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A discrete method is proposed for analysing the natural vibration problem of shear 

deformable rectangular plates with a line hinge. The fundamental differential equations 

and the solutions of these equations are derived for two parts of the plate, which are 
obtained by dividing the plate along the line hinge. By transforming these equations into 

integral equations, and using numerical integration and the continuous conditions along

the line hinge, the solutions of the whole plate can be expressed by the unknown quantities 
on the boundary and the quantities of the rotation along the hinge. Green function 

which is the solution of deflection of the bending problem of plate is used to obtain the 

characteristic equation of the free vibration. The effects of the position of the line hinge, 
the aspect ratio, the thickness-to-length ratio and the boundary condition on the natural 

frequency parameters are considered. By comparing the numerical results obtained by 

the present method with those previously published, the efficiency and accuracy of the 

present method are investigated. 
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1.Introduction 

Plates are important structural components in a
variety of applications. The vibration problems have 
been studied for the plates with complicated cases, 

such as, rectangular plates with symmetrical point 
supports1), asymmetrical point supports 2), arbitrary 

point supports 3),4), line supports 5),6),7),8). But for 
the plates with a line hinge which can be used as 
boarding platform, folded gates and chairs, the vibra-

tion study is rather limited. Wang, Xiang and Wang 
9) studied the vibration of plates with an internal line 

hinge by using the Ritz method. The Kirchhoff plate 
theory was used, so the numerical results were given 

only for thin plates in which shear stresses were ig-
nored. Basing the first order shear deformation plate 
theory, Xiang and Reddy 10) first provided the ex-
act solutions of natural vibration of rectangular plates 
with a line hinge by using the Levy type solution com-

bined with the state-space technique. Because the 
Levy type solution is used, the exact solutions are 

only suitable for the plates with two parallel simply 
supported edges. As so far, no solution for the shear 
deformable rectangular plates with arbitrary bound-

ary conditions can be found by authors. 

In this paper, a discrete method 11) is used for an-

alyzing the free vibration of shear deformable rectan-

gular plates with a line hinge. The plates with vari-
ous boundary conditions are considered. Basing the 

first shear deformation theory, the fundamental dif-

ferential equations of a plate are established for the 

two parts of the plate obtained by dividing the plate 

along the hinge. By transforming these equations 

into integral equations and using numerical integra-

tion, the solutions are obtained at the discrete points. 

Furthermore, by choosing the integral area in an ap-

pointed order, the solutions are only related to the 
unknown quantities on the boundary and the quanti-

ties of the rotation along the hinge. That makes the 

number of unknown quantities decrease greatly. The 

solution for deflection is chosen as the Green func-

tion and used to obtain the characteristic equation of 

the free vibration. The efficiency and accuracy of the 

present method for the rectangular plates with line 
hinge are investigated by comparing the present re-

sults with those reported early. Some new numerical 

results are given for shear deformable plates with a 

line hinge and various boundary conditions. The ef-
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Fig.1 Rectangular plate with a line hinge.

fects of the position of the hinge, the aspect ratio, the 
thickness-to-length ratio and the boundary conditions 
on the frequency parameters are discussed. 

2. FUNDAMENTAL DIFFEREN-
TIAL EQUATIONS 

Fig.1 shows a rectangular plate of length a, width 

b, density p with a line hinge. An xyz coordinate 

system is used in the present study with its x-y

plane contained in the middle plane of the rectangular 

plate, the z—axis perpendicular to the middle plane 

of the plate and the origin at one of the corners of the 

plate. The hinge noted as cc is parallel to the edges 

in y-direction. 

In this paper, the deflection w, the rotations ƒÆx, ƒÆy,

the shearing forces Q, Qy, the twisting moment Mxy 

and the bending moments Mx, My are used as vari-

ables. 

Along the hinge, the plate is divided into two parts. 

The fundamental differential equations of a part of the 

plate having a concentrated load P at a point (xq, yr) 

are as follows 11):

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

Fig.2 Discrete points on a rectangular plate

(1g) 

(1h)

where the superscript K (=1,2) denotes the Kth part, 

D=Eh3/(12(1-v2)) is the bending rigidity; E and

G are modulus and shear modulus of elasticity, re-

spectively; v is Poisson's ratio; h is the thickness of 

plate; ts=h/1.2; ƒÂ(x-xq) and ƒÂ(y-yr) are Dirac's 

delta functions. 

By introducing the non-dimensional expressions,

Eqs. (1a)•`(1h) can also be expressed as the following 

simple systemized equation.

(2)

whereμ=b/α;I=μ(1-ν2)(ho/h)3;J=2μ(1+

ν)(h0/h)3;T=((1+ν)/5)(h0/α)2(h0/h);P=

Pα/(D0(1-ν2));Do=Eh30/(12(1-ν2))is the stan-

dard bending rigidity; h0 is the standard thickness 

of the plate; k= 5/6 is the shear correction factor; 

ƒÂ(ƒÅ-ƒÅq) and ƒÂ(ƒÄ-ƒÄr) are Dirac's delta functions; ƒÂ1t 

is Kronecker's delta; F1ts, F2ts and F3ts are given in 

Appendix A.

3. DISCRETE GREEN FUNCTION 

As given in Ref.11), by dividing a rectangular plate 
vertically into m equal-length parts and horizontally
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into n equal-length parts as shown in Fig. 2, the plate 

can be considered as a group of discrete points which 

are the intersections of the (m+1)-vertical and (n+1)-

horizontal dividing lines. To describe the present 

method conveniently, the rectangular area, 0<ƒÅ<

ƒÅn, 0<ƒÄ<ƒÄj, corresponding to the arbitrary inter-

section (i, j) as shown in Fig. 2 is denoted as the area 

[i, j], the intersection (i, j) denoted by •› is called 

the main point of the area [i, j], the intersections de-

noted by •› are called the inner dependent points of the 

area, and the intersections denoted by • are called the 

boundary dependent points of the area. 

 By integrating Eq. (2) over the area [i,j] and ap-

plying the trapezoidal integration rule, the simulta-

neous equation for the unknown quantities X(K)sij=

X(K)s(ƒÅ
i,ƒÄj) at the main point (i,j) of the area [i, j] 

is obtained as follows:

for the first part (3a)

for the second part (3b)

where t=1～8, c=(hc/α)m,βik=αik/m;βjl=

αjl/n;αik=1-(δ0k+δck+δik)/2;αjl=1-(δ0l+

δjl)/2;i=1～m;j=1～n;uiq=u(ηi-ηq);

ujr=u(ζj -ζ γ).

By retaining the quantities at main point (i,j) on 
the left hand side of the equation, putting other quan-
tities on the right hand side and using the matrix 
transition, the solution Xpij of the above Eqs. (3a) 

(3b) are obtained as follows:

for the first part (4a)

for the second part (4b)

where p 1•`8, Apt, Bpt and Cptkl are given in 

Appendix A. 

In Eq. (4a), the quantity X(1)pij, is not only related 

to the quantities X(1)tk0 and X(1)t0l at the boundary de- 

(1) pendent points but also the quantities X(1)
tki, X(1)til and 

X(1)tkl at the inner dependent points. In Eq. (4b), 

the quantity X(2)pij is not only related to the quan-
tity X(2)tkO at the boundary dependent points and the 
quantity X(2)tcl at the points on the hinged line but 

also the quantities Xt(2)tkj, X(2)til and X(2)tkl at the in-
ner dependent points. The number of the unknown

quantities is rather large. In order to reduce the un-

known quantities, the area [i,j] is spread according 

to the regular order as [1, 1], [1, 2],•c[1, n], [2, 1], 

[2,2],•c, [2,n]•c,[m,1], [m,2],•c, [m,n].With 

the spread of the area accordingto the above men- 

tioned order, the quantities X(K)tkj, X(K)tkl and X(K)tkl at 

the inner dependent points can be eliminated by sub-

stituting the obtained results into the corresponding 

terms of the right hand side of Eqs. (4a) (4b). By 

repeating this process, the quantity at the main 

point in the first part is only related to the quanti-

ties X(1)rk0 (r=1,3,4,6,7,8) and X(1)s0l (s=2,3,5,6,7,8) at 
the boundary dependent points. The quantity X(2)pij 
at the main point in the second part is only related to 
the quantities X(2)rk0 (r=1,3,4,6,7,8) at the boundary 

dependent points and X(2)scl (s=2,3,5,6,7,8) at points 
on the hinged line. Therefore, the number of the un-

known quantities is reduced greatly. Based on the 

above consideration, Eqs. (4a) •` (4b) are rewritten 

as follows.

for the first part(5a)

for the second part(5b)

where -(K)apijfd,-(K)bpijgd and -(K)qpij(K-1,2)are given in
Appendix B.
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The boundary conditions atƒÅ=0,1 are 

X5=X6=X8=0 For the simply supported edge 

X6=X7=X8=0 For the clamped edge 

X2=X3=X5=0 For the free edge 

The boundary conditions at (=0,1 are 

X4=X7=X8=0 For the simply supported edge 

X6=X7=X8=0 For the clamped edge 

X1=X3=X4=0 For the free edge 

The continuity conditions at the line hinge are given 

as

By using the above conditions and the continu-
ity conditions , the unknown quantities in Eqs.(5a) 

(5b) can be determined and the discrete solutions 
can be obtained. The solution of deflection is used as 
Green function to obtain the characteristic equation 
of the free vibration. 

4. CHARACTERISTIC EQUATION 

By applying the Green function w(x0,Y0,x,y)/P 
which is the displacement at a point(x0,Y0) of a plate 
with a concentrated load P at a point (x, y), the dis-
placement amplitude w(x0,y0) at a point (x0,y0) of 
the rectangular plate with a line hinge during the free 
vibration is given as follows:

(6)

where p is the mass density of the plate material and 

w is the circular frequency. 

By using the trapezoidal integration rule and the 

following non-dimensional expressions,

where ƒÏ0 is the standard mass density, the character-

istic equation is obtained from Eq. (6) as

(7)

Table 1 Convergence of natural frequency parame-
ter A for a SSSS square plate with a line 
hinge(b/a=1.0,h/a=0.01)

Ex.* :Convergent values obtained by m=12,14 

 Ex.** :Convergent values obtained by m=14,16

Table 2 Natural frequency parameter A for SSSS 
rectangular plates with a line hinge(h/a= 
0.01)

5. NUMERICAL RESULTS 

To investigate the validity of the proposed method, 
the frequency parameters are given for rectangular 

plates with a line hinge at x=he (shown in Fig.1). 
In all tables and figures, the symbols F, S, and C de-
note free, simply supported and clamped boundary 
conditions. Four symbols such as CSFS delegate the 
boundary conditions of the plate, the first indicating 
the conditions at x=0, the second at y=0, the third 
at x=a and the fourth at y=b. All the convergent 
values of the frequency parameters are obtained for 
the plates by using Richardson's extrapolation for-
mula 12) for two cases of divisional numbers m (=n). 
v=0.3 is used. Some of the results are compared
with those reported previously.
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Table 3 Natural frequency parameter A for CCCC 
rectangular plates with a line hinge (h/a=
0.01)

hc/a=1/3

hc/a=1/2

hc/a=0.1

hc/a=0.3

hc/a=0.5

(a)b/a=0.5

(b)b/a=1.0

Fig.3 Nodal patterns for SSSS rectangular plates 
with a line hinge. (a) b/a=0.5; (b) b/a=
1.0.

In order to examine the convergency, the efficiency 
and accuracy of the present method for analyzing the 
free vibration problem with a line hinge, firstly, nu-
merical calculation is carried out by varying the num-
ber of divisions m and n for a SSSS square plate 
(b/a=1.0) with a line hinge at x=a/2 and the 
thickness-to-length ratio h/a=0.01. The lowest 6 
natural frequency parameters of the plate are shown 
in Table 1. It can be found the numerical results con-
verge monotonously from above with increase of the 
divisional number. Ex.* and Ex.** are the convergent 
values by using Richardson's extrapolation formula 
for two cases of divisional numbers m=n=12,14 
and m=n=14,16, respectively. They are almost 
same. So it is suitable to obtain the convergent results 
of frequency parameter by using Richardson's extrap-
olation formula for two cases of divisional numbers m 
(=n) of 12 and 14. By repeating the above procedure,

hc/a=1/3

hc/a=1/2

hc/a=0.1

hc/a=0.3

hc/a=0.5

(a)b/a=0.5

(b)b/a=1.0

Fig.4 Nodal patterns for CCCC rectangular plates 
with a line hinge. (a)b/a=0.5; (b)b/a=
1.0.

the suitable number of divisions m(=n) can be deter-

mined for the other plates. Numerical results of SSSS 

and CCCC plates with a line hinge are presented for 

the ratio h/a=0.01 and shown in Tables 2•`3. The 

cases of hc/a=1/3, 1/2 and hc/a=0.1, 0.3, 0.5 are 

considered for the plates with aspect ratios b/a=0.5 

and b/a=1.0, respectively. The exact results ob-

tained by Xiang and Reddy 10) and Wang, Xiang and 

Wang 9) using Ritz method are also shown in the ta-

bles. It can be seen the present results agree well with 

reference results. The nodal patterns of the lowest 6 

modes of the above plates are shown in Figs. 3•`4.

In these figures, the discontinuity of rotation ƒÆx can 

be seen and some changes of mode order for the plate 

with b/a=1.0 can be found. 

Table 4 Fundamental frequency parameter A for 

SSSS square plates with a line hinge

Tables 4 and 5 show the numerical values for 
the fundamental frequency parameter A of SSSS and 
CSCS with a line hinge and the thickness-to-length ra-
tio h/a=1/5, 1/7, 1/10, 1/12, 1/15, 1/60, 1/100. Five
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Table 5 Fundamental frequency parameter A for 

CSCS square plates with a line hinge

Table 6 Natural frequency parameter A for SSSS 
rectangular plates with a line hinge (h/a=
0.2)

Table 7 Natural frequency parameter A for CCCC 
rectangular plates with a line hinge (h/a=
0.2)

cases of the position of the line hinge with hc/a=
0.1, 0.2, 0.3, 0.4, 0.5 are considered. The results ob-
tained by Xiang and Reddy 10) are also shown. From 
these tables, it can be noted for the five cases, the 
fundamental frequency parameter A increases 5.2%,

Table 8 Natural frequency parameter A for CSCS 
rectangular plates with a line hinge (h/a=
0.2)

Table 9 Natural frequency parameter A for CSCC 
rectangular plates with a line hinge (h/a=
0.2)

5.5%, 5.1%, 4.4%, 5.0% for SSSS square plates and 

9.8%, 11.3%, 10.4%, 9.0%, 8.8% for CSCS square 

plates when h/a changes from 1/5 to 1/100. The ef-

fect of the ratio h/a on the frequency parameter is a 

little different for the plate with different boundary 

conditions. But the fundamental frequency parame-

ter A of the plates increases with decrease of the ratio 

h/a for all the cases. For the plates with the ratio 

h/a larger than 1/10, the increase is obvious. It can 

also be noted that the highest fundamental frequency 

parameter of the plates with various position of the 

line hinge can be found at hc/a=0.1 for SSSS plate 

and hc/a = 0.2 for CSCS plate. It shows the opti-

mal location of the line hinge changes with different 

boundary conditions. But from Tables 4 and 5, it 

can be noted the optimal location doesn't change with 

various thickness-to-length ratio. 

 Tables 6•`10 show the numerical values for the

lowest 6 natural frequency parameter A of shear de-

formable SSSS, CCCC, CSCS, CSCC and CSFC rect-

angular plates with a line hinge. The thickness-to-
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Table 10 Natural frequency parameter A for CSFC
rectangular plates with a line hinge (h/a=
0.2)

length ratio h/a=0.2 and aspect ratio b/a=0.5,1 
are considered. The cases of hc= 1/3, 1/2, 2/3 are 
chosen for CSFS plates and the cases of hc/a=
1/4, 1/3, 1/2 are chosen for the other plates. For the 
definite ratios h/a, b/a and hc/a, the frequency pa-
rameter for the CCCC plate is highest. For the defi-
nite boundary condition and ratios h/a and hc/a, the 
frequency parameter of the plate with b/a=0.5 is 
higher that of plate with b/a=1.0. The effect of the 
position of the line hinge on the frequency parame-
ter is different for the plate with various boundary 
conditions. 

6. CONCLUSIONS 

A discrete method is used for analyzing the free vi-
bration problem of shear deformable rectangular plate 
with a line hinge. The plate is separated into two 
parts along the line hinge and the continuous condi-
tions along the hinge are used to obtain the solution 
of the whole plate. Green function which is the solu-
tion of deflection of the bending problem of plate is 
used to obtain the characteristic equation of the free 
vibration. The effects of the position of the line hinge, 
the aspect ratio, the thickness-to-length ratio and the 
boundary condition on the natural frequency param-
eters of rectangular plates are considered. By com-
paring the numerical results obtained by the present 
method with those previously published, the efficiency 
and accuracy of the present method are investigated. 
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Appendix A 

F111=F124=F133=F156=F167=F188=1
, 

F146=ƒË, F212=F223 F235=F247=F266=

F257=ƒÊƒË, F278=1, F321=F332=-ƒÊ, F345=

F354=I, F363=J, F372=T, F377=1, F381=

-ƒÊT, F386=ƒÊ,otherFkts=0.
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Ap1=rp1, Ap2=0,Ap3=rp2, Ap4=rp3, Ap5=0,

Ap6=rp4+νrp5, Ap7=rp6, Ap8=rp7.

Bp1=0, Bp2=μrp1, Bp3=μrp3, Bp4=0,Bp5=

μrp2,Bp6=μrp6, Bp7=μ(νrp1+rp5), Bp8=rp8・

Cp1kl=μ(rp3+kklrp7),Cp2kl=μrp2+kklrp8,Cp3kl=

Jrp6, Cp4kl=Iklrp4, Cp5kl=Iklrp5,Cp6kl=-μrp7,

Cp7kl=-rp8, Cp8kl=0.

[rpk]=[rpk]-1,r11=βii,r12=μ βjj,r22=-μ βij,

r23=βii,r25=μ βjj,r31=-μ βij,r33=μ βjj,

r34=βii,r44=-Iijβij,r46=βii,r47=μ νβjj,

r55=-Iijβij,r56=ν βii,r57=μ βjj,r63=-Jijβii,

r66=μ βjj,r67=βii,r71=-μkijβij,r76=μ βij,

r78=βii,r82=-Hijβij,r87=βij,r88=βjj, other

rpk=0,βij=βiiβjj

Appendix B

a(1)1i0il=a(1)3i0i2=a(1)4i0i3=a-(1)6i0i4=a(1)7i0i5=a(1)8i0i6=1,

b(1)20jj1=b(1)30jj2=b(1)50jj3=b(1)60jj4=b(1)70jj5=b(1)80jj6=

1,b(1)30002=0

a(2)ii0il=a(2)3i0i2=a(2)4i0i3=a(2)6i0i4=a(2)7i0i5=a(2)8i0i6=1,

b(2)2cjj1=b(2)3cjj2=b(2)5cjj3=b(2)6cjj4=b(2)7cjj5=b(2)8cjj6=1,

b(2)3c0c2=0
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