantity (called the fabric tensor) is

incorporated into the framework of the classical plasticity theory to

simulate the microstructure of Kaolin clay. Furthermore, the effects of

both inherent and induced anisotropies can be taken into account with

the introduction of an evolution rule of the fabric tensor during the

shearing process as well as its stationary values at the initial and

ultimate conditions. The results of numerical simulations can be

summarized as follows. 1) The anisotropy in the undrained shear

strength of Kaolin clay is caused by both the anisotropy in terms of

shear strength parameters and the anisotropy plastic response, which

leads to anisotropy in excess pore water pressure development. 2) By

taking the evolution of the fabric tensor (induced anisotropy) into

account, the proposed model can simulate well the variation of

undrained shear strength with ƒÆ observed from the plane strain

experiments by Kurukulasuriya2) for normally consolidated Kaolin

clay. 3) The incorporation of the fabric tensor into the yield function

in this model naturally leads to noncoaxiality between the plastic

strain increment tensor and the stress tensor,which has been

confirmed experimentally (e.g., Lin and Prashant18) for Kaolin clay

sheared under the undrained condition. 4) The proposed approach

may be used to incorporate the results of discrete studies into the

continuum constitutive modeling of soils.
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