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This paper deals with the lateral intrusion process of water into porous media consisting of large grain size, which seems to
simulate the storm water storage into pervious road sub-base from a side drainage channel, under constant water level and
constant inflow discharge conditions. The common fundamental equations for solid-liquid multiphase flows with the inertia
term are used as the basic model. The fundamental characteristics of lateral intrusion process are firstly investigated theoretically
using the depth averaged equations with the inertia term and the viscous or turbulent drag force terms in the momentum
equation. It is pointed out that there are distinct two power law regions with respect to time in the unsteady intrusion processes.

The theoretical results are verified by carrying out the vertical 2-D numerical simulation and simple hydraulic experiment.
Keywords:  porous media, non-Darcy flow, similarity solution, pervious pavement, numerical simulation

1. Introduction

The flow of an incompressible fluid through a porous medium is
a physical phenomenon of great importance in many practical
situations. An important branch of porous media research involves
the modeling of flow within the soil. The viscous, laminar
incompressible flow with small porosity is represented by Darcy
equation”?. The Darcy law assumes that the inertia force in the
momentum equation is negligible compared with the other drag
force and pressure terms.

In this paper, we deal with the lateral intrusion process into
porous media consisting of large grain size, which seems to
simulate the storm water storage into pervious road sub base from a
side drainage channel, under constant water level and constant
inflow discharge conditions. The common fundamental equations
for solid-liquid multiphase flows with the inertia force term, which
is neglected to simulate normal underground flows, are used as the
basic model of this study because the pervious road sub-base
material consists of large grain size material.

The fundamental characteristics of lateral infrusion process are
firstly investigated theoretically using the depth averaged equations
with the inertia term and the viscous or turbulent drag force terms
in the momentum equation. Assuming the self-similarity
distributions of depth and velocity, we derived the similarity

respect to in the intrusion processes.

The theoretical results derived in this study are verified by
carrying out the numerical simulations and hydraulic experiments.
The vertical 2-D numerical simulation is done applying the finite
volume method with volume of fluid (VOF) technique. It is pointed
out that the power law of propagation of front position, the
distribution of depth, etc. can be reproduced in the results of
simulations and hydraulic experiments.

JSCE

2. Flow domain and boundary conditions of intrusion process

Two types of flow domains are considered for the study of
intrusion dynamics of fluid into the porous media. Thus the flow
fields are named as Case A for the domain subjected to constant
upstream water level boundary and Case B for constant upstream
discharge boundary condition. Fig. 1 and Fig. 2 show the schematic

diagrams for two cases, respectively.

solutions of intrusion process with the propagation of front position

and the depth distribution under two boundary conditions. It is
pointed out that there are distinct two power law regions with
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Fig. 1 Schematic diagram showing flow domain subJected to

constant upstream water level boundary (Case A)
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The speed of front propagation, the average velocity and the
depth of free surface flow in the porous media have been studied
and analyzed with the derivation of similarity solutions for each of
the cases.
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Fig.2 Schematic diagram showing flow domain sub_lected to
constant upstream inflow boundary (Case B)

3. Outline of the experimental setup

An experiment has been carried out for the evaluation of the
proposed model. A transparent flume of 100mm width and
100mm height and length 750mm has been used. In the
experiment 1mm glass beads were used as porous media and a
constant water level of 85 mm was maintained at the left boundary
as stated for Case A (Fig. 3 and Fig. 4). The experiment was
carried out for the horizontal flume. The velocity and depth of flow
with free surface have been taken using digital movie camera
placed near the side of the flume. The position of front and depth of
flow for different time is tracked by the image interpretation with
the help of graduations made on the flume itself. The time
dependence and the flow profile of the intrusion behaviour
observed during the experiment were compared with the
analytical solution and numerical simulation as well. The
experimental conditions are given in the Table 1.

Table 1. Experimental Conditions

Parameters Unit Values
Water temperature °C 14
Bed Slope - 0
Size of glass bead (dia) : mm 1
Permeability (K) m's 001
Concentration of solid particles (C) % 40
Flume dimensions (L, B, H )* cm | 75,10,10
Constant water level at u/s boundary, 4, | mm 85

* L: Length, B: Width and H: Height.

The experiment was carried out up to steady state. The
permeability was also calculated using the hydraulic gradient when
the system attained steady state. The measured steady state
discharge and the flow depths have been used for the calculation of
the value of permeability of the media.

Fig.3 Flow profile during the experiment (at time 5 sec)

Fig.4 Flow profile during the experiment (at time 10 sec)
4. Theoretical considerations

The continuity and momentum equations for solid-liquid
multiphase flow given in the section 5 are considered as the basic
equations. In order to investigate fundamental characteristics of
intrusion process, the simplified depth averaged equations with the
inertia term are used integrating the basic equations from the bottom
to the surface under the assumption of hydrostatic pressure
distribution. The analytical similarity solutions are derived for
different possible flow regions in this section.
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Fig.5 Definition of similarity distribution of flow depth

The approximate solutions of depth and velocity distributions are
derived based on the similarity of depth averaged flow to clarify the
fundamental characteristics of lateral intrusion of water under two
boundary conditions. The method based on similarity was applied to
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the dam break flow of viscous fluid where temporal and spatial
distribution of depth, velocity and front position were derived
analytically balancing the pressure gradient and viscous terms™?,
The method assumes the similarity of the distribution using
characteristics depth and length as shown in Fig. 5. In this paper we
derive the similarity solutions of two regions using the similar
method where Inertia-Pressure terms and Pressure-Drag terms are
balanced under two different boundary conditions.

4.1 Basic equations
The basic equations for continuity and momentum for one

dimensional depth averaged flow with the inertia term and the drag
resistance term can be written as:

o{(1-C)h} Lola-omu}
ot o

)

sfa-cmu} ofa-Cmu?)
ot * Ox

—-(-C)gh e
ox

+_a_{(1_c)7ﬁh}_’ﬂ_&h Q)
ox p p P

where ¢ is time, x is spatial coordinate, / is the flow depth, U is the
depth averaged velocity, =, is the free surface elevation, 1, is the
viscous stress, 7 is the bottom shear stress and p is the density of
water. For the analytical study, the volumetric concentration of
solid particles C is taken constant. The last term with R, of equation
(2) represents the Darcy’s resistance term. Hence for the
conventional flow in porous media if we neglect the shear stress
and inertia terms, as is valid for Darcy’s theory, in equation (2), we
get the expression of the Darcy’s Law in which the term R, is
defined as

R -0y ©
K

where X is permeability of the porous medium. The resistance law

of turbulent flow is also considered later. Taking (1-C) and X to be

constant and neglecting the shear stress terms in equations (1) and

(2) we get the following set of continuity and momentum equation

for the analytical study subjected to various boundary conditions.

oh 0hU _ @
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where Cy isdefinedas C =%Q.

Two types of boundary conditions subjected to the flow domain
are Pressure boundary (Case A) and Discharge boundary (Case B)

which will be discussed in the subsequent sections.
4.2 Solutions for similarity of distribution

The analytical solutions based on similarity of distributions have
been derived for both the cases stated earlier. The definition of the
similarity distributions of the depth and velocity are firstly defined
using characteristic depth, length and velocity.

(1) Constant water level condition (Case A)

For the solution using similarity distribution, let us define flow

depth and velocity as:
x
=U,G [;(—5) 6)

i)

where A, is constant water level at the upstream end of flow domain,
U the velocity at upstream end and x/A#) = £. The functions ¥ and
G are the distribution functions for depth and velocity. Then from
equations (4) and (5) we get

dF a’l dr dG

—f—— +UyF—=0
¢ dE i @ Uy ARG @)
2
GdU U, fdel U, Gd_G
dt dédt 1  d& ®
h" ar =-CU,G
l df
Introducing the characteristic time, length and velocity as
1
2 1
To{%) , Ly=hy and ¥y =(gh)2 ©

It will be shown that the power laws with respect to time given by
equation (10) are valid for the dominance of the combination of two
terms of Inertia-Pressure and Pressure-Drag regions.

Up=ao(t)", y=plLo(t)’

I=yLy(r) (10)

where @, fand y are constants and / is the non dimensional
time defined as ¢’ = #/7;. Using equations (9) and (10) equations (7)
and (8) reduce to (11) and (12) as below,
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Due to the constant water level boundary condition hy is constant
ie.

b=0 (13)
From equation (11) we can write
c—a=1 (14

For the determination of the values of power coefficients @, b and ¢
each combination of equation (12) such as Inertia-Pressure terms
and Pressure-Drag terms are taken and solved for the coefficients.
The results are given below.

(i) Inertia-Pressure region:
a=0, b=0 and c=1 (15)
(ii) Pressure-Drag region:
a=—l, b=0 and c=—1- (16)
2 2
(iii) Inertia-Drag region:

No solution is obtained for this region.

The similarity solution for the derived powers has been sought
for different regions as depicted by the transformed continuity and
momentum equations for the above two possible regions as given
below.

(i) Inertia-Pressure region
The sets of equations for this region will then be given by

+aly——=0 17)

VogdG aVO . ,b’dF
¢ vy Ly dcf ydcf

Also the velocity of front Uy can be written as

oL =0 (18)

Uatx=1If) ie. Up = —=yLyct“ ' —=22 19
x=Kp) F Z yLgct T T 19

Uatx = 0is given by Up=c ¥, Assuming G and F as the
function of & as below,

G =1-A¢, A=const.

F=1¢
Using the values of G and F in equations (17) and (18) and after
some simplification we get,

aVy=Alghy, Blo=ly and yLy=2Tp\[ghy  (20)

The front position /(¢) and the velocity of front U is derived as
t c
= 7%(;} =2,(gh) ¢ @y
0

c-1
U ——=}’Loc(—J —=2ghy @)

The flow depth and velocity is then derived as

X x 1
h= et (l(t)) h"(l_ﬁ)_h"[l_z ghﬁ} ®

X d :
U=U,G [I—(BJ =(zh )(1 + EJ (24?

(ii) Pressure-Drag region

The governing equations for this region can be written as

Ly dF | oy AGE

2T, d& dcf @)
g g% =-C.aV,G (26)
Thus equations (25) and (26) yield
i Y. on o
o)

Now the front position /(7) and front velocity Uf is derived as

i
l=igﬁ2t% and Uy _a i”&z" (28)
C, da \C

X
Similarly the flow depth and velocities can be written as

gh 1
"= h‘)[l_l(—J 2[@“ l(rJ’z ®

(2) Constant discharge condition (Case B)

For the solution using similarity law, the flow depth and velocity

have been defined as
X
=U.G| — 30
0 [l(t)] (30)

et [l()j

where 4, and U, are the inflow depth and velocity respectively and
the constant discharge condition is given by the relation 4Us=qo
(constant). Using these relations, equations (4) and (5) are reduced to
equations (31) and (32) as

Dy kg dFd  LodE L 1odG o
di . 1°dgd °1 dE 1 as

2
AUy Uy dGdl \Ug 5dG  h dF
dt I °dédr 1 dE C 1 déE (32)
=-CU,G
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Introducing the characteristic time 75, length Loand velocity V5 as

1 1
3 2.\3 1
(i) 8] et o

And defining Uy, h, and / as

. a b ¢
U, =aV0(TL0J , by :ﬂLo(TLOJ andl:}’Lo[TL] €

where o, B and y are constants, we will derive a power relation as
given in the subsequent section. Now substituting equation (34) in
(7) and (8), following two equations are derived,

proprip_ pro gl | o g dGF_ o 55
T, T ac yL, d¢
a2 Vo /a—lG a2 Vo t:a—l:_‘ﬁ
Iy Ty d¢
, inertia(unsteady) (36)
+a_ VO rZa gL aG /B Ly rb—c d_F — —CxO.'VOl’aG
L az" 7% a Taw
inertia(convection) pressure
The constant discharge condition is given by
Vo Ly(f)"* = gy(=const.) (37
This condition gives
a+b=0 €
The transformed continuity equation (35) gives
b+c=1 (9

For the determination of the values of power coefficients a, b and ¢
each combination of equation (36) is taken and solved for the
coefficients. The results are shown below.

(i) Inertia-Pressure region:
a=0, b=0 and c=1 (40)
(ii) Pressure-Drag region:
a=—l, bzl and c=z 41)
3 3 3
(iiii) Inertia-Drag region:

No solution is obtained for this region.

The values of the power coefficients as derived analytically and as
obtained numerically
Inertia-Pressure region and Pressure-Drag region. The similarity
solution for the derived powers has been sought for different
regions as depicted by the transformed continuity and momentum
equation as given below.

clearly shows the two regions:

(i) Inertia-Pressure region

For this region the sets of equations (35) and (36) reduce to equations
(42)and (43) as

aF 4 dGF _

gL 42
ﬂToédf Ly d¢ )
To aé y Ly, dé y ¢~

Using the same formulation applied to the constant water level case,
the similarity solutions of the flow depth and velocity are given by

1
X i) __x
"=l (l(r)) (g] (1 l(t)] “

1
U=U,G (l()) (890)3( l(t)J 45)

where U, by and X(7) are defined as follows.
1 23 1
Up=(g90)*, b= [%"J and I(f)=2(gqe)’t  (46)

(iiii) Pressure-Drag region

For this region the sets of equations (35) and (36) reduces to (47) and
(48) as:

,BLOIF_,BLO 2§£+ g, dGF _

T, 3 I, 3°d§ yL, d¢ @7
£ dF:—C aV,G (48)
y Sz

Using the same formulations defined earlier the solution for flow
depth and velocity for Pressure-Drag (PD) region is given as follows,

1
_ 2g4°C, _x '
=hF [m)] { P )'[1 l(t)) *)

1

- 1
_ X 1 [ 98 )3 1 x ) -3
U—UOG(l(t)]_(2CxJ (1+3l(t)]t 3 (50)

where U, A, and / are derived as:

—_

1
—~ 1 2 !
3 L 31
Uy = Q8 I° 3 B = 2qy°C, £3 and
2C,

3 2
1=2 q08 PE (51
2C,
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4.3 Solutions for similarity of distribution for turbulent flow

Theoretical derivation for the turbulent flow in porous media
composed of large grains is made here. The momentum sink term
contributing to the pressure gradient due to porous media is
assumed to be proportional to the fluid velocity squared. Hence the
resistance term can be written as

K (52)
Yol .

The governing equations for this case can be written as

oh  OhU
—+ =0
o ox

(53)

%+U%+ g%= ~CrU? (54)
where Cris the coefficient used for the resistance law of turbulent
flow. In this study, we did not consider the effect of Reynold’s
number on Cr so that the coefficient C; is assumed to be
dependent only on the porous media characteristics. The right
hand side term of equation (54) is important where Darcy
law is not applicable due to high flow velocities”. The
similar analysis has also been made for turbulent flows in the
porous media having large permeability. The theoretical resuits
obtained for different boundary conditions of flow are given below.

(1) Constant water level condition

The powers a, b and ¢ are the temporal powers of the velocity,
depth of flow at the origin and front position respectively as defined
in the preceding section for Case A. The values were derived in the
same way as it was done in section 4.2 and are presented below

(i) Inertia-Pressure region:
a=0, =0 and c=1 . (55)
(ii) Pressure-Drag region:
a=—é b=0 and c=-§— (56)
(2) Constant discharge condition

The powers a, b and ¢ are the temporal powers of the velocity,
depth of flow at the origin and front position respectively as defined
in the previous section for Case B. The values are derived here in
the same way as it has been done in preceding section. Only the
results are presented below,

(i) Inertia-Pressure region:

a=0, b=0 and c=1 &Y)]

(i) Pressure-Drag region:
a=—l, b=l and c=i (58)
4 4 4
The theoretical derivation thus shows two possible flow regions:

Inertia-Pressure and Pressure-Drag region.
5. Numerical simulation
5.1 Basic equations

The goveming equations in vertical two-dimension for the flow in
porous and/or free region in the composite form are formulated
below for the incompressible fluid. The equation for the phase
continuity of the fluid is given by

A-C) , A1=Cu_ 1-C)v _

ot Ox oy 0 9

and the momentum equations with the Darcy-term can be written as

ofa-cyy o{a-Cw} a{a-Cow)
ot ax o - (60)
——1-0)2 a"w[az(l“c)" " az(l‘c)“]—%Jr(l—c)gx

P ox ' 3y2
and,
ofa-Cn} , of1-Cpmw} | a{a-cy*}
at o oy 1)

201 _ 201 R
:_(l_c)16p+v Rt ZC)v+6(1 2C)v R oy,
ox oy p ’

M2 —M™M?2
Where, Rx :pé@.](ﬂ.u and Ry = p%_q_)_v .

In above equations # and v are the velocity components of fluid in x
and = directions respectively; p is fluid density andV the kinematic
viscosity. K and C are the hydraulic conductivity and solid phase
concentration of the media so the term (1- C) represents the porosity
of the media. The Darcy’s velocity and the pore space velocity are
related as

U=(1-C)V 62)

where, U is Darcy’s velocity or Darcy’s flux and V is the pore
velocity vector (u,v). The hydraulic conductivity for laminar flow in
porous media can be found by Kozeny-Carman formula in which X
is given by

342
-_fd g (63)
180(1-¢)* v
where £ and d are the porosity and particle diameter respectively.
A number of numerical runs have been made for different values of

hydraulic parameters and the boundary conditions as well which are
listed in Table 2.
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Table 2. List of Numerical Run analytical solution. The results are shown in Table 3.

Numerical Run | Case | Parameters
RUNI1 A | K=0.250mvs, C=0.6, hy =0.050m Table 3. Comparison of Permeabilities
RUN2 A [K=0010m/s, C=0.6, h,=0.085m Methods Permeability  |Remarks
(m’/s)
RUN3 B |K=0.005m/s,C=0.5, U=0.01ns Rozeny-Carmnan formla | 0010 Eauation (©3)
RUN4 B | K=0.010m/s, C=0.6, U~0.05m/s Hydraulic grade line 0.010 From
experiment
Analytical (PD) formula 0.009 tion (28
5.2 Numerical methods ytical (PD) Equation (28)

The equations (59) to (61) are solved by finite volume method in
a staggered computational grid where velocities are defined at the
cell faces and all the scalar variables are defined at the cell centre.
The pressure is iteratively adjusted using Highly Simplified Marker
and Cell (HSMAC) method?. The velocity changes induced by
each pressure change are added to the velocities computed before,
enforcing thereby to satisfy the continuity equation.

The free surface kinematics is traced using VOF technique both
in porous and free flow conditions”. For the porous flow domain
the time evolution of the fraction of fluid finction (1- O)F is
govemed by the following relation

Velacity (m/s)
- 001

G

ATLTIFITIL LI LT ¢

e
g

ST
I e

R

T T T T 1
2.03 0.04 0.05 0.08 007 0.08 0.09 0.10

8(1-C)F ou(l-C)F ov(1-C)F
+ + =

ot ox ay 0 )

0.07

where (1- C)F represents the portion of cell occupied by the fluid o
ie. cell saturation®. The model is applied for the porous media ’
subjected to two different flow boundary conditions as stated in the

previous section. 5
>
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The theoretical results given in the previous sections have been ESSNRNANRRNNRERRNNRNRR
verified using the results of simulations. oo : : e

The sample of velocity profiles obtained for the numerical Fig.6(b)
experiments are shown in Fig. 6. This result of numerical
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) . o ) Fig. 6 Velocity Profiles for Case B (RUN3) for (a) time 5s and (b) time 10s
simulation for Case B shows that there is increase in depth near the

upstream boundary (x = 0) in the Pressure-Drag region as depicted

by the equation (41) with temporal power b = 1/3 for the case B g e ’!:‘ﬂf EEE
considered. _—— 1 | L:\ [N ]
- . . . _ _ | — Simulation (RUN1)
Fig. 7 and Fig, 8 show the position of front verses time for Case F =1 — Analytic Sol (IP)
A and Case B, respectively. These results of the numerical runs ot E=4 — Analytic Sol (D)

presented here clearly show the two regions of Inertia-Pressure and

Position (m)

Pressure-Drag for both cases. The discrepancy in the Fig.7 (Case
A) for Inertia-Pressure region shows that it takes sometime to
realize self-similarity distribution of depth and velocity, but the - g T
temporal power of 1.0 is still valid. The results for case B (Fig. 8) A A RN S
are in close agreement with the analytical solution derived with ) .

similarity assumption. . ;
The value of permeability for the numerical simulation of the N Time (s
experiment has been calculated from the equation (63) and it was Fig.7 Temporal position of front under constant upstream
water level (Case A)

compared with the values obtained from both the experiment and
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Fig 10 Flow Profiles for constant upstream water level for (a) time 5s

and (b) time 10s

Fig9 shows the comparison between the experiment and the
simulation. Since the velocity of front obeys temporal power of 1/2
we can point out the dominance of the Pressure-Drag region for
low permeable media. The flow profiles are reproduced in the
numerical run which is in close agreement with that of the
experiment (Fig. 10). The experimental depths are slightly greater

than that of the analytical and numerically simulated values. The
reason may be due to the continuous rise of capillary fringe which
was also observed in the experiment.

7. Conclusions

In this paper, the lateral intrusion processes of water info porous

media under two boundary conditions are studied using the

non-Darcy equation with the inertia term in the equation of motion.

The results are summarized as follows:

(1) If we assume similarity distributions of depth and velocity and
the dominance of the two terms of inertia-pressure and
pressure-drag, the temporal power solutions for characteristic
depth, length and velocity can be derived for inertia-pressure(IP)
region and pressure-drag(PD) region respectively under two
boundary conditions. The similarity distributions are also derived
analytically.

(2) The vertical 2-D numerical simulations of flows were carried out
using VOF method. The numerical results showed that IP region
appeared first with the temporal power derived theoretically and
PD region followed IP region.

(3) PD region was observed in the hydraulic experiment with glass
beads of diameter lmm. The spatial profile of depth of
simulation is in good agreement with the experiments.

This research will be continued to make clear the region of the
non-dimensional parameter where non-Darcy effect should be taken
into account. The existence of IP region will be verified by the
experiment with large size glass beads.
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