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High friction coefficient is first observed when a sliding between bodies commences, which

is called the static friction. Then, the friction coefficient decreases approaching the lowest

stationary value, which is called the kinetic friction. Thereafter, if the sliding stops for a
while and then it starts again, the friction coefficient recovers and a similar behavior as that

in the first sliding is reproduced. In this article the subloading-friction model1) with a smooth

elastic-plastic sliding transition (Hashiguchi, 2005) is extended so as to describe the reduc-
tion from the static to kinetic friction and the recovery of the static friction. The reduction is

formulated as the plastic softening due to the separations of the adhesions of surface asper-
ities induced by the sliding and the recovery is formulated as the viscoplastic hardening due

to the reconstructions of the adhesions of surface asperities during the elapse of time under a

quite high actual contact pressure between edges of asperities. Further, the anisotropy of
friction is described by incorporating the rotation and the orthotropy of sliding-yield surface.

Key Words: anisotropy; constitutive equation; friction; elastoplasticity; harden-

ing/softening; subloading surface model; viscoplastkity.

1. Introduction

Description of the friction phenomenon by a constitutive equa-

tion has been attained first as a rigid-plasticity2),3). Further, it has

been extended to an elastoplasticity4)-17) in which the penalty con-
cept, i.e. the elastic springs between contact surfaces is incorpo-

rated and the isotropic hardening is taken into account so as to de-
scribe the test results18) exhibiting the smooth contact traction vs.

sliding displacement curve reaching the static-friction. However,

the interior of the sliding-yield surface has been assumed to be an
elastic domain and thus the plastic sliding velocity due to the rate

of traction inside the sliding-yield surface is not described. There-
fore, the accumulation of plastic sliding due to the cyclic loading of

contact traction within the sliding-yield surface cannot be de-

scribed by these models. They could be called the conventional
friction model in accordance with the classification of plastic con-

stitutive models by Drucker19). On the other hand, the first author
of the present article has proposed the subloading surface model20)
21)within the framework of unconventional plasticity

, which is ca-

pable of describing the plastic strain rate by the rate of stress inside

the yield surface. Based on the concept of subloading surface, the
authors proposed the subloading-friction model1),22) which de-

scribes the smooth transition from the elastic to plastic sliding state

and the accumulation of sliding displacement during a cyclic load-
ing of tangential contact traction. Besides, in this model the reduc-

tion of friction coefficient with the increase of normal contact trac-
tion observed in experiments15),23),24) is formulated by incoiporat-

ing the nonlinear sliding-yield surface, while the decrease has not

been taken into account in Coulomb sliding-yield surface, which
has been adopted widely in constitutive models for friction so far.

It is widely known that when bodies at rest begin to slide to
each other, a high friction coefficient appears first, which is called

the static friction, and then it decreases approaching a stationary

value, called the kinetic friction. However, this process has not
been formulated pertinently so far, although the increase of friction

coefficient up to the peak has been described as the isotropic
hardening, i.e. the expansion of sliding-yield surface as described

above.

Further, it has been found that if the sliding ceases for a while

and then it starts again, the friction coefficient recovers and the
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similar behavior as that in the initial sliding is reproduce25)-35). The
recovery has been formulated by equations including the time

elapsed after the stop of sliding26),28),30),31),33),35). However, the in-

clusion of time itself leads to the loss of objectivity in constitutive
equations as known from the fact that the evaluation of elapsed

time varies depending on the judgment of time when the sliding

stops, which is accompanied with the arbitrariness especially for

the state varying sliding velocity in low Generally speaking,
the variation of material property cannot be described pertinently

by the elapse from a particular time but has to be described by state

of internal variables without the inclusion of time itself
The reduction of friction coefficient from the static to kinetic

friction and the recovery of friction coefficient mentioned above

are to be the fundamental characteristics in friction phenomenon,

which have been recognized widely for a long time. Difference of

the static and kinetic frictions often reaches up to several ten per-
cents. Therefore, the formulation of the transition from the static to

kinetic friction and vice versa are of importance for the develop-

ment of mechanical design in the field of engineering. However,
the rational formulation has not been attained so far.

The difference of friction coefficients is observed in the mu-
tually opposite sliding directions. It could be described by the rota-

tion of sliding-yield surface, whilst the anisotropy of soils has been

described by the rotation of yield surface36)-38). Further, the differ-

ence of the range of friction coefficients is observed in the different
sliding directions. It could be described by concept of orthotropy

of sliding-yield surface14).

In this article, the subloading-friction model1) is extended so
as to describe the reduction of friction coefficient from the static to

kinetic friction as the plastic softening due to the sliding and the
recovery of friction coefficient as the viscoplastic hardening due to

the creep phenomenon induced with the elapse of time under a

high contact pressure between edges of surface asperities. It is fur-

ther extended so as to describe the anisotropy by incorporating the
rotation and the orthotropy of sliding-yield surface.

2. Formulation of the constitutive equation for friction

The subloading-friction mode1) is extended below so as to de-

scribe the static-kinetic friction transition, i.e. the transition from

static and kinetic friction, and vice versa.

2.1 Decomposition of sliding velocity

The sliding velocity V is defined as the relative velocity of

the counter body and is additively decomposed into the normal

part Vn and the tangential part Vt as follows (see Fig. 1):

(1)

where

(2)

n is the unit outward-normal vector at the contact surface, (•E)

and •Z denote the scalar and the tensor products, respectively,

and I is the second-order identity tensor having the components

of Kronecker's delta ƒÂij =1 for i=j , ƒÂij =0 for i •‚ j .

Vn is the normal component of the sliding velocity, i.e.

(3)

where the sign of Vn is selected to be plus when the counter body

approaches to the relevant body.

Fig. 1. Contact traction f and sliding velocity v.

Further, it is assumed that V is additively decomposed into

the elastic sliding velocity Ve and the plastic sliding velocity

Vp , i.e.

(4)
with

(5)

(6)

(7)

where Ves and Vpn are the elastic and the plastic part,

respectively, of Vn .

The contact traction f acting on the body is decomposed

into the normal part, i.e. normal-traction fn and the tangential

part, i.e. tangential traction ft as follows:

(8)

(9)

whilst n is identical to the normalized direction vectors of fn ,

i.e.
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(10)

and fn is the normal part of the contact traction f , i.e.

(11)

where the sign of fn is selected to be plus when the relevant

body is compressed by the counter body. Here, note that the direc-

tions of the tangential contact traction and the tangential sliding

velocity are not necessary identical in general and 

I-n•Zn•‚t•Zt (t•ßft/•aft•a) in the three-dimensional be-

havior.

Now, let the elastic sliding velocity be given by the following

hypo-elastic relation, whilst the elastic sliding velocity is usually

far small compared with the plastic sliding velocity in the friction

phenomenon.

(12)

where lin and it are the noimal component and tangential

component, respectively, of t , (•‹) denoting the corotational rate,

which are related to the material-time derivative denoted by (•E)

as follows:

(13)

which is derived from

(14)

where the skew-symmetric tensor ƒ¶ is the spin describing the

rigid-body rotation of the contact surface. an and at are the

contact elastic moduli in the normal and the tangential directions to

the contact surface. On the other hand, the sliding velocity v is

not an absolute velocity of a point on the body surface but the rela-

tive velocity between two points on the contact surface, and thus it

can be adopted to the constitutive relation as it is since it has the

objectivity. It follows from Eq. (12) that

(15)

where the second-order tensor Ce is the fictitious contact elastic

modulus tensor given by

(16)

2.2 Normal sliding-yield and sliding-subloading surfaces

Assume the following isotropic sliding-yield surface with the

isotropic hardening/softening, which describes the sliding-yield 

condition.

(17)
where F is the isotropic hardening/softening function denoting

the variation of the size of sliding-yield surface. ti is the vector

describing anisotropy due to the rotation around the null traction

point without the normal component of contact surface, while it is

assumed that it does not evolve leading to I = 0 , and thus it holds
that

(18)

(19)

The anisotropy of metals is described by the translation of

yield surface but the anisotropy of frictional materials such

as soils is described by the rotation36)-38). Therefore, it is

assumed that the anisotropy of friction phenomenon is de-

scribed by the rotation of the sliding-yield surface. Then, it

holds that

(20)

(21)

where s is an arbitrary positive scalar quantity, whilst Eq. (21) is

based on the Euler's homogeneous function of degree-one.

Therefore, the sliding-yield surface keeps the similar shape and 

orientation with respect to the origin of contact traction space, i.e. 

f =0 for ƒÀ = const.

In what follows, we assume that the interior of the slid-

ing-yield surface is not a purely elastic domain but that the plastic

sliding velocity is induced by the rate of traction inside that surface.

Therefore, let the surface described by Eq. (17) be renamed as the

normal sliding-yield swface.

Then, based on the concept of subloading suiface20),21), we in-

troduce the sliding-subloading surface, which always passes

through the current contact traction point f and keeps a similar

shape and orientation to the normal sliding-yield surface with re-

spect to the origin of contact traction space, i.e. f =0 for

= const . Then, the sliding-subloading surface fulfills the fol-

lowing geometrical characteristics.

i) All lines connecting an arbitrary point inside the slid-

ing-subloading surface and its conjugate point inside

the normal sliding-yield surface join at a unique point,

called the similarity-center, which is the origin of the

contact traction space in the present model.

ii) All ratios of length of an arbitrary line-element con-

necting two points inside the sliding-subloading sur-

face to that of an arbitrary conjugate line-element con-

necting two conjugate points inside the normal slid-

ing-yield surface are identical. The ratio is called the

similarity-ratio, which coincides with the ratio of the

sizes of these surfaces.

Let the ratio of the size of the sliding-subloading surface to

that of the noimal sliding-yield surface be called the normal slid-

ing-yield ratio, denoted by R (0 •… R •… 1) , where R = 0 cor-

responds to the null traction state ( f = 0) as the most elastic state, 

0 < R < 1 to the subsliding state (0 < f < F ), and R =1 to
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the normal sliding-yield state in which the contact traction lies on
the normal sliding-yield surface ( f = F ). Therefore, the normal

sliding-yield ratio R plays the role of three-dimensional measure

of the degree of approach to the normal sliding-yield state. Then,

the sliding-subloading surface is described by

(22)

The material-time derivative of Eq. (22) leads to

(23)

where

(24)

Here, note that the direct transformation of the mate-

rial-time derivative to the corotational derivative is verified

by substituting Eq. (13) into Eq.(23), noting

a•E(ƒ¶a) = 0 for an arbitrary vector a . The direct trans-

formation of the material-time derivative to the corota-

tional derivative is verified for the general scalar func-

tion39).

2.3 Evolution rules of the hardening function and the 

normal sliding-yield ratio

It could be stated from experiments that

1 ) If the sliding commences, the friction coefficient reaches first

the maximal value of static-fiction and then it reduces to the

minimal stationary value of kinetic-friction. Physically, this

phenomenon could be interpreted to be caused by the separa-

tions of the adhesions of surface asperities between contact

bodies due to the sliding40). Then, let it be assumed that the

reduction is caused by the contraction of the normal slid-

ing-yield surface, i.e. the plastic softening due to the sliding.

2 ) If the sliding ceases after the reduction of fiction coefficient, the

friction coefficient recovers gradually with the elapse of time

and the identical behavior as the initial sliding behavior with

the static friction is reproduced after an elapse of sufficient time.

Physically, this phenomenon could be interpreted to be caused

by the reconstructions of the adhesions of surface asperities

during the elapsed time under a quite high contact pressure

between edges of surface asperities. Then, let it be assumed

that the recovery is caused by the viscoplastic hardening due to

the creep phenomenon.

Taking account of these facts, let the evolution rule of the isotropic

hardening/softening function F be postulated as follows:

(25)

where Fs and Fk (Fs •† F •† Fk) are the maximum and

minimum values of F for the static and kinetic frictions, respec-

tively. k and m are the material constants influencing the de-

creasing rate of F due to the plastic sliding, and and n are

the material constants influencing the recovering rate of F due to

the elapse of time, while they would be functions of absolute tem-

perature in general. The first and the second terms in Eq. (25)
stand for the deteriorations and the formations, respectively, of the

adhesions between surface asperities. On the other hand, so far

these phenomena have been described by separate formulations
for the softening due to the sliding displacement and the hardening

due to the time elapsed after the stop of sliding. Here, the inclusion

of the time itself in constitutive equationS26),28),30),31),33),35) is not al-

lowed violating the objectivity since the evaluation of elapsed time

from the stop of sliding depends on the subjectivity as known from

the state varying sliding velocity in low level.

Fig. 2. Function U(R) for the evolution rule
of the normal sliding-yield ratio R .

It is observed in experiments that the tangential traction in-

creases almost elastically with the plastic sliding when it is zero but

thereafter it increases gradually approaching the normal slid-

ing-yield surface and it does not increase any more when it reaches

the normal sliding-yield surface. Then, we assume the evolution

rule of the normal sliding-yield ratio as follows:

(26)

where U(R) is a monotonically decreasing function of R ful-

filling the following conditions (Fig 2).

(27)

Let the function U satisfying Eq. (27) be simply given by

(28)

where u is the material constant. Eq. (26) with Eq. (28) can

lead to the analytical integration of R for the accumulated plastic

sliding up •ß •aVp•adt under the initial condition 

up - uo0 : R = Ro as follows:

(29)

On the other hand, the following function has been used widely so
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far.

(30)

However, an analytical integration cannot be obtained from Eq.

(26) with Eq. (30) and thus Eq. (30) is inconvenient to formu-
late the return-mapping method attracting the contact traction to

the subloading suliace41).

2.4 Relationships of contact traction rate and sliding velocity

The substitution of Eqs. (25) and (26) into Eq. (23) gives

rise to the consistency condition for the sliding-subloading surface:

(31)
Assume that the direction of plastic sliding velocity is tangen-

tial to the contact plane and outward-nonnal to the curve generated

by the intersection of sliding-yield surface and the constant normal

traction plane fn = const. , leading to the tangential associated

flow rule, i.e.

(32)

where ƒÉ (> 0) is a positive proportionality factor and

(33)

Substituting Eq. (32) into Eq. (31), the proportionality factorƒÉ

, is derived as follows:

(34)

and thus

(35)

where

(36)

(37)

Substituting Eqs. (4) and (35) into Eq. (31), the sliding ve-

locity is given by

(38)

The positive proportionality factor in terms of the sliding ve-

locity, denoted by the symbol •È , is given from Eqs. (38) as

(39)

The traction rate is derived from Eqs. (4), (15), (32) and

(39) as follows:

(40)

where < > is the McCauley's bracket, i.e. <s> = (s+ •b s •b)/2 for

an arbitrary scalar variable s .

2.5 Loading criterion

The loading criterion for the constitutive equation

formulated in the foregoing is given in this section.

First, note the following facts:

1. It is required that

(41)

in the loading (plastic sliding) process Vp •‚ 0 .

2. It holds that

(42)

in the unloading (elastic sliding) process Vp = 0 . Further, be-

cause of v =v e leading to N•ECe•Ev= N•ECe•Eve= N•Ef in

this process it holds that

(43)

while it should be noted that mc •† 0 (Eq. (36)).

3. The plastic modulus mP takes both signs of positive

and negative in hardening/softening materials. On the

other hand, noting that the contact elastic modulus Ce

is the positive definite tensor and thus it holds that

N•ECe•EN >>‚•p in general and postulating that the

plastic relaxation does not proceed infinitely, let the fol-

lowing inequality be assumed.

(44)

Then, in the unloading process Vp = 0 the following ine-

qualities hold depending on the sign of the plastic modulusmP ,
i.e. the hardening, perfectly-plastic and softening states from Eqs.

(34) and (41)-(44).

(45)
Therefore, the sign of ƒÉ in the unloading process from the state,

in which the perfectly-plastic or softening proceeds if the plastic

sliding is induced, is not negative. On the other hand, •È is nega-

tive in the unloading process. Thus, the distinction between a

loading and an unloading processes cannot be judged by the sign

of ƒÉ but can be done by that of •È. Therefore, the loading crite-

rion is given as follows:

(46)

or

(47)

in lieu of Eq. (44).
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3. Specific sliding-yield surfaces

It can be stated from experiments that the friction coefficient

decreases with the increase of contact pressure15),23),24),42).There-

fore, the normal sliding-yield surface cannot be described appro-

priately by the Coulomb sliding-yield surface in which the tangen-

tial contact traction and the normal contact traction are linearly re-

lated to each other using the angle of external friction and the ad-

hesion. In what follows, the sliding-yield surface with thenonlin-

ear relation of tangential contact traction and normal contact trac-

tion is assumed below, by which the reduction of friction coeffi-

cient with the increase of normal contact traction is described.

The closed normal sliding-yield and the slid-

ing-subloading surfaces can be described by putting

(48)

as follows:

(49)

where

(50)

M is the material constant denoting the traction ratio

(=ft/fn) at the maximum point of ft . The simple ex-
amples of the function g(X) in the sliding-yield function

in Eq. (48) are as follows:

(51)

(52)

(53)

(54)

All the sets of Eqs. (17) and (48) with Eqs. (51)-(54)

exhibit the closed surfaces passing through the points

fn = 0 and fn = F at ft = 0 . Eq. (51) and (52) are
based on the original Cam-clay yield surface43) and the

modified Cam-clay yield surfaces44), respectively, for soils.

Eq. (53) exhibits the tear-shaped surface1) 45), 46) which is
reversed from the surface of Eq. (51) on the axis of nor-

mal contact traction. Eq. (54) exhibits the parabola1).
It holds for Eq. (48) that

(55)

(56)

(57)

where

(58)

Further, it holds from Eqs. (16) and (55)-(57) that

(59)

(60)

(61)

(62)

(63)

(64)

The substitution of Eqs. (16) and (59)-(64) into Eqs. (38)

and (40) leads to the sliding velocity vs. contact traction rate and
its inverse relation are given as follows:

(65)
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(66)

On the other hand, the normal sliding-yield and the slid-

ing-subloading surfaces for the circular cone of the Coulomb fric-

tion condition is given by putting

(67)

as follows:

(68)

where ƒÊ is the friction coefficient and the evolution rule is given

in the identical form with Eq.(25) as follows:

(69)

ƒÊs and ƒÊk are material constants designating the maximum,

and the minimum frictions, i.e. static and kinetic friction coeffi-

cients, respectively. f(f,ƒÀ) in Eq.(67) is the homogeneous

function of f in degree-zero, and the normal sliding-yield and

sliding-subloading surfaces in Eq.(68) are open surfaces having a

conical shape and thus expand/contact with the increase/decrease

of ƒÊ and R.

It holds for Eq.(68) that

(70)

(71)

Further, it holds from Eqs.(16) and (57) that

(72)

(73)
(74)

(75)

(76)

The substitution of Eqs.(16) and (72)-(76) into Eqs.(38)

and (40) leads to the sliding velocity vs. contact fraction rate and

its inverse relation are given as follows:

(77)

(78)

4. Extension to orthotropic anisotropy

The difference of fiction coefficients in the mutually oppo-

site sliding directions can be described by the aforementioned rota-

tional anisotropy. However, the difference of the range of friction

coefficients in the different sliding directions cannot be described

by the rotational anisotropy. In order to extend so as to describe it,

let the concept of orthotropy be further incorporated below.

Fig. 3. Surface asperity model suggesting the rotational

and the orthotropic anisotropy.

The simple surface asperity model is illustrated in order to

obtain an insight into the anisotropy in Fig.3. Here, the directions

•\ 277•\



in the inclination of surface asperities would lead to the rotational

anisotropy, and the anisotropic shapes and intervals of surface as-

perities to the orthotropic anisotropy. Now, choosing the bases el
and e*2 in the directions of the maximum and the minimum prin-

cipal directions of anisotropy, respectively, and letting e*3 coin-

cide with n so as to make the right-hand coordinate system

(e*1, e*2,), it can be written as

(79)

while the spin ƒ¶ of the base (e*1, e*2, e*3) is described as

(80)

Eq.(79) is rewritten by

as follows:

(81)

In Fig. 4 the section of the sliding-yield surface with the

rotational and the orthotropic anisotropy is depicted in the

coordinate system with the bases (e*1,e*2).

Invoking the orthotropic anisotropy proposed by Mroz and

Stupkiewicz (1994), let Eq. (48) with Eq. (49) taken account of

the rotational anisotropy be extended as follows:

(82)

(83)

where

(84)

M1

, and M2 are the material constants standing for the values of

M in the maximum and the minimum principal directions of ani-

sotropy, respectively.

Fig. 4. Sliding-yield surface with the rotational

and the orthotropic anisotropy.

The partial derivatives for Eq. (82) are given as

(85)
where

(86)

The subscript i takes 1 or 2 and is not summed even when it is

repeated

It holds from Eqs. (16) and (85) that

(87)

(88)

(89)

(90)
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(91)

(92)

The substitution of Eqs. (16) and (88)-(92) into Eqs. (38)

and (40) leads to the sliding velocity vs. contact traction rate and

its inverse relation are given as follows:

(93)

(94)

Eq. (67) with Eq. (68) for Coulomb friction condition with

the rotational anisotropy is extended to the orthotropic anisotropy

as follows:

(95)

(96)

where

(97)

C1 and C2 are the material constants. The partial derivatives for
Eq. (95) are given as follows:

(98)

Further, it holds from Eqs. (16) and (98) that

(99)

(100)
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(101)

(102)

(103)

The substitution of Eqs. (16) and (99)-(103) into Eqs. (38)

and (40) leads to the sliding velocity vs. contact traction rate and

its inverse relation are given as follows:

(104)

(105)

The calculation for sliding with the orthotropic anisotropy has

to be performed in the coordinate system with the principal axes of

orthotropy, i.e. (e*1, e*2,n).

5. Linear sliding phenomenon

We examine below the basic response of the present friction

model by the numerical experiments and the comparison with test

data for the linear sliding phenomenon (Fig.1) without a normal

sliding velocity leading to

(106)

The traction rate vs. sliding velocity relation for Eq. (82)

with Eq. (83) under the condition (106) is given from Eqs.

(40), (90)-(92) by

(107)

while it holds that fn=const.
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The traction rate for Eq. (95) with Eq. (96) is given from

Eqs. (40) and(101)-(107) by

(108)
while mp and mc are given by Eq. (70) and (71).

6. Concluding remarks

The constitutive model for friction is formulated by extending

the subloading friction model1) so as to describe the isotropic

hardening/softening of sliding-yieldsurface in this article.Funda-

mental features of this model are as follows:

1. The process for the rising of friction coefficient up to the

static-friction and the subsequent reduction to the kinetic-friction

is formulated in the unified way as the isotropicsoftening proc-

ess due to the plastic sliding based on the concept of subloading

surface describing the smooth elastic-plastic transition, although

only the rising process has been discussed and it has beende-

scribed as the isotropic hardening process in the pastmodels4)-12),
14),17).

2. The process for the recovery from the kinetic-to static-friction is

formulated as the isotropic hardening due to the creep deforma-

tions of surface asperities, while it has been formulated by the

irrational equation involving the elapsed time after the stop of

sliding so far.

3. The smooth elastic-plastic transition is depicted and the cyclic

sliding behavior can be described by incorporating the concept

of the sliding-subloading surface in which the plastic sliding ve-

locity due to therate of contact traction inside the normal slid-

ing-yield surface isdescribed exhibiting the smooth elas-

tic-plastic transition. It is inevitable for the prediction of the

loosing of screws, bolts and piles, the smooth stress/strain dis-

tribution at contact surface and the increase of traction with slip

in wheel rotation on a solid surface for instance.

4. The reduction of friction coefficient with the increase of normal

contact traction is described by incorporating the nonlinear slid-
ing-yield condition.

5.A judgment whether or not the sliding yield condition is fulfilled

is not required in the loading criterion for the plastic sliding ve-

locity. This advantage is of importance especially for the analy-

sis of cyclic friction phenomena in which a loading and an

unloading are repeated

6. The difference of friction coefficients in the mutually opposite

sliding directions and the difference of the range of frictionco-

efficients in the different sliding directions are described by the

rotational and the orthotropic anisotropy, i.e. the rotation and the

orthotropy of sliding-yield surface.

The constitutive equation of friction formulated in this article

would be applicable widely to friction phenomena between solids.

It will be extended so as to be applicable to rubber-like material ex-

hibiting a large nonlinear elastic behavior in thefuture.
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