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The stagnation phenomenon of isotropic hardening is observed in the cyclic loading be-

havior of metals. An extended formulation of this phenomenon is formulated so as to de-

scribe the smooth evolution of isotropic hardening by incorporating the concept of the
subloading surface, which falls within the framewodc of stress space formulation. In addi-

tion it is furnished with the controlling function of the isotropic hardening stagnation vari-

able and thus it does not require any return-mapping algorithm.
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1. Introduction

The isotropic hardening of metals is induced by the equivalent

plastic strain. It is observed in experiments for the deformation
behavior of various metals that the isotropic hardening stagnates

despite of development in the equivalent plastic strain for a certain

range in the initial stage of re-yielding after the reverse loading.

This phenomenon influences remarkably the cyclic loading
behavior in which the reverse deformations are repeated. In order

to describe this phenomenon the idea of the nonhardening region

postulating that the isotropic hardening stagnates when the plastic
strain exists in a certain region in the plastic strain space was

proposed by Chaboche et al.1) ( see also Lemaitre and Chaboche2))
and improved by Ohno3) and Ohno and Kachi4). It is similar to the

concept of yield surface assuming that the plastic strain is induced

when the stress reaches it. However, the accumulation of plastic

strain rate has not any physical meaning except for the case that the

principal axes of plastic strain rate are fixed. Further, needless to

say, the movement of nonhardening region cannot be shown in the

stress space and thus it has to be demonstrated separately from the

yield surface. Further, It was modified by Yoshida and Uemori5),6)

into the stress space formulation as the isotropic hardening

stagnates when the back stress exists in the certain region of stress

space. However, it cannot describe the stagnation behavior of

isotropic hardening in materials without the kinematic hardening.

In these formulations, the isotropic hardening is induced suddenly

when the plastic strain or the back stress reaches the isotropic

hardening surface violating the smoothness condition7)-10). Then,

Hashiguchi and Yoshimaru11) improved these formulations of

Chaboche and Ohno so as to describe the smooth development of

isotropic hardening by incorporating the concept of subloading

surface.

A pertinent formulation of isotropic stagnation behavior

is given below by incorporating the concept of the

subloading surface falling within the framework of stress

space formulation and is free from the kinematic hardening.

It is capable of describing the smooth evolution of iso-

tropic hardening. In addition it is furnished with the con-

trolling function of the isotropic hardening stagnation

variable and thus it does not require any return-mapping

algorithm.

2. Strain rates and volumetric strains

Denoting the current configuration of the material particle as

x and the current velocity as v , the velocity gradient is de-
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scribed as L = •Ýv/•Ýx . The strain rate and the continuum spin

are defined as D •ß (L •{ LT) / 2 and W •ß (L - LT) / 2 ,

respectively, ( )T standing for the transpose. Limiting to the in-

finitesimal strain, let the strain rate D be additively decomposed

into the elastic strain rate De and the plastic strain rate Dp as

follows:

(1)

where De is related linearly to the stress rate as follows:

(2)

where E is the fourth-order elastic stiffness tensor, and ƒÐ is the

Cauchy stress. (•‹) denotes the proper objective corotational rate.

3. Extended subloading surface model for metals

The extended subloading surface model specialized

for metals is formulated below.

The following yield surface with the iso-

tropic-kinematic combined hardening is assumed.

(3)

where

(4)

H is the isotropic hardening variable and a (tra = 0)

is the back stress. Here, for sake of simplicity in formula-

tion it let be assumed that f(ƒÐ)) is the homogeneous

function of ƒÐ in degree-one. Therefore, it holds that

(5)

(6)

where s is an arbitrary positive scalar quantity and tr( )

designates the trace, whilst Eq. (6) is based on the Euler's

homogeneous function of degree-one. Therefore, the yield 

surface of Eq. (3) keeps the similar shape and orientation 

with respect to ƒ¿.

Here, let the following evolution rule of the internal variables

be given as follows:

(7)

where Hi (i =1, 2, •c) stands for scalar- or tensor-valued in-

ternal variables collectively. The scalar function h has to be the

homogeneous degree one in Dp since the rate-independent be-

havior is considered in the present formulation, fulfilling

h(ƒÐ, Hi, sDp) = sh(ƒÐ, Hi, Dp).

In what follows, we introduce the subloading surface model

as the unconventional plasticity model in which it is assumed that

the interior of the yield surface is not a purely elastic domain but

the plastic strain rate is induced by the rate of stress inside that sur-

face. Here, let it be assumed that the plastic strain rate develops

gradually as the stress approaches the yield surface and let the

subloading surface be introduced in order to describe the degree of

approach to the yield surface, which always passes through the

current stress point ƒÐ and keeps a similar shape and orientation

to the normal-yield surface. Then, let the yield surface be renamed

as the normal sliding-yield surface.

The subloading surface fulfills the following geometrical char-

acteristics.

i) All lines connecting an arbitrary point inside the

subloading surface and its conjugate point inside the

normal-yield surface join at a unique point, called the

similarity center.

ii) All ratios of length of an arbitrary line-element con-

necting two points inside the subloading surface to that

of an arbitrary conjugate line-element connecting two

conjugate points inside the normal-yield surface are

identical. The ratio is called the similarity ratio, which

coincides with the ratio of the sizes of these surfaces.

Fig. 1. Normal-yield and subloading surfaces.

Let the similarity ratio in the subloading surface model be

called specifically the normal-yield ratio, denoted by

R (0 •… R •… 1) , where R= 0 corresponds to the null traction

state ( f = 0) as the most elastic state, 0 < R < 1 to the subyield

state ( 0 < f < F ), and R= 1 to the normal-yield state in 

which the stress lies on the normal sliding-yield surface ( f = F ).

Therefore, the normal-yield ratio R plays the role of 

three-dimensional measure of the degree of approach to the nor-

mal-yield state. Then, the subloading surface is described by

(8)

where

(9)
ƒ¿ in the subloading surface is the conjugate point of ƒ¿ in the

normal-yield surface (Fig. 1). Denoting the similarity center be

denoted by s and the conjugate point on the normal-yield surface
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to the current stress point ƒÐ by ƒÐy , it can be written as

(10)

(11)
where

(12)

(13)

Further, it holds from Eqs. (11) and (13)2 that

(14)

where

(15)
R is the ratio of the size of the subloading surface to that

of the normal-yield surface, s is the similarity-center of

the normal-yield and the subloading surfaces, and ƒ¿ is

the conjugate point on the subloading surface to the point

ƒ¿ on the normal-yield surface.

By substituting Eq. (14) into Eq. (8), the subloading

surface is rewritten as

(16)

The values of R is calculated from Eq. (16) by substi-

tuting the known values ƒÐ, s, ƒ¿, H, while the numerical

calculation is required in general.

The material-time derivative of Eq. (8) is given as

(17)

where

(18)
Eq. (17) is rewritten as

(19)

where

(20)

noting the following relation due to the Euler's homoge-

neous function of degree-one.

(21)

The direct transformation of the material-time derivative to

the corotational derivative is verified for the general scalar

function12).

From Eq. (11)2 ƒ¿ is expressed as follows:

(22)

The substitution of Eq. (22) into Eq. (19) leads to

(23)

As observed in experiments, the stress asymptotically

approaches the normal-yield surface in the plastic loading

process Dp •‚ 0 . Thus, the following evolution equation

of the normal-yield ratio R is assumed (see Fig. 2).

(24)
where U is a monotonically decreasing function of the nor-

mal-yield ratio R , fulfilling

(25)
Re (<1 ) is the material constant describing the elastic limit of
R , whilst Re 0.5 for many metals. Let the function U satis-

fying Eq. (25) be simply given by

(26)

where u is the material constant. The symbol < > is the 

McCauley's bracket, i.e. <s> = (s•{ •b s •b)/2 for an arbitrary scalar

variable s.

Eq. (24) with Eq. (26) can lead to the analytical integration

of R for the accumulated plastic strain•@ dt under

the initial condition R= R0: ƒÃp = ƒÃp0 as follows:

(27)
On the other hand, the following function has been used widely so

far.

(28)

However, an analytical integration cannot be obtained from Eq.

(24) with Eq. (28) and thus Eq. (28) is inconvenient to formu-
late the return-mapping method attracting the stress to the

subloading surface 13). By adopting the following function for u the

stress-strain curve is modified such that the stress returns quickly to

the monotonic loading curve in the reloading process after the

unloading.

(29)

where ua and ub are the material constants.

The evolution rule of the similarity center is given as

follows14):

(30)
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The substitution of Eq. (30) into Eq. (23) leads to

(31)

Fig. 2. Function U(R) in evolution rule
of normal-yield ratio.

which is rewritten as

(32)

The substitution of

(33)

due to Eqs. (9), (11), (13) and (14) into Eq. Eqs. (32)

leads to

(34)

Substituting Eqs. (7) and (24) into Eq. (34), one has the

consistency condition for the subloading surface model:

(35)

Substituting the plastic flow rule

(36)

into Eq. (35), the proportionality factor ƒÉ is derived as

(37)

where the plastic modulus Mp is given as

(38)

Substituting Eqs. (2) and (37) into Eq. (1), the strain

rate is given by

(39)

from which the positive proportionality factor •È described in

terms of strain rate is derived as

(40)

The stress rate is given from Eqs. (1), (2) and (40) as

(41)

The loading criterion is given as follows15),10):

(42)

4. Cyclic stagnation of isotropic hardening

First, introduce the novel variable ƒÌ(trƒÌ = 0) , called 

the isotropic hardening stress, which translates in the di-

rection of the plastic strain rate so that the evolution rule is

given by

(43)

where ƒÌƒÐ (•† 0) is the positive variable having the di-

mension of stress, which will be formulated later.

Then, incorporate the normal-isotropic hardening

surface which regulates the isotropic hardening so as to 

stagnate when the isotropic hardening stress ƒÌ lies inside

this surface, and let it be described by

(44)

where

(45)

ƒ¿ is the center of the normal-isotropic hardening surface,

the evolution rule of which will be given later.

Further, incorporate the surface, called the sub-isotropic 

hardening surface (Fig. 3) which always passes through the 

current point ƒÌ and has the similar shape and orientation to the

normal-isotropic hardening surface. Then, it is mathematically

expressed as

(46)

where R (0 •… R •… 1) is the ratio of the size of

sub-isotropic hardening surface to that of the nor-
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mal-isotropic hardening surface and thus it plays the role

as the measure to describe the approaching degree of ƒÌ

to the normal-isotropic hardening surface. Then, R is

called the normal-isotropic hardening ratio. It is calcu-

lated from the equation R = f (ƒÌ)/ K in terms of the

known values f (ƒÌ) and K .

Fig. 3. Normal- and sub- isotropic hardening surfaces.

The material-time derivative of Eq. (46) leads to

(47)

which is rewritten as

(48)

by use of the Euler's theorem for the homogeneous func-

tion of ƒÌ in degree-one, i.e.

where

(49)

Now, it is assumed that the isotropic hardening vari-

able evolves under the conditions:

1 ) The isotropic hardening is induced when the plastic

strain rate is directed the outward of the sub-isotropic

hardening surface.

2 ) The isotropic hardening develops as the isotropic hard-

ening stress ƒÌ approaches the normal-isotropic hard-

ening surface so that the normal-hardening ratio in-

creases.

3 ) The isotropic hardening variable evolves by the rule

(7)2 when the normal-isotropic hardening ratio is unity,

i.e. the isotropic hardening stress ƒÌ lies on the nor-

mal-isotropic hardening surface.

Then, let the following evolution rule of isotropic harden-

ing be assumed by extending Eq. (7)2.

(50)

where ƒË ( •† 1) is the material constant.

Next, let it be assumed that the center of nor-

mal-isotropic hardening surface evolves in the following 

manner:

1 ) The center of normal-isotropic hardening surface moves

when the plastic strain rate is directed the outward of

the sub-isotropic hardening surface.

2 ) The movement of the center of normal-isotropic hard-

ening surface develops as the isotropic hardening stress

ƒÌ approaches the normal-isotropic hardening surface

in the identical manner as the isotropic hardening vari-

able.

3 ) The center of normal-isotropic hardening surface trans-

lates in the direction of the outer-normal of the

sub-isotropic hardening surface at the current isotropic

hardening stress.

Then, let the following evolution rule for the center of the

normal-isotropic hardening surface be assumed

(51)

where a is the material constant (or material function of

stress in general) having the dimension of stress.

Next, let it be assumed that the normal-isotropic hard-

ening ratio increases under the conditions:

1 ) The normal-isotropic hardening ratio increases when

the plastic strain rate is directed the outward of the

sub-isotropic hardening surface.

2 ) The normal-isotropic hardening ratio increases infi-

nitely without change of the normal-isotropic hardening

surface when it is zero but it increases no more when it

reaches unity, i.e. when ƒÌ reaches the nor-

mal-isotropic hardening surface.

Then, let the following evolution rule of the nor-

mal-isotropic hardening ratio be assumed.

(52)

where U(R) is the monotonically-decreasing function of

R fulfilling the conditions (see Fig. 3):
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(53)

The incorporation of Eq. (52) furnishes the controlling function to

attract the isotropic hardening stress ƒÌ to the normal-isotropic

hardening surface in the state tr(NDp) > 0, whilst without Eq.

(52) the return-mapping of ƒÌ is required. Let the function

U(R) satisfying Eq. (53) be simply given by

(54)

where u is the material constant. Eq. (54) has the same

form as Eq. (26) with Re= 0 .

Fig. 4. Function U(R) in the evolution
rule of the size of sub-isotropic
hardening surface.

Now, substituting Eqs. (43), (50), (51) and (52) into

Eq. (48), one has

(55)

Assuming that the isotropic hardening stress ƒÌ evolves

when it moves the outward of the sub-isotropic hardening

surface, the positive variable ƒÌƒÐ is given from Eq. (55)

as follows:

(56)
noting that the function h involves the non-negative sca-

lar variable <tr(NDp)> in homogeneous degree-one.

Substituting Eq. (56) into Eq. (43), the evolution rule of

ƒÌ is given as follows:

(57)
Accompanying with the incorporation of the cyclic

stagnation of isotropic hardening, i.e. the adoption of Eq.

(50) in stead of Eq. (7)2, the rate of similarity-center in Eq.

(30) and the plastic modulus in Eq. (38) are modified as
follows:

(58)

(59)

5. Material functions of metals

The material functions involved in the subloading

surface model for metals formulated in the preceding sec-

tions are given as follows11):

(60)

(61)

(62)

(63)

where h1,h2, ƒ¿ƒ¿ rƒ¿ (<1) are material constants and F0 is the

initial value of F . It holds from Eqs. (57), (58), (59) and (60)

-(63) that

(64)

(65)

(66)

(67)

(68)

(69)
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(70)

The subloading surface with Eq. (60) is described by the fol-

lowing form using Eq. (14) as follows:

(71)

i.e.

(72)

from which R is described analytically by the following equa-

tion with the known values.

(73)

The value of R can be calculated analytically by Eq. (24) in the

loading process (Dp •‚ 0 ) but the calculation by Eq. (73) is re-

quired in the unloading process (Dp = 0 ).

6. Comparison with test data

The ability of the present model to reproduce the real defor-

mation behavior of metals is examined below.

The test data for pulsating tension of 1070 steel with the axial

stress from OMPa to 830MPa is adopted for the comparison. The

stress-strain curves in the test data and the simulation are depicted

in Fig. 5. The values of material parameters used in the model

simulation are listed in Table 1, while Eq. (28) is used for the

function U (R)

Tablel . Material parameter for 1070 Steel

The stress-strain curve is predicted sufficiently well by the

model. The relationship of the accumulated strain and the number

of cycles is shown in Fig. 6. It is also predicted quite well.

7. Concluding remarks

The cyclic stagnation phenomenon of isotropic hardening ob-

served in metals is formulated pertinently in the stress space for-

mulation with the smooth development of isotropic hardeningby

incorporating the concept of the subloading surface. It will con-

tribute to the improvement of mechanical design of machinery and

structures made of metals in engineering practice.

Fig..5. Relationship of stress and strain in the pulsating

tension of 1070 steel.

Fig..6. Relationship of number of cycles vs. accumulated strain
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