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An improved method is proposed to analyze the bending problem of plates. The fun-

damental differential equations are satisfied for the whole plate. By transforming these
differential equations into integral equations in a small area, the quantities of an ap-

pointed point can be expressed by those of the other three points. By choosing the
appointed point according to a regular order, the quantities of these three points can be
replaced by the quantities of the boundary points. Finally, the quantities of any point

can be expressed by those of the boundary points and the unknown quantities are only

on the boundary. That makes the number of the unknown quantities and the computer
time of the coefficient reduce greatly. The comparision of the present method with that

used early is presented and the advantages of the present method are shown. Some nu-
merical results are given by using uniform or non-uniform divisions. By comparing the

numerical results obtained by the present method with those previously published, the

efficiency and accuracy of the present method are investigated.
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1. Introduction

Plates are important components in aeronautical,
mechanical and ocean structures. The analytical so-
lutions of the plate are limited to only simple plate

geometries and boundary conditions. For complex
geometries and general boundary conditions, some
numerical methods of analysis, such as the finite
difference1) finite element2), spline element method3)

or boundary element method4) , are used.

In this paper, an improved discrete method is pro-

posed for analysing the bending problem of plates
based on the Mindlin plate theory. The method
is based on the discrete method5)'6). Like the

method5),6), the present method doesn't employ the

prior assumption of shape of deflection, such as shape
function used in the finite element method. So the

phenomenon of the shear locking doesn't happen. Due
to the unknown quantities are only on the boundary,

the number of these quantities is fewer. That helps
to save the computer storage. Compared with the
method5), the present method has two advantages.

One is that the present method requires less computer

time to calculate the coefficients. Another is that non-

uniform divisions can be used. Some numerical results

are given to show the efficiency and accuracy of the

present method for the bending problem of the plates.

2. Discrete method

In this section, the discrete method5)'6) for the plate

bending problems will be reviewed.

2.1 Fundamental Differential Equations

Consider a rectangular plate of length a, width b,

density p. An xyz coordinate system is used in the

present study with its x-y plane contained in the

middle plane of the rectangular plate, the z-axis per-

pendicular to the middle plane of the plate and the

origin at one of the corners of the plate.

In this paper, the deflection w, the rotations ƒÆx,ƒÆy,

the shearing forces Qx,Qy, the twisting moment Mxy

and the bending moments Mx, My are used as vari-

ables.

Considering the equations of equilibrium, the
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strain-displacement relations, the stress-strain rela-
tions and the load-stress relations, the fundamental

differential equations of the plate having uniform load

q are as follows:

(1)

where D = Eh3/(12(1-v2)) is the bending rigidity;
E and G are modulus and shear modulus of elasticity,
respectively; v is Poisson's ratio; h is the thickness of
plate; ts = h/1.2 in which 1.2 is the shear correction
factor.

By choosing the standard thickness and bending
rigidity of the plate as h0 and D0 = Eh30/(12(1-v2))
and introducing the non-dimensional expressions,

the simple systemized expression of fundamental dif-

ferential equations of the bending problem of a rect-

angular plate is as follows 5)'6) :

(2)

where t = 1•`8; q = qua2 /D(1-v2), q the dis-

tributed load; u = b/a; „qlt Kronecker's delta; F1ts,

F2ts and Fus are given in Appendix A.

2.2 Fundamental Solutions

As given in Ref. 5),6) , by dividing a rectangular

plate vertically into m equal-length parts and horizon-

tally into n equal-length parts as shown in Fig. 1, the

plate can be considered as a group of discrete points

which are the intersections of the (m+1)-vertical and

(n+1)-horizontal dividing lines. By integrating Eq.

(1) over the area 0 < n < ni, 0 < S < Si and applying

the numerical integration method, the simultaneous

Fig. 1 Discrete points on a rectangular plate.

equation for the unknown quantities Xpij = Xp( ni, Si)
at the point (i, j) is obtained as follows:

(3)

where p = 1 ti 8, Apt, Bpt and Cptkl are given in
Appendix A.

By spreading the area according to the order men-
tioned in Ref.5)'6), the quantity Xpii at the point (i, j)
is only related to the quantities Xrk0 (r=1,3,4,6,7,8)
and Xs0l (s=2,3,5,6,7,8) at the boundary dependent

points. Eq. (3) is rewritten as follows.

(4)

where

(5)
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Fig. 2 Discrete points on a rectangular plate.

(6)

(7)

3. The Present Method

Basing the discrete method 5),6), an improved
method for the plate bending problems is proposed.

3.1 Fundamental Differential Equations

The simple systemized expression of fundamental
differential equations is as the same as Eq.(2).

3.2 Fundamental Solutions
By dividing a rectangular plate vertically into m

equal-length parts and horizontally into n equal-
length parts as shown in Fig. (2), the plate can be
considered as a group of discrete points which are
the intersections of the (m+1)-vertical and (n+1)-
horizontal dividing lines. By integrating Eq. (2) over

the area ƒÅ(i-1) < ƒÅ < ƒÅi, <S <Si,the follow-

ing equation can be obtained.

(8)

By using the Green integration and the trapezoidal
integration rule, the simultaneous equation for the un-
known quantities Xpij = Xp (ni,Si) at the point (i, j)
is obtained as follows:

(9)

where Bii= hi/2, hi = ni-n(i-1)=Bii= hj/2, hj = Si-S(j-1),

P= 1•`8, Apt, Bpt and Cptkl are given in

Appendix A.

In Eq. (9), the quantity Xpij is related to the quan-

tities Xt(i-1)(j-i), Xt(i-i)j, and Xti(j-1) at the three

internal points. By choosing the point [i, j]according

to the order as [1, 1], [1, 2],•c, [1, n], [2, 1], [2, 2], •c

[2, n], •c [m, 1], [m, 2], •c,[m, n] and substituting the

obtained results into the corresponding terms of the

right hand side of Eq. (9), the quantities Xt(i-i)(j-1) 7

Xt(i-1)j and Xti(j-1) at the three internal points can

be eliminated and the quantity Xpij at the point (i, j)

is only related to the quantities Xrko) (r=1,3,4,6,7,8)

and Xsol (s=2,3,5,6,7,8) at the boundary dependent

points. Eq. (9) is rewritten as follows.

(10)

where
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(11)

(12)

(13)

By comparing Eqs.(5) •` (7) with Eqs.(11)•`(13), (13),

it can be noted that the two summations have been

changed to one summation. So by using the Eqs.(11)

•` (13), the computer time of the coefficients can be

reduced greatly.

4. Numerical Results

To investigate the validity of the proposed method,
numerical results are presented for several specific

problems and comparisons are made with previously
published results where possible. v = 0.3 is used.
All the convergent values are obtained for the plates
by using Richardson's extrapolation formula for two
cases of divisional numbers m (=n).

4.1 Convergence of the present method
In order to examine the convergency, numerical cal-

culation is carried out by varying the number of di-
visions m and n for a square plate with four sim-

ply supported edges noted as SSSS. The deflection
of the plate for different division number is shown in

Fig. 3 The deflection versus the divisional number
m(= n) for the SSSS square plate.

Table 1 The quantities of SSSS square plate under
uniform load (v = 0.3, h/a = 0.01)

Fig. 3. It can be found the numerical results converge
monotonously from above with increase of the divi-
sional number and the results of the divisional num-
bers m (=n) of 12 and 16 are almost same. So it
is suitable to obtain the convergent result by using
Richardson's extrapolation formula for two cases of
divisional numbers m (=n) of 12 and 16. By repeat-
ing the above procedure, the suitable number of divi-
sions m(= n) can be determined for the other plates.

4.2 Comparision of the present method with
the discrete method 5)

(1) Comparision of the accuracy of the re-
sults

Table 1 shows the quantities of the deflection w,
the shear force Qy, the twisting moment Mxy and the
moment Mx at the appointed points shown in Fig 4.
The plate with four edges simply supported (SSSS)
is considered. In this table, the numerical results ob-
tained by the discrete method 5) and the exact results
obtained in Ref. 7) are also shown. It can be seen the

present method has the same accuracy as the discrete
method. These results obtained by the two methods
are in good agreement with exact results.

(2) Comparision of the computer time
Fig. 5 shows the flow chart of computation. The

computation is divided into four parts. The ratio of
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Fig. 4 The deflection w, the shear force Qy, the mo-
ment Mx and the twisting moment Mxy at
the appointed points of the simply supported

plate.

Fig. 5 Flow chart of computation.

computer time of these four parts is shown in Fig. 6
by using personal computer ( Dell Pentium 4 2.8GHz
2.50GB). For divisional number m = 12, the compu-
tation time for the four parts is 0.1094s, 41.1406s,
0.3438s, 0.0781s by using the discrete method 5)
and 0.1094s, 4.6563s, 0.06258, 0.0781s by using the

present method, respectively. For each part, the ratio
ti/t2 of computer time ti of the discrete method 5)
to computer time t2 of the present method is shown

Fig. 6 The ratio of the computer time of each part.

Fig. 7 The computer time ratio of the discrete ap-

proximate method to the present method at
different parts.

in Fig. 7. Two divisional numbers m(= n) = 12 and
m(= n) = 16 are considered. From Fig. 7, it can
be noted the ratio tl/t2 = 1 for the first and the
forth parts. That means the computer time of the dis-
crete method 5) is as the same as that of the present
method. But for the second part, ti/t2 = 8.8 and
ti/t2 = 13.4 for m = 12 and m = 16, and for the
third part, ti/t2 = 5.5 and ti/t2 = 11.9 for m = 12
and m = 16, respectively. With increase of the di-
visional number, the ratio ti /t2 increase. As shown
in Fig. 6, the computer time of the second and third
parts is about 95 percentage of the whole time. So
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Table 2 The number of the points used to obtain
the coefficient at point (m, n)

Table 3 The quantities of CCCC square plate under
uniform load (v=0.3, h/a=0.01)

Fig. 8 The deflection w, the shear force Qy, the mo-
ments Mx and My at the appointed points of
CCCC square plate.

the computer time of the present method is much

less than that of the discrete method 5), especially

for the larger divisional number. It can be under-

stood by comparing Eqs.(11)•`(13) with Eqs.(5)

(7). In order to obtain the coefficient at point (m, n),

((m+1)•~(n+1) -1) points are needed to use

by using Eqs.(5)•`(7), but only three points are

needed by using Eqs.(11) ti (13). The numbers of the

points needed in the present method and the discrete

method 5) are shown in Table 2. It can be noted the

number of the points needed in the present method is

much less that of the discrete method 5).

4.3 Plate with uniform divisions

Table 3 shows the quantities of the deflection w,

the shear force Qy, the twisting moment My and the

moment Mx at the appointed points shown in Fig 8.

The square plate with four clamped edges (CCCC)

is considered. The results obtained by the present

method are compared with the exact results of Ref. 7).

It can be seen these results agree well.

Fig 9 shows an isosceles right triangular plate and

(a)

(b)

Fig. 9 A triangular plate and its equivalent rectan-

gular plate. (a) A triangular plate; (b) An
equivalent rectangular plate of a triangular

plate.

Table 4 The deflection at point (a/4, b/4) of the

isosceles right triangular plate with diag-

onal clamped and the other edges simply

supported (wD0/qa4•~103, v=0.3, b/a=

1.0, h0/a=0.01)

its equivalent rectangular plate. The thickness of the
triangular plate is ho and the boundary conditions
are the diagonal clamped and the other edges simply
supported. The equivalent rectangular is obtained by
adding a triangular part to the original plate. The
boundary conditions of the added part are clamped
and the thickness is h1. The thickness h1 is much
larger than ho. The thickness of the diagonal is cho-
sen as (h0+h1)/2. The numerical results for the
deflection w and the moment Mx are presented in
Tables 4 and 5. The numerical results obtained by
Fletcher 8) and FEM are also shown. From these ta-
bles, it can be noted that the present results have
enough accuracy.
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Table 5 The moment at point (a/4, b/4) of the
isosceles right triangular plate with diag-
onal clamped and the other edges simply
supported (Mx/qa2 , v = 0.3 , b/a =
1.0, h0/a 0.01)

(a)

Fig. 10 Plates with divisions. (a) Non-uniform divi-
sion; (b) uniform division.

4.4 Plate with non-uniform divisions
Comparing with the discrete method 5) which is

only suitable for the plate with uniform divisions, one
advantage of the present method is that it can be used
for the plate with non-uniform divisions. In order
to show the efficient of the present method, numer-
ical results are given for the square plates with uni-
form and non-uniform divisions as shown in Fig. 10.
The quantities at point (a/40, b/40) are presented in
Table 6. In order to obtain the quantities at point
(a/40, b/40), divisional number must be larger than

Table 6 Numerical results at point (a/40, b/40) of
SSSS square plate with uniform load

(a)

(b)

Fig. 11 The circle plate with uniform and non-
uniform divisions. (a) Uniform divisions;

(b) Non-uniform divisions.

40 for the plate with uniform division. But for the

plate with non-uniform division, the divisional num-
ber is not limited. From Table 6, it can be noted
the results decrease with increase of the non-uniform
divisional number, and the results of the plate with
uniform division m = 40 are as the same as those of
the plate with non-uniform division m = 20. So the
computer time can be saved by using non-uniform di-
vision.

In order to show the accuracy of the present method
for the plate with non-uniform division, the calcula-
tion is carried out for clamped circle plate with uni-
form and non-uniform divisions as shown in Fig. 11.
The numerical results of the deflection w and the
moment Mx at point (a/2, a/2) are shown in Ta-
bles 7 10. It can be noted for the plate with same
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Table 7 The deflection at point (a/2, a/2) of a cir-
cle plate with uniform divisions (wD0/qa4 x
103 , v = 0.3 , ho/a = 0.01)

convergence and satisfactory accuracy.

Appendix A

Table 8 The moment at point (a/2, a/2) of the circle
plate with uniform divisions (Mx/qa2 v =
0.3 , h0/a = 0.01)

Table 9 The deflection at point (a/2, a/2) of a cir-
cle with non-uniform divisions (wD0/qa4 x
103 , v = 0.3 , ho/a = 0.01)

Table 10 The moment at point (a/2, a/2) of a
circle plate with non-uniform divisions
(M./qa2, v =0.3 , ho/a = 0.01)

divisional number, the deflection at point (a/2, a/2)
obtained by using non-uniform division is better than
that obtained by using uniform division.

5. Conclusions

An improved method is proposed for analyzing the

bending problem of plate. No prior assumption of
shape of deflection used in the finite element method
are employed in this method. By transforming the dif-

ferential equations into integral equations in a small
area, the quantities of an appointed point can be

expressed by those of the other three points. That
makes the computer time reduce greatly. The present
method is suitable for plate with uniform and non-

uniform divisions. Some numerical results are given
for the rectangular plate, triangular plate and circle

plate. Comparision of the numerical results of the

present method with those previously reported is pre-
sented. It shows that the present results have a good
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