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We have been investigating the cardiovascular system over micro to macro levels by using 
conjugated computational mechanics analyzing fluid, solid and bio-chemical interactions. In 
the present study, we introduce our recent researches on the mass transport to saccular 
aneurysm, cerebral aneurysm growth based on a hemodynamic hypothesis, malaria-infected red 
blood cell mechanics using a particle method and primary thrombus formation. 
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1.Introduction 

Human cardiovascular system is always under the
integrated nervous and humoral control of the whole 
body, i.e., in homeostasis. Multiple feedback 
mechanisms with mutual interactions among systems, 
organs, and even tissues provide integrated control of 
the entire body. These control mechanisms have 
different spatial coverages, from the micro- to
macroscale, and different time constants, from 
nanoseconds to decades. We think that these variations 
in spatial as well as temporal scales should be taken 
into account in discussing phenomena in the 
cardiovascular system. 

In this background, we have been investigating the 
cardiovascular system over micro to macro levels by 
using conjugated computational mechanics analyzing 
fluid, solid and bio-chemical mechanics. In the present 
study, we introduce our recent researches on the mass 
transport to saccular aneurysm, cerebral aneurysm 

growth based on a hemodynamic hypothesis, malaria-
infected red blood cell mechanics using a particle 
method and primary thrombus formation. 

2. Mass Transport to Saccular Aneurysm 

Mass transport of biochemical species, such as LDL, 
oxygen, and ATP, to arterial walls has been postulated 
to link to atherogenesisi). Atherosclerotic wall 
thickening may have a critical role in the development 
and rupture of aneurysms. In this section, we present a 
numerical study on mass transport to walls of saccular 
cerebral aneurysms at a variety of arterial bends.

2.1 Materials and Methods 

Computational models are illustrated in Fig.1. In
human cerebral arteries, the Reynolds number is

approximately 200. Effects of pulsatile flow can be 
neglected, and we thus calculate steady-state solutions. 

We solve advection-diffusion equation for mass 

transport, coupled with Navier-Stokes equation for 
blood flow field. The given wall boundary condition 

for the mass transport is

(1)

where the notation c refers to the mass concentration, n 

is the normal vector to the wall, and K=5.0•~10-1 is 

the constant. We use commercial finite volume 

software FLUENT (Fluent Inc., Lebanon, NH, USA).

U-shaped models

Twisted models A

Twisted models B

S-shaped models

Fig.1 Computational models
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2.2 Results and Discussion 

Differences of arterial geometry result in a variety 
of mass concentration profile at aneurysm walls. The 

averaged concentration is dominated by the inflow flux 
through the aneurysm neck as shown in Fig.2. Since 

the inflow flux is determined by the secondary flow in 

the parent artery2), the arterial geometry strongly 
affects the resultant concentration at the aneurysm 

walls. The secondary flow also influences on the 
inflow and outflow pattern, thus vortex structure in the 
aneurysm. The minimum concentration is predicted at 

the center of the vortex near the aneurysm walls as 
shown in Fig.3.

Fig.2 Relationship between averaged concentration at 

aneurysm wall and inflow flux into aneurysm

(a) direction of the wall shear stress

(b) schematics of the concentration on the wall
Fig.3 Numerical results for the model TA-IV

To our knowledge, numerical analysis of mass 
transport to aneurysm walls has not been conducted 

previously. Kataoka et al.3) reported that the inner 
surface and wall of ruptured aneurysms differ from 
those of unruptured aneurysms. Our future direction is 
to reveal the relationship between the mass 
concentration and the rupture of aneurysms. 

3.Cerebral Aneurysm Growth Based on a 

Hemodynamic Hypothesis 

Cerebral aneurysm is an extremely important disease 
on the clinical medicine, since the rupture of 
aneurysms causes serious pathologic conditions such as 
the subarachnoid hemorrhage. The mechanism of 
aneurysm growth has not yet been understood. 

Cerebral aneurysm is characterized by a saccular 
expansion of the arterial wall. It has been known that 
strength degradation of the arterial wall is not enough 
to explain the saccular expansion4'5). To understand the 

phenomena, it should be important to consider 
biological reactions of the arterial wall. We have 
focused on increase in the volume of extracellular 
matrix or in the number of cells in the arterial wall6), as 

a candidate for main factor of cerebral aneurysm 

growth. 
It is generally accepted that wall shear stress (WSS) 

due to blood flow plays an important role in the 

pathophysiology of aneurysms7-9). Moreover, applying 
high WSS for a long period results in a significant cell 

proliferation in the arterial wall6). We hypothesize, 
therefore, the biological reactions, such as increase in 
the number of cells or in the volume of extracellular 
matrix in the arterial wall, occur locally at the site 
where WSS is over a threshold value, and the reactions 
lead to surface area expansion of the arterial wall 
keeping constant wall thickness. 

In this study, we propose a simulation model for 
cerebral aneurysm growth based on the hypothesis, and 

perform growth simulations for a cerebral artery model. 
The computational results are compared with those 
assuming strength degradation of the wall. 

3.1 Modeling and Methods 

(1) Geometry of the Artery Model 
Recently, a lot of researches on a cerebral aneurysm 

employ arterial geometry based on clinical image data. 
Such studies are informative and give us detailed 
information on flow field specific to the patient. In 
discussing the mechanism of aneurysm formation,
however, patient specific analysis gives us the
information that is valid only for the patient. It is 

proposed that cerebral aneurysm may be formed by 
several different reasons, such as hemodynamic stress, 
hypertension, or heredity. Thus, the patient specific 
analysis may lead us to a mechanism suitable specific 
to the patient. We think it is more appropriate to 
employ a simple geometric model in order to discuss
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general hypothesis and to get basic properties on how 

aneurysm grow based on the hypothesis. 

In this paper, we investigate how an aneurysm is 

formed in a model cerebral artery with curvature. Fig.4 

shows the initial geometry of the artery employed in 

this study, which is modeled on a part of internal 

carotid artery. The artery model has 30 mm length 

along central axis, diameter of 3 mm, curvature radius 

of 3.6 mm, and torsion of 15•‹. These values are not 

much different from former clinical observations.

(a) Front view

(b) Side view 
Fig. 4 Geometry of the Artery Mode

(2) Blood Flow Simulation 

For the calculation of blood flow, it was assumed that 

blood was an incompressible and Newtonian fluid with 

a density p = 1.05x103 kg/m3 and the viscosity ƒÊ=

3.5•~10-3 Pa. s. Dimension-free governing equations for 

such a blood flow are the equation of continuity,

(2)

and the Navier-Stokes equations,

(3)

where u is the three-dimensional velocity vector and 

p is the pressure. A parameter Re is the Reynolds 

number defined as Re•ßƒÏDu
ave/ƒÊ, where D is the 

diameter of the artery and uave is the averaged velocity 

at the inlet boundary. In the internal carotid artery, we 

can assume the quasi-steady blood flow since the 

Womersley number is about 2-3. Thus, we solved the 

steady flow at the averaged Reynolds number in the

internal carotid artery (Re=200). The change in the 
diameter of typical cerebral arteries during one 

pulsation is small and its effect on WSS is not very 
significant. Moreover, we solve steady flow in this 
study, so we neglected the wall deformation due to 

pulsation. Boundary conditions were a parabolic
velocity profile at the inlet, zero pressure at the outlet, 
and the no-slip condition on the wall. Blood flow 

calculation was accomplished through an in-house 
three-dimensional flow solver based on MAC 
algorithm. The total number of grid points was 52,065 

(Fig.5). The accuracy of our numerical code was
checked by three-dimensional circular tube flow
simulation. And the grid convergence was confirmed 
by comparing with 103,329 and 205,857 grid points.

Fig.5 Computational Grid for Blood Flow

(3) Modeling of Arterial Wall and Its Growth 
The arterial wall was discretized by triangle elements. 

The computational grid generated on the arterial wall is 
shown in Fig.5, where 16384 triangle elements (8256 
nodal points) were generated. The spring network 
model" was used to mechanically model the arterial 
wall. In this model, mechanical behavior of the arterial 
wall was expressed with two types of spring, 
stretch/compression and bending, as shown in Fig.6. 
The stretch/compression spring, which corresponded to 
a side of a triangle element, expressed the resistance to 
stretch/compression of the membrane. The other spring 
expressed the bending resistance of the membrane. 
Thus, the effect of wall thickness is approximated by 
this spring. The reason why we used such a simple 
discretization method is that the accuracy of the wall 
deformation is strongly limited by the growth model, 
which will be explained later by Eq.(4). We think, 
therefore, the spring model is good enough to discuss 
aneurysm growth as a first step. 

The arterial wall expansion in the hypothesis may be 
expressed by nature length elongation of a 
stretch/compression spring. In this study, we 
formulated the degree of the elongation as follows.
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(4)

where l0i and li are the nature length of the 

stretch/compression spring element i before and after 

biological reactions, respectively. ƒÑi is WSS due to 

blood flow on the element i and ƒÑth is threshold for 

WSS. a is a parameter for the degree of the biological 

reactions. This equation is applied only to the

stretch/compression element on which ƒÑi> ƒÑth. We 

employ such a simple linear equation. Since the detail 

of the relation is still unclear, it is worthwhile starting 

from a simple model as a first step.

Fig. 6 Mechanical Modeling of Arterial Wall

(4) Wall Deformation Simulation 
To solve the deformation of arterial wall due to the 

change in nature length of springs, we perform the 
following process; (a) initially change natural length of 
springs without any deformation, i.e. in the same 
geometry with Fig.4, (b) calculate forces acting on 
each node, (c) move each node during small time step, 

(d) continue (b) and (c) until convergence criteria is 
satisfied. 

The nature length elongation of a stretch/compression 
spring without any deformation results in out of 
balance between the blood pressure force and the 
internal force of the wall. It is needed to calculate these 
forces, to simulate the formation of a new equilibrium 
shape of the artery. We assumed the uniform 
transmural blood pressure difference of 100 mmHg. 
The blood pressure force acting on a triangle element 
was divided equally among three nodes of the element 
and we express the pressure force acting on node j as 
FP,j. In this study, spring forces were calculated on 

the basis of the principle of virtual work10). We 
considered two types of arterial elastic energy, 
stretch/compression and bending, and then the spring 
force acting on node j was expressed as follows.

(5)

where Es and Eb are the stretch/compression elastic 

energy and the bending elastic energy stored in the 
arterial wall, respectively. rj is the position vector of 

node j. In this study, the calculation of the right-hand 
side of Eq.(5) was accomplished numerically. 

 The stretch/compression elastic energy Es was 
expressed as

(6)

where D was characteristic length, which is equal to 
the diameter in fig. 1, i is a stretch/compression spring 
element number, and N is the total number of the 

elements. ks,i is stretch/compression spring constant, 
Li is the present length of the element, and li is the 
nature length given by Eq.(6). 

In this study, we defined the bending elastic energy 
Eb as

(7)

where kb i is bending spring constant of element i, 

and ƒÆi , which is shown in Fig.6, is the bending angle 

between two neighboring triangle elements. In this 

equation, we have used tangent function to avoid the 

folding of the triangle elements10).

The resultant nodal movement is governed by a set of 

motion equations for each node,

(8)

where K is virtual drag coefficient to control velocity 
of nodes. The new equilibrium shape of the artery can 
be obtained by solving the steady solution to Eq.(8), 
since the steady solution satisfies the equilibrium 
condition;

(9)

(5) Estimation of Spring Constants 

We estimated the bending spring constant so that the 

bending elastic energy given by Eq.(7) was consistent 

with that given by the shell theory. It was assumed that 

the arterial wall was an incompressible isotropic elastic 

media with Young's modulus of 2 MPa, Poisson ration 

of 0.5, and wall thickness of 0.2 mm. As a result, the 

bending spring constant was estimated at kb,i=1.0•~10-5

N/m. 

One way to estimate the stretch/compression spring 

constant was to calculate the variation in the arterial 

diameter when the artery was loaded with transmural 

pressure, and to compare that with experimental results. 

We adjusted the stretch/compression spring constant by 

trial-and-error method so that the arterial diameter
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variation calculated in the transmural pressure range 

80-120 mmHg was approximately consistent with the 

experimental result for human internal carotid artery, 

i.e. stiffness parameter of 11.1511). In this calculation, 

we used the diameter of 3 mm, which was equal to that 

in Fig.4, and the bending spring constant kb,i=1.0•~10-5 

N•Em as described above. Eventually, the 

stretch/compression constant was estimated at ks,j=1.0 
N/m. 

When the nature length of a stretch spring becomes 

n times longer than the initial geometry, the stretch 

spring constant is reduced to in order to generate 

equivalent spring forces per strain of the spring, i.e. 

•¢Li/Li, between before and after the growth.

Fig. 7 dimension-free WSS distribution.

Fig. 8 Result of growth simulation.

All basic equations were non-dimensionalized by the 

characteristic length D, the averaged velocity uave, at 

the inlet boundary, the blood density p, and the blood 

viscosity ƒÊ.

3.2 Results and Discussion 

Firstly, we performed the calculation of the 

steady state blood flow of Re=200 for a U-shaped 

artery with torsion of 15•‹. Figure 7 shows the

distribution of WSS due to blood flow. WSS value was 

relatively high on the curve and especially high WSS 

region concentrated on one side of the artery due to the 

torsion. 

Next, we applied the present model to the WSS 

distribution. The threshold value was set to 0.12, which 

was equivalent to 90% of WSS maximum value. Figure 

8 shows the result of the growth simulation of a 

cerebral aneurysm in the case of a=60. Note that the 

coupling of WSS and shape change was one-way. The 

resultant shape was consistent with former clinical 

observations, which indicates the validity of the present 

model. 

We have proposed a simulation model for cerebral 

aneurysm growth considering the biological reaction 

and applied the model to a U-shaped artery with torsion. 

The resultant shape has been consistent with former 

clinical observations. It is concluded that it is necessary 

to consider the biological reaction to understand 

cerebral aneurysm growth and the present model is a 

powerful tool for understanding the phenomena. 

4. Malaria-infected Red Blood Cell Mechanics 

using a Particle Method 

Malaria is one of the most severe infectious diseases 

all over the world. It causes death of many people in 

the developing countries of the tropical area. Malaria 

arises from transmission of plasmodium into blood by 

Anopheles mosquito. The plasmodium invades red 

blood cells (RBC). When maturation of the parasite 

within a RBC, the infected red blood cells (IRBCs) 

become spherocytic, lose their deformability and 

develop cytoadherence and rosetting properties. These 

changes of RBC properties are thought to cause 

microvascular obstruction, resulting in severe 

symptoms. 

In vitro studies have been performed to investigate 

mechanical properties of IRBC. The deformability of 

IRBC was evaluated using optical tweezers12). The 

stiffness of the IRBC was found to increase as the 

disease progressed. Shelby et al.13) observed the 

rheological behavior of single IRBC through 

micrometer-scale channels that mimicked the 

capillaries in human body. IRBC at late-stage caused 

blockages in narrow channels. Cooke et al.14) identified 

some ligand-receptor pairs for the cytoadherent

property of IRBC. They also reported that most 

receptor interactions do not show stable binding under 

flow condition. The IRBCs roll on intercellular

adhesion molecule 1, vascular cell adhesion molecule 1
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and P-selectin and rolling IRBCs are arrested at the site 

of CD36. These studies imply that the complex cell-

cell interactions of IRBCs with RBCs and endothelial 

cells result in the microvascular occlusion. Although 

experimental techniques have been advanced recently, 

it is still difficult to observe three-dimensional 

interactions in microvessels. Numerical modeling can 

be the means of solving this problem. In this paper, we 

propose a numerical model of the interaction between 
RBCs, IRBCs, and endothelial cells in flowing blood. 

To our knowledge, this is the first application of 

numerical modeling to Malaria-infected blood flow. 

The proposed model would contribute on the further 

understandings of pathophysiology of malaria. 

4.1 Method 
Tsubota et al.15) developed a numerical method for 

modeling RBC behavior in flowing plasma. We extend 
this method to describe blood flow with IRBCs. In this 

model, the components of the blood are represented by 

particles as shown in Fig.9. We assume the blood to be 
incompressible Newtonian fluid. The motion of each 

particle is governed by the following continuity 
equation and Navier-Stokes equation:

(10)

(11)

where the notation t refers to the time, u the velocity 
vector, p the density, p the pressure, v the dynamic 
viscosity, and f the external force. The external force 
term is used for expressing elastic force of the 
membrane of RBCs and adhesive force of IRBCs. Eqs 
(1) and (2) are solved by using Moving Particle Semi-
implicit (MPS) method16,17). 

The membrane of RBCs is expressed by spring 
networks as shown in Fig.10. A membrane particle is 
connected to neighboring membrane particles with 
stretch/compression springs. A trio of the particles 
forms a triangle element. As shown in Fig.10, the 
element el is connected to the element e2 with a 
bending spring. The deformability of RBC can be
adjusted by changing the constants of these stretch and 
bending springs k, and kb.

•œ Plasma 

•œVessel wall 

•œMembrane of infected RBC 

•œCytoplasma of infected RBC 

•œPlasmodium parasite 

•œMembrane of normal RBC 

•œCytoplasma of normal RBC

Fig. 9 Particle Model of the Malaria-Infected Blood

Fig. 10 Spring Model of RBC Membrane

The characteristics of IRBCs are different from those 
of healthy RBCs. As the plasmodium parasite inside 
the RBC develops, the shape of the IRBC becomes
spherical rather than biconcave. Since the size of the 
parasite increase, the rigid body of the parasite affects 
the deformability of the IRBC. In our model, a parasite 
inside IRBC is expressed by cluster of some particles, 
which behaves as a rigid object. The developed parasite 
distorts cytoskeleton and membrane. The membrane of 
the IRBC becomes stiffer in comparison with healthy 
RBCs. These changes in the deformability are 
expressed using large value of the constants of
stretch/compression and bending springs. We 
determined these constants from the comparison 
between numerical and experimental results of tensile 
test as shown in the next section. 

The adhesive property of IRBC is also modeled by 
springs. A connection between two particles represents 
a cluster of many ligand-receptor bindings. If the 
distance between a particle of IRBC membrane and a 

particle of endothelial cells or a particle of neighboring 
RBC membrane is less than a certain value dad, the two 

particles are connected by a stretch/compression spring. 
Figure 11 shows the schematic of the adhesive springs. 
The spring force between particles i and j is described 
as

(12)

where rij=rj-ri is the distance of two particles, r0 

is reference distance, k is spring constant. Note that 
once an IRBC membrane particle is connected to a 

particle of a healthy RBC membrane, the IRBC 
membrane particle does not connect to the other

particle, even if the other particle approaches the IRBC 
membrane particle within dad. Maturation of parasites 

develops knobs on the surface of the membrane of 
IRBC that mediate cell-cell interaction. That means the 
increase of the adhesive force. The increase of the 
adhesive force based on the development of knobs is 
modeled by increasing the spring constant. In this 

paper, the spring constant was determined from the 
experimental results18).
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Fig. 11 Adhesion Model by Stretch/Compression 

Spring

4.2 Results and Discussion 
We apply the proposed model to flow in the two-

dimensional parallel plates with the distance 12 u m. 
The plasmodium in the IRBC is neglected because the 
distance is larger than the size of the IRBC. First, we 
carry out a tensile test to determine the spring constants 
of membrane. In this test, a RBC and an IRBC is
stretched diametrically at force of 151 [pN]. The 
numerical results are compared with the experimental 
results in12). Since the spring constants ks = 3.0 X 10-8 

[N • m] and kb = 5.0 X 10-10 [N • m] provide the 
similar shape of the IRBC at schizont stage observed in 
the experiment, these values are used as the constants 
for schizont stage. Figure 12 (a) and (b) shows the 
steady states in this test for the healthy RBC and the 
IRBC at schizont stage, respectively. The constants for 
the other stages are also determined using the same 
procedure.

(a) (b) 
Fig. 12 Tensile Test 

(a) healthy RBC :(b) IRBC at shizont stage

We examine the interaction of a single IRBC with 
many healthy RBCs. The given boundary conditions 
are the constant velocity u = 4.0 [mm/s] at the inlet, the 
constant zero pressure at the outlet, and the no-slip 
condition at the wall surface. The IRBC is assumed to 
be at the late-trophozoite stage, where the adhesive 
coefficient ic = 1.3 X 10 [N/m]. Figure 13 shows the 
snapshots of the numerical results, where the blue 

particles are adhesive to the other particles. The IRBC 
moves downstream interacting with endothelial cells 
and some healthy RBCs. Since the velocity of the 
IRBC is lower than the other RBCs, a following 
healthy RBC catches the IRBC. This bonding between 
the two cells is not so strong that the RBC keeps

attachment to the IRBC in short time and eventually 
detaches from the IRBC. 

Figure 14 presents comparison of pressure loss 

between the flows of plasma, healthy RBCs, a single 
IRBC and a single IRBC with healthy RBCs. 
Interestingly, the flow of a single IRBC on the vessel 

wall causes high pressure loss even without the other 

RBCs. The result explains that the adhesive interaction 
between IRBCs and vessel wall plays one of the critical 
roles on microvascular blockage. The pressure loss of a 

single IRBC with healthy RBCs flow varies in time 
because of the complex interaction with the healthy 

RBCs.

(a)

(b)

(c)

(d)
Fig.13 Snapshots of the interactions between the 

IRBC, healthy RBCs and endothelial cells; 

(a)t=4[ms]:(b)t=8[ms]:(c)t=12[ms]:(d)t=16
[ms]

Fig.14 Pressure loss at various conditions
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We have developed a numerical model of the blood 

flow with Malaria-infected RBCs. The interactions 

between the IRBCs, healthy RBCs, and endothelial cells 

in flowing blood are expressed by the particle and 

spring model. In the future study, we improve the 

proposed model through a variety of comparative

studies with the experiments. We hope our model will 

contribute to the further understandings of pathology of 

Malaria.

5. Primary Thrombus Formation 

It has been pointed out that some mechanical factors 

play important roles in a series of physiological or 

biochemical processes during the thrombus formation. 

Recently, many studies including the authors' work 

qualitatively demonstrated how the thrombus is 

regulated under the influences of the blood flow and 

the intercellular molecular bridge using computational 

fluid dynamics techniques19-22). They verified the 

importance of the balance of them in the process of the 

thrombus formation. However, few studies have taken 

into account the existence of the other cell constituents 

than the platelet such as red blood cell (RBC).

In the present study, we investigate the influence of 

the RBCs on the primary thrombus formation under the 

blood flow using a computational method based on 

Stokesian dynamics method. We employ Sokesian 

dynamics method based on the approximation of the 

additivity of the velocities23). The Voigt model is 

assembled into the method to simulate the binding 

force due to the intercellular molecular bridge. A 

monolayer model in which large sized spheres (RBCs) 

circulate above the layer with small sized spheres 

(platelets) under a Couette flow is analyzed. The result 

is compared with the case in which the existence of the 

RBCs is not considered. 

5.1 Methods 

(1) Stokesian dynamics method 

Our framework follows Stokesian dynamics method

which has been developed based on the approximation 

of the additivity of velocities and applied for

ferromagnetic colloidal dispersions by Satoh et al.23). 

However, in this study, the binding force mediated by 

the plasma proteins and the contact force due to direct 

collision between the platelets or RBCs were 

introduced instead of the magnetic force. The binding 

force was modeled using the Voigt model as described 

in the following section. 

We assumed the plasma as incompressible 

Newtonian fluid, and that the flow field around the cell 

constituents is governed by the Stokes equation

(dimensional form):•¤p =ƒÅ•¤2u , and the equation of 

continuity:•¤•Eu=0, where p is the pressure, ƒÅ is 

the viscosity, and u is the velocity vector. 

Both the platelet and the RBC were idealized as

solid sphere particles. Neglecting Brownian motion, 

the difference in the density between the cell 

constituents and the plasma, and the rotational motion

of particles, Stokesian dynamics based on the additivity 
of velocities due to the force exerted on the particle 

yields the particle velocity of:

(13)

where U(ra) is the velocity of background flow filed at 

the position of particle a , Fi(i=a,ƒÀ) are the forces 

acting on the particle i, E is the rate-of-strain tensor, 

aij, a'ij , and gi are the mobility tensors, and N 

indicates the number of the particles in the system23). 

The mobility tensors can be found in a standard

textbook, such as Kim and Karrila24). 

(2) Modeling the binding force due to vWF and Fbg 

We assumed that the binding force, Fi, results 

exclusively from two plasma proteins: von Willebrand 

factor (vWF) and fibrinogen (Fbg), which are known to 

be main participants in the platelet adhesion and 

aggregation. Those proteins have been known to have

highly distinct properties as follows25): (1) Fbg can 

preferentially bind with GP IIb/IIIa, and the binding is 

irreversible and efficient with at relatively low wall 

shear rate (50-500s-1); (2) In contrast, vWF can bind 

exclusively with GP Iba and slightly with GP IIb/IIIa, 

and the GP Iba-dependent binding is reversible or

transient and more efficient at relatively high wall 

shear rate rather than at low rate. In order to express 

such a distinction in the property between Fbg and 

vWF, we introduced the Voigt model with different 

character for each protein (Fig. 15 (a), and (b)). Their 

preferential combination with GP Iba or GP IIb/IIIa 

was modeled by setting receptors on each platelet (Fig. 

15(c)).

(a)(b)(c)
Fig.15 Voigt models for vWF (a) and Fbg (b), and the

receptor models on the platelet (c).

The binding force between two particles i and j

with the radius a was considered when the two 

particles once come close to each other within a

specific distance, L0= 0.5[ƒÊm], i.e. satisfy |s|•…L0,

where s indicates separation vector expressed as

(14)
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The Fbg-GP Ilb/IIIa association was assumed to be 

valid when the difference in velocity between two 

particles is less than a specific value Uact=5.5•~10-2

[m/s]:|vj-vi|•…Uact, reproducing the efficiency of Fbg-

GP IIb/IIIa association at low shear rate. The vWF-GP 

Iba association was assumed to persist only during a 

specific time Tact=0.5[s], reproducing the reversibility 

of vWF-GP Ibaassociation, Moreover, we assumed 

that GP IIb/IIIa receptor is activated by vWF-GP 

Iba, association, and that the associations are broken up 

when the distance between the two particles exceeds 

1.05L0. With the above qualifications, the force was 

expressed as

(15)

where K(b) and ƒÅ(b) are the spring elastic modulus and 

the dumper viscous coefficient, respectively, and At is 

a time interval. Note that the parenthetic superscript 

(p) is replaced with (vWF) or (Fbg). Eventually, the 

binding force acting on a particle i is expressed as

(16)

We set K(vWF)=6.0×102[MPa],η(vWF)=3.25×10-2

[Pa・s],K(Fbg)=12×103[MPa],η(Fbg)=4.59×10-6[Pa・s],

and△t=1.0×10-9[s].

(3) Conditions for the simulation 

A Couette flow was assumed for the background, 

and a monolayer model was considered. The luminal 

surface was constructed by lining particles with 2 [mm] 

in diameter. RBC particles with 10 [mm] in diameter 

were inserted between 30•}3 [mm] in height from the 

luminal surface. Platelet particles, which had random 

size within 2-4 [mm] in radius, were randomly inserted 

between the luminal surface and the layer of RBCs. A 

portion of luminal surface was forced to possess ability 

to bind with platelets via vWF based on the above 

qualifications to mimic the injured surface. 

5.2 Results and Discussion 

Figures 16 shows some snap shots taken from the

results in the case where the existence of RBCs were 

considered. The aggregate formed onto the injured site 

gradually grow. However, once the height of the

aggregate reaches to the level of circulating RBCs, the 

aggregate is pushed down due to the RBCs. 

Comparing the results under the existence of RBCs 

(Fig.16) and the absence of them (results not shown) 

showed that the thrombus covered up the injured site 

faster in the former case. This suggested that the RBCs 

may play a role in efficient thrombus formation. 

We proposed a numerical method for simulating the 

process of the primary thrombus formation under the 

blood flow, the intercellular molecular bridges, and the

existence of the RBCs. The effect of the RBCs on the 

process of the primary thrombus formation was 
investigated in this study. The results show that the 

RBCs may play a role in efficient thrombus formation.

Fig.16 Simulated thrombus formation under the 
existence of RBCs at t=2.0 [s] (upper), t=6.0[s] 

(middle), and t=10.0 [s] (lower).

6. Conclusions 

In this paper, we have reviewed our recent studies on 
computational mechanics for arterial diseases. In 
considering clinical applications, however, we needs to 
consider biological complexities in the analysis of 
blood flow, especially with respect to disease processes. 
A disease is not just a failure of machine. It is an 
outcome of complex interactions among multi-layered 
systems and subsystems. They mutually interact across 
the layers in a strongly non-linear and multi-variable 
manner. It is also nothworthy that a living system, 
either as a whole or as a subsystem, such as the 
cardiovascular system, is always under the integrated 
nervous and humoral control of the whole body, i.e., in
homeostasis. Multiple feedback mechanisms with 
mutual interactions between systems, organs, and even 
tissues provide integrated control of the entire body. 
These control mechanisms have different spatial
coverages, from the micro- to macroscale, and different 
time constants, from nanoseconds to decades. Though 
it has not been fully acknowledged, much longer time 
scale phenomena such as evolution and differentiation 
of living system must also be paid full attention if we 
are to understand the living system per se. In the future 
analysis, therefore, these biological phenomena need to 
be included in discussing physiological as well as 
pathological, i.e. disease processes. We expect this to 
be accomplished in the future by integrating new 
understandings of macroscale and microscale 
hemodynamics, if we continue to be together with 
advances of related sciences and technologies.
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