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In this study, the characteristics of inertia and viscous regions of shallow flow are investi-

gated by means of dam break flow with finite volume occurring in a smooth rectangular

channel. Inviscid fluid and viscous fluid, comprising of Newtonian and non-Newtonian are

studied theoretically and similarity solutions describing both inertia and viscous regions

are derived. Theoretical findings are verified with two numerical models: a depth aver-
aged model and a Lagrangian grid-less model (MPS or Moving Particle Semi-Implicit).
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1. Introduction

Dam break flow has been well studied as it is a
paradigm problem in fluid mechanics of non-linear
shallow flow. It is also often used as a means to eval-
uate rheological properties. Hosoda et alV) treated
the slump flow test of fresh concrete as a kind of dam
break flow in his investigation of fresh concrete’s rhe-
ological properties, while Shao & Lo? also used dam
break flow as a means to study Newtonian and non-
Newtonian fluids using numerical models.

Huppert’s® study shows that characteristic regions
exist for the propagation of front wave and the atten-
uation of depth of flow at the origin in dam break flow
of viscous fluid. In this study, the propagation of the
leading front wave and temporal variation of depth of
flow at the origin are used as parameters to describe
the flow characteristic. It is expected that these re-
sults will give us some useful information to evaluate
properties of fluidable materials.

In this paper, an attempt is made to derive simi-
larity solutions for the temporal variation of the front
wave position L and temporal variation of the depth
at the origin h,,. Meanwhile, in the derivation of flow
characteristic in the viscous region, it is assumed that
pressure and viscous terms are of the same order. The
characteristics of viscous region for Newtonian fluid
and non-Newtonian fluids are derived based on the
shear stress and rate of strain relation proposed by
the Power-Law model. The general form of constitu-
tive relation of shear stress and rate of strain proposed

: inertia region, viscous region, inviscid, Newtonian and non-Newtonian

by the Power-Law model is as follows:

where n = 1 for Newtonian fluid, while n < 1 and
n > 1 for non-Newtonian fluid.

2. Inviscid Fluid

The flow from a sudden release of mass of inviscid
fluid in a dam can be adequately described by the
following one-dimensional depth averaged continuity
and momentum equations, as in Eq. (2) and Eq. (3).

Oh  ORV
E_F oz =0 (2)

OV 8BRV? - Bk

—Bt + oz +gh—8_§_0 (3)

where the parameters are described schemetically in
Fig. 1 with h as the depth of flow, V as the flow
velocity in z directionl\v as the kinematic viscosity,
p as the fluid density, 8 as the momentum coefficient
and g as the gravity acceleration.

2.1 Theoretical analysis
(1) Temporal variation of depth of flow at the
origin
The depth of flow A, and velocity V', are assumed to
be expressible as a series of power which is applicable
only in the region close to the wall. By using the
Taylor’s power series expansion, they can be written
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Fig. 1 Dam break flow of finite volume.

as in Eq. (4) and Eq. (5) respectively.

h(t) = hu (t) + ay (£) (hio) +as (t) (%)2
4

+ag (t) (%)3 +aq4(t) (%) +... 4

V() = \/—[bl(t)( >+b2(t)(}f)2

o

+bs (£) (hi)s by (t) (%):} (5) |

where h, = representative flow depth, z = distance
from the origin, a;(t), ax(t), as(t), aa(t), bi(t), ba(t),
ba(t), and bs(t) are time dependent coefficients while
other parameters are defined as in Fig. 1.

By substituting the power series of h and V into the
continuity and momentum equations, we can rewrite
both equations again by order of power as in the fol-
lowing equations, Eq. (6) to Eq. (14).

Continuity Equation:

Oth order dh B b :
N L
(s}
1st order
1d Vgh
}_l__d‘%; i hg 52 [2hmba + 2a1b1] = 0 (7)
0 o
2nd order
1 d v gho
h.2 % hg3 [3hmbs + 3a1by + 3asbi] =0 (8)
o (2]
3rd order
1 d
h3 % \27 [4hmbs + da1bs + 4asbs + 4agh] = 0
)
4th order
1 d Vgho
FTG:— + hgs [5a1bs + Sagbs + Sagbs + Sagbs] =0
o (o]

(10)

Momentum equation:

Oth order oh 2,
—'}’L‘o— =0 (11)
1st order
%hm% (humb1) + hio (2hnm2b12)
Jrhi02 (2a2hm? + 2hmar?) = —31/\/97;21 (12)
2nd order
{L‘a—;— hm; (hmbs + a1b1) +a1 d (h b1)
+Eg? (6b1b2Pm? + Shymarbs?)
+h—'z§ [3a3hm2 + 4hmayas + a1 (a1? + 2a2hm) |
= —3u\/§Eﬁblz (13)
3rd order ’
‘f;_" hm% (hmbs + azba + azby) +
:13 jt (humbz + arby) + }‘: 5= (huby)
% [8b1b3/m? + 6hmazbi® + 4bo®Am® + 8b1bohm +

6a1b1bohum + 3a1517] + ;"z [4a4hp? + 6hmarag+
(]

2a2 (a1° + 2a2hm) + a1 (2ashm + 2a1a,)]

= —3v+/gho :—3 (14)

o

We can deduce From Eq. (11) that a; = 0. Therefore
from Eq. (7), we have b = 0. Consequently, from
Eq. (13) and Eq. (9), we can further deduce az = 0
and by = 0. By using these results, the continuity
and momentum equations can be further simplified
as follows:

Continuity equation:

Oth order

dho, hmb
—_ ho =0
G T VeheT (15)
2nd order
1 da2 vga
ho2 -% h3 [3h b3 + 3&21)1] 0 (16)
4th order
1 da4 Vg
ho4 —d—t— h 5 [5021)3 + 5a4b1] (17)
Momemtum equation:
1st order
Vgho
- ° B —(h b1)+—(2h 25,%) +
b
9 (ahn?) = ~30 /gL (18)
ho ho
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3rd order
vgho d az d
% hm% (hmbs + azby) + 1.3 di (hmb1)

+'—3 (Sblbghm2 -+ 6hma2b12)

o]

b
+- (4aghm® + 405%hy) = —3vA/gho—> (19)
ho ho
In order to non-dimensionalize the continuity and mo-
mentum equations, a set of dimensionless parameters
for t , by , a2 and a4 are introduced as in Eq. (20)

vgho hm a2z , 04

o o M = =y B

We can therefore write the dimensionless form of con-
tinuity and momentum equations, as in Eq. (21) to
Eq. (25). For inviscid fluid, v = 0 is assumed.
Continuity equation:

Oth order

tl

(20)

’
d(Z’,” +h, by =0 (21)
2nd order
‘fia? ! bs+ 3alby =0 (22)
4th order
da4
d 7 + 5a2b3 + 5a4b1 —_ 0 (23)
Momentum equation:
1st order
/
B G + B 2 4 207007 4 20'h,* = 0 (20)
3rd order
, dby s 20b3 dhl,
2h. .a; 2dt’ +hm o + (ajb1 + b3hyy,) T
+(h, bl) + 8b1b3h’ + 6h;na'2b1
+ (4a4h;n2 + 4ay’hy, ) =0 (25)

We can show the existence of the solution with tem-
poral power given by,

by = Etle

(26)
By substituting Eq. (26) into continuity and momen-
tum equations, we can equate the coefficients of ¢’ to
obtain the following equations:

K = At ay =Bt ay=Ct by = Dt'",

d=-1 from Eq. (21) (27)
a+e=b—1 from Eq.(22) (28)
b+e=c—1 from Eq.(23) (29)
b= -2 from Eq.(24) (30)
a+e=-3 from Eq.(25) (31)
ct+a=—-4 from Eq.(25) (32)

By utilizing the relationships between coeflicients
a,b,c,dand e in Eq. (27) to Eq. (32) and substituting
them back into the dimensionless form of continuity
and momentum equations in Eq. (21) to Eq. (25), we
can ﬂirther obtain several relationships for A, B,C, D
and E as in the following equations, Eq. (33) to Eq.

(37).
From Eq. (21) R
D=-a (33)
From Eq. (22)
EA=%(2+3a)J§ (34)
From Eq. (23)
5BE = (6a+4)C (35)
From Eq. (24)
~ 1
B = —ﬁa(a+1) (36)
From Eq. (25)
AC=-B24 2 (94> +13a+6)B  (37)

12

By multiplying A on both sides of Eq. (35), we obtain,

5AEB = (6a+ 4) AC (38)
Therefore, by substituting Eq. (34), Eq. (36) and Eq.
(37) into Eq. (38), we will obtain Eq. (39) that will
lead to solving coefficient a.

a(a+1)(30a® + 56a* + 33a + 6) =0 (39)
The solutions for coefficient a are

2 1
a:—l,a:—g,a——0<—6i\/é),a7é0 (40)
Therefore, the temporal variation of the depth at the
origin hn, can be expressed as in Eq. (41), Eq. (42)
and Eq. (43).

a= -1, E: h;n=;{tl_1_’hm0(t_1 (41)

a=-2, B=g, =Rt ert (@)
1

a=——(—6i\/5) B“—m( 9i\/_)

n, = A (0EVE) i h(-65VE) (g3)

(2) Temporal variation of leading wave posi-
tion

The temporal variation of the front wave L in an in-

finite volume dam break flow is solved analytically by

method of characteristic (MOC)%, and the solution is

given as in Eq. (44). In the case of finite volume dam
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Fig. 2 Characteristic lines of dam break flow of finite
volume.

break flow, the solution of the wave propagating up-
stream and reflected by the boundary wall is given in
Eq. (45). It is obvious that this disturbance wave, x}
always trails behind the front propagation wave and
therefore will not affect the flow in the region between
the front wave and the disturbance wave. Since the
propagation of the front wave in the dam break flow
of finite volume will not be affected by the upstream
boundary as shown in Fig. 2, (where ¢, is the celer-
ity), the temporal variation of the front wave position

in a finite dam break flow can be expressed as in Eq.
(44) as well.

L=L,+2v/ghst —Luxt (44)

i
xp = Lo +2¢c,t — 3L, (g—co) (45)

2.2 Numerical Simulation Model

Moving Particle Semi-Implicit or MPS® is used as
the numerical simulation model in this study. MPS is
a grid-less particle method model. In this model, the
interaction of a particle with its neighbors is taken
into account through the introduction of a weight
function with radius of interaction r.. Meanwhile the
number of particle per unit volume can be approx-
imated in this model by introducing particle num-
ber density. The weight function and particle density
number are defined as in Eq. (46) and Eq. (47)
Weight function:

for(0 <r <re)

for (re <) (46)

Particle density number:
(n); =Y w (5 ~7il) (47)
J#i

The governing equations in this model are the con-
servation of mass and momentum equations as in Eq.

(48) and Eq. (49).

Dp

Dt =0 (48)
D 1
— =--VP W+g 4
i pV +vViu+g (49)

where p = fluid density, P = pressure, v = kinematic
viscosity, u = velocity vector and g = gravity accel-
eration vector. The differential and divergence terms,
as well as the Laplacian operator in the momentum
equation are modified to accommodate the interaction
of particles® as given in Eq. (50) and Eq. (51). In
the case of inviscid fluid, the viscous term vV2% can
be omitted since v = 0 for inviscid fluid.

Divergence model

< : * u) o~ o~
ne Py |75 — 74
Laplacian model

(728 =D (85— ¢i)w (65 — 6)
J#i
w(r)r? dv

w(r) dv (51)

fvolume

where A=
fvolume

MPS is chosen due to its simplicity grid-less pre-
simulation set up and the ability to define complicated
free-surface flow®). The second model that is used for
the numerical analysis is a depth averaged model with
Harten‘s TVD (Total Variation Diminishing) scheme
being used in the discretization of the governing equa-
tions.

2.3 Numerical Simulation Results

The simulation of dam break flow is carried out
for inviscid fluid in an infinitely long, dry, prismatic
rectangular channel. The initial condition of the dam
reservoir is set to a finite size of 0.5m in depth and
0.5m in length in both MPS and depth averaged mod-

" els. The initial conditions of the simulation are shown

in Table 1. The temporal variation of depth at the ori-
gin h,, and the front wave position L for both models
are plotted in Fig. 4, while the dam break flow profiles
for both models are shown in Fig. 3.

The numerical results shown in Fig. 4 show that
the temporal variation of L agrees satisfactorily with
the analytical results (L o t). However, in the case
of temporal variation of depth at the origin h,,, the
analytical analysis yields two different results as in
Eq. (41) and Eq. (42). The numerical analysis results
satisfy the first relation of h,, oc t~! when a = —1;
therefore allowing us to write the temporal variation
of hy, as in Eq. (53)

-1,
C=D=E=0 (52)

Il

Il

a
- B
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Table 1 Initial conditions of simulation for inviscid

fluid.
Model ho(m) Lo(m) v(m?s~1)
MPS 0.5 0.5 0.0
Depth Averaged Model 0.5 0.5 0.0
(7] htm)
o5 T=0.05s
02 T=0.5s
o1 T=1.0s (a)
. Te—— L{m)
08 B(m)
o5 T=0.05s
03 -
wl \:=0.55
D ) ()
(X} W =1.0s
. ‘ M* L

Fig. 3 Profile of dam break flow of inviscid fluid
using (a) depth averaged model, (b) MPS
model, with initial dam size of h, = 0.5m
and L, = 0.5m.

h(t) = At h, (53)

Eq. (53) implies a flat free-surface profile near the
origin, which is observed in the numerical simulation.

As for the second and third relations derived for A, - ‘

as in Eq. (54) and Eq. (56), they however imply
concave free surface profile near the origin, as shown
in Eq. (55) and Eq.(57) which were not observed in
the numerical simulation.

2
o o 73, 80 =—3 (54)
B=;, G#D#E+#0,
- 2
h(t) = At %h, + %Z—t'—z + . (55)

B o ¢~ 15 (—6EVE) ag g — —13 (—6 + \/6) (56)

100
C#D+E+0,

e T 2 -2
h(t) = At Fho+ = (9¢\/6) ot (T)

“Ou

tog h, (m) a) Inviscid fluid
Dam size : 0.5m by 0.5m, m=gradient

s\\m

1.00E+00

1.00E+00

1.00E~01

Depth Averaged Mode!
——— MPS Mode!

1.00E-02

1.00E-02 1.00E-01 logt (s) 1.00E+0t

fog L (m) b)linviscid fluid
Dam size : 0.5m by 0.5m, m=gradient
1.00E+02

1.00E+01

g

Depth Averagad Mode!
=——MPS Model

1.00E+00
/
|

1.00E~01

1.00E-02 1008-01 los t (s) 1.00E+00 1.00E+01

Fig. 4 (a) temporal variation of depth at the origin
hm, for inviscid fluid, (b) temporal variation
of front wave propagation L, for inviscid fluid.

3. Newtonian Fluid

3.1 Theoretical Analysis
The governing equations for viscous fluid can be
written as in Eq. (58).

DU VP _ 1
‘_3_—'+g+;V'T

Dt P (58)

In the z direction, for two dimensional case, the equa-
tion of motion can be written as follows:

Ou Ou  10P 1 (0Tyy OTuy
sﬂ”a*“a*—;a+%+;(@ +8m>

(59)
By neglecting the inertia term through the assump-
tion that the flow is slow and inertia term is small

compared to viscous and pressure term, we can re-
duce Eq. (59) to the following form:

OP 107y,

_ = — = 0

o5~ p By gz and
OTps ou ou

Assuming static pressure distribution, P = pgh, and
by integrating over the depth of flow, A,

opP

Bz W

Tyz =

dh
Tyo = —pg - (y = h) (61)
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By Power-Law model defining the general shear stress
and rate of strain relation, with K= viscosity coefli-
cient or consistency,

K(3) = o i-v) (63)
(%)n =R(h—y) with R= % (%) (64)
o = RE(-u)* (65)

_—

U =

SRE (R - (-7 (66)

From velocity distribution derived in Eq. (66), we can
therefore also derive the average velocity in x direc-

tion, U.
o h
Uh= / udy
0
— " pipti
2n+1
= n 1 1
U= T 1Rnh1+n (67)

This velocity distribution satisfies non-slip condition

at the bottom boundary and vanishing shear stress

at the free surface. The velocity distribution derived
in Eq. (67) also agrees with the velocity distribution
of viscous fluid derived by Ng & Mei”) and Huang &
Garcia®, and is given in the following equation:

w2l [1_ (1_2)%“} (68)

n+1 h

with U as the average velocity as in Eq. (67).

The one dimensional depth averaged continuity and
momentum equations in its general form is shown as
in Eq. (69) and Eq. (70), with U as the depth aver-
aged velocity,

Oh 0 , . —
a+—a;(hU)=o (69)
ORU | 0 (2 oh _ m
& oz BT ehgr == (0

By referring to Eq. (61), we can write the bottom
shear stress, 7, as follows:

Ah
o = PQTh ' (71)
By rearranging the equation Eq. (67) for average ve-

locity, we can relate bottom shear stress 7, with aver-
age velocity, U as in the following equations:

Averaged velocity,

U=_—" _Rapl*+i
U'2n+1R L
1
n pg NDh n
_2n+1[K L h] h
1
— n 1\~ 1
= —— n 2
v 2n+1(K> (o)™ (72)

Therefore,

)

The relation in Eq. (73) also agrees with the deriva-
tion made by Ng & Mei”), as given in Eq. (74)

T\" ‘
Th = Cnjin (E) where p,, = viscosity coefficient,

cn=<2n+1) (74)

n

By using the relation of bottom shear stress 73 and
the average velocity U, we can therefore rewrite the
one dimensional depth averaged equation of motion
for general viscous fluid as follows:

Continuity equation

oh 0
5 + 3z (hV)=0 (75)
Momentum equation
oV 0 (= 8h T
5t g (PWV?) +ohg ==
K (2n+1 V"
— (=) 5)
v . .

= —3v (7[) for Newtonian fluid (76)

In the case of viscous Newtonian fluid, n=1 and vis-
cosity coefficient, K is normally written as u. There-
fore, the last term on the right hand side of Eq. (76)
can be written as —3v (%) for viscous Newtonian
fluid.

Similarity functions p (%) and ¢ (%) are being in-
troduced for the depth of flow h and velocity of flow
V respectively. Therefore, the depth of flow h and its
respective velocity V' at x can be expressed as in Eq.
(77) and Eq. (78), where L is the front wave tip po-
sition of the flow measured from the origin, as shown

in Fig. 1.
b=t ) £5) ()

V=Vn(t)q (—L%) (78)

As the front tip of the flow L is a function of time,
parameter £ is introduced, where £ is defined as in the
following equation:

x

=1 (79)
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The boundary condition for the similarity functions,
p(€) and g(€) can therefore be written as follows:

p(0)=1, p(1)=0, and g(0) =0 (80)

Meanwhile, total volume of the flow can be expressed
as the integration of the flow depth along the flow, as
in the following equation:

L
Volume of flow = / hdx
0

LIEOL

1
=l [ 2O @)
By substituting the depth of flow A and velocity of
flow V, expressed in their similarity function p (§) and
g (€), we can rewrite the governing equations as fol-
lows:

Continuity equation

0

o T ()P €]+ o (o (1) (&) Vin (0 (€] -
Rearangging Eq. (82)
Ohm  hm€&0p (&) OL  hpVi, 0q (&)
P& 3~ 3 ot 7 P o€
hin Vi 0 0P (€)
HEEO T =0 (53)

Momentum equation

o 1 (&) Vind ()] + o [ B (€) Vin?a® (6)

2 () 0p() _ . Vma(§)
T T k() (54
Rearranging Eq. (84)
WV, dg 8
o (©) |00 %5 - Vot T2
Bhom, dp &
+ina(6) p(6) G s 2 2E]
’\Vm2hm ap (5) "Vm2hm aq (6)
+B—5 " (€) e T P@©a©) 5
hm® .. 8 Vin
+9—L—P 3 % = —3v hngg (85)

By assuming similarity solutions exist for A,,, V;, and
L, we can introduce the following equations:

B = aho< h%ty (86)
Vi = ﬂ\/gTo<\/hzat>b (87)
L- 'yLo(\/—hijt)c (88)

where &, is the characteristic depth and L, is the
characteristic length. The dimensionless form of ¢ is
defined as follows:

t=,/>t (89)

Therefore, by substituting the similarity form of Ay,
Vim and L, as well as the dimensionless form of ¢, we
can further write the governing equations as follows:
Continuity Equation

ah.at’®” 1\/—19 (¢) — ahoact’™™ 15\/}1— (&)

Olﬁ 8]) (£ ,a+b c
ot

) Tﬁ_—tla+b_c =0 (90)

Momentum Equation
dq (£)
o€
— afiegho€q (§)
ap (ﬁ) /a+2b c

aBbghep (€) ¢ (£) ¢+

/a+b 1

— aficghotp (€)

+ aBaghop (€) ¢ (€ )t’“*”“
ap (5) ra+b—1 04,32 gh 2 (5)

3 t + B— ~
’\0‘/62 gh02 3q (6) /a+2b c
73

+25TT0*P (&) a (&) —5-

‘1_2!]}102 dp(£) r26—c _ E\/z& 1b—a
PO T T T k)

To satisfy dimensional homogeneity, we therefore
equate the power of ¢’ in Eq. (90),
From continuity equation

a~1l=a+b-c — b-c=-1 (92)

From volume of flow, as defined in Eq. (81)

1
V= th/o p(€) de

_ aho( %t)afyLo(\/%t)c /0 p(€)de(99)

As the volume of flow is assumed to be constant dur-
ing the whole dam break duration;

a+c=0 (94)

In the case of flow of viscous fluid, it is assumed that
in the viscous region, the flow propagates under the
dynamic equilibrium of pressure and viscosity. There-
fore, by equating the power of ¢’ of the pressure term
and viscous term in the momentum equation, Eq.
(90), we can write the following relations between the
coefficients a, b and c.

2a+c=b—a (95)
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Table 2 Initial conditions of simulations for viscous

fluid.
Model ho(m) Lo(m) wv(m?s1)
MPS 0.5 0.5 0.000001
MPS 0.5 0.5 0.00005
MPS 0.5 0.5 0.0005
MPS 0.5 0.5 0.001

By solving Eq. (92), Eq. (94) and Eq. (95) for coef-
ficients a, b and ¢, we have,

1 4 1
(1,——'5', b——g C—g (96)
Thus, we can write the following relations for depth
of flow at the origin h,, and the front wave position

L as follows:

a
hm = aho( hit> —  hy x 8 (97)
[+

L:fyLo( hit> — Lot

(98)
3.2 Numerical Simulation Results

The simulation of dam break flow for viscous fluid
is carried out in the same condition as in the case of
inviscid fluid, except that non-slip condition is created
for the wall and floor of the channel. Table 2. shows
the initial condition and kinematic viscosity, v used
in the numerical simulation. The simulation results
of viscous Newtonian fluid are shown in Fig. 5 and
Fig. 6. The simulation results show good agreement
with the results obtained from the theoretical analy-
sis. Distinct regions can be observed for the temporal
variation of depth at the origin h,, and front wave
position of the flow L. These region define the inertia
and viscous regions of the flow. In the viscous region,
the depth at the origin and the front wave position
are proportional to time to the power of — and re-
spectively. Huppert3) also observes the same results
for the propagation of front wave L and depth of flow
at the origin A, in the viscous region for the case of
Newtonian fluid.

The initial region which defines a short moment im-
mediately after the release of the mass of fluid in the
dam shown in the numerical results could not be ver-
ified analytically. This is because there exists no sim-
ilarity solution in the initial region shortly after the
motion is initiated, and therefore the analytical re-
sults only yield characteristics defining regions where
similarity assumptions are valid.

4., Non-Newtonian Fluid

4.1 Theoretical Analysis
The one dimensional depth averaged continuity and
momentum equations for general viscous fluid obeying

the the Power Law model are derived as in Eq. (75)
and Eq. (76). For simplicity, non-Newtonian fluid
is studied in the case of n > 1 for shear thickening
fluid and n < 1 for shear thinning fluid. The same
method of introducing similarity functions of p and g,
and assuming power law relating to time for h,,, Vi,
and L in the investigation of viscous Newtonian fluid
is used here as well. Therefore, the continuity and
momentum equations for non-Newtonian fluid can be
written again as follows:

Continuity Equation:

ahoat'® " \/> (&) — ahoact’®” 15\/> dl;(;

aﬁh \/_“ f)t/a+b c

dq (£ /a+b c

=0 (99)

Momentum Equation:

aBbghop (£) g (€)'

~afieghotp (§) Ll

+aBaghop (€) ¢ (€)™

~afieghata (€) 2 (5%/““’ 1
’*Oéﬂ gh e
+5= (©)

+2ﬂ°‘ﬁ gh
”

( ) /a+2b—c

(f) t/a+2b c

P(&)a (&) =g

a? gho dp(ﬁ) 12a—c

K 2n+1) (ﬂ [9 p(&) /b—a)n
=—{— =y 2t 100
p ( n o\ hop(§) (100)
By equating the power of ¢’ in the continuity equa-
tion, as in Eq. (99), the following relations of coeffi-

cients a b and ¢ are obtained,
From continuity equation

a—1l=a+b—-c — b-c=-1 (101)

For constant volume of flow

1
V= th/O p(€) de

— ok, (\/%%Lo (\/hzt) / ' p(€) de(102)

Therefore

a+c=0 (103)

Similar to the procedure in the investigation of vis-
cous Newtonian fluid, the dynamic equilibrium be-
tween viscous term and pressure term is assumed to

- 764 -



kinematic viscosity : 0.000001 Pas kinematic viscosity : 0.000001 Pa.s

size of dam : (0.5m by 0.5m), m = gradient of linear line size of dam : (0.5m by 0.5m), m = gradient of linear line
| 100 3
3 [ ——
; 10
H ,,.:4.0\ 5 B
y 3 o3
01 N H //mq 0
— |
iy

| | (_a)J
aat B " M

001 01 1 10 » | | m

tog t (s) log t (s}
kinematic viscosity : 0.00005 Pa.s

kinematic viscosity : 0.00006 Pas size of dam : (0.5m by 0.5m), m = gradient of linear line

size of da : (0.5m by 0.5m), m = gradient of linear line

1 10
z
. m=1 e ]
0.1 AN s m=10
\”\\___ /
. -
m=-0.2
®) ) ()
o0 "
001 e 1 10 oot 0 et 1 10
kinematic viscosity : 0.0005 Pas kinematic viscosity : 0.0005 Pa.s
size of dam : {0.5m by 0.5m), m = gradient of linear line size of dam : (0.5m by 0.5m), m = gradient of linear line
1 10
| 02
3 —
H m\b\ z
0.1 \ :‘
&-— : __—____,,// =10
m=<0.2
001 (c) ot (c)
001 oW 1 10 001 9w f 10
kinernatic viscosity : 0.001 Pa.s kinematic viscosity : 0.001 Pa.s
size of dam : (0.5m by 0.5m), m = gradient of linear line size of dam : (0.5m by 0.5m), m = gradient of linear line
1 10
!‘ m=02 . j
2 m=-N g /
o N o ¥ / m=1.0
N 2
m=-0.2 ——]
001 (V1 o L l (d)
001 LN 1 10 001 o 1 10
Fig. 5 Temporal variation of depth at the origin, Fig. 6 Temporal variation of front wave propaga-
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exist in the viscous region of the flow. » c= n (106)
Therefore, by equating the viscous term and pressure 3+2n

term in the equation of motion, we have,
Thus, the front wave position L and depth of flow at

20 — ¢ = n(b — a) (104)  the origin hp, can be written as:
By solving Eq. (101), Eq. (103) and Eq. (104), solu- g . \°* _n
tions for coefficients ¢ and ¢ are obtained, hm = aho h_ot = o7 (107)
4= - (105) L=7Lo< it)c — Loctsm  (108)
3+2n ho ‘
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Fig. 7 Temporal variation of depth at origin, h,, for
n = 2.0 with (a) K = 0.01kgm~1s74, (b)
K =0.1kgm s, (c) K =1.0kgm™'s~%

The results in Eq. (107) and Eq. (108) can be used
for any fluid obeying the constitutive law in the power
law model. For Newtonian fluid (n=1), therefore the
temporal propagation of leading front, L and tempo-
ral variation of depth at the origin, h,,, for Newtonian
fluid are as follows:

B 0C £ 8 (109)

L« ts (110)

which agree with the theoretical derivation made in
Section 3.1.

4.2 Numerical Simulation Results

Numerical simulation of non-Newtonian fluid is car-
ried out using MPS model as well. But, the viscous
term in the governing equation of MPS model has to
be modified to take into account the constitutive law
of non-Newtonian fluid. The viscous term is modified
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Fig. 8 Temporal variation of front wave propa-
gation, L for n = 2.0 with (a) K =

0.01 kgm~1s74, (b) K = 0.1kgm~1s7%, (c)
K =1.0kgm=1s~4.

as follows:

1 8T7;j 10 Bui "
Sl R o Rl
pOz;  poz, Oz

19 (Bui>n_1(32u,~)
=~ Kn( 24
pOz; ox; 0x;2

1 n—1 2
= ;Kn (Vu)" ™" (V2u)

(111)

where Vu and V2u are the gradient and Laplacian
form used in MPS model. The initial conditions of
dam break flow simulation for non-Newtonian fluid
are shown in Table 3, with n=2.0 assumed for shear
thickening fluid and n=0.5 for shear thinning fluid.
The results of simulation of non-Newtonian fluid are
shown in Fig. 7, Fig. 8, Fig. 9 and Fig. 10. In
both cases of shear thickening (n = 2.0) and shear
thinning (n = 0.5) fluids, distinct inertia and viscous
regions are observed. Both shear thickening and shear
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Fig. 9 Temporal variation of depth at origin, l}m for
n = 0.5 with (a) K = 0.01kgm~'s~z, (b)
K =01kgm s7%, (c) K = 1.0kgm~1s~3.

thinning fluids also show good agreement with the
theoretical analysis in the viscous region, where in
the case of shear thickening fluid (n = 2.0) and shear
thinning fluid (n = 0.5), the depth at the origin h,y,
and propagation of front wave position is related to
time as follows:

For n=2.0
A o t_%
Lxt? (112)
For n=0.5
hp =%
Lxts (113)

The viscous region becomes more dominant over the
inertia region as consistency K is being increased for
both shear thickening and shear thinning fluids.
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Fig. 10 Temporal variation of front wave propa-
gation, L for n = 0.5 with (a) K =
0.01kgm=1s~%, (b) K = 0.1kgm=1s"3, (c)
K =10kgm 1s7%.

Table 3 Initial conditions of simulation for non-
Newtonian fluids.

Non-Newtonian Fluids h,(m) L,(m) K
Shear thickening
n=2.0 0.5 0.5 0.01
n=2.0 0.5 0.5 0.1
n =20 0.5 0.5 1.0
Shear thinning
n =0.50 0.5 0.5 0.01
n = 0.50 0.5 0.5 0.1
n =0.50 0.5 0.5 1.0

5. Conclusion

In this study, the motion of fluid is modeled by the
sudden release of mass of fluid in a dam, which is also
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known as the classical dam break flow problem. In
the absence of viscosity, the motion of a fluid is fully
governed by the equilibrium of its pressure and in-
ertia terms, which is also known as inertia flow. In
the case of viscous fluid, it is assumed that in the
initial stage of the flow, the motion of the flow is gov-
erned by inertia flow, but later as the effect of viscos-
ity increases, the motion of the flow is instead, gov-
erned by the equilibrium of the pressure and viscosity
terms. In this study, the terms “inertia region” and
“viscous region” are also used to refer to a stage or
regime where either the inertia or viscous flow dom-
inates the motion of the fluid. The characteristic of
inertia flow is investigated by modeling the dam break
flow of inviscid fluid. From the analytical workout, it
is noted that in inertia flow, the depth at the origin,
hm is inversely proportional to time (t oc t71), while
the leading wave propagates proportionally with time
(L < t). Meanwhile, in the case of viscous fluid, the
depth at the origin, h,, and leading wave, L are found
to be proportional to time to the power of — 3%~ and
373, Tespectively, where n=1 for viscous Newtonian
fluid, n > 1 or n < 1 for viscous non-Newtonian fluid.
The analytical results describing the characteristics
of the inertia region and viscous region of the flow
are verified with 2 numerical models; a depth aver-
aged model and MPS model. Numerical simulations
with both models show good agreement with the an-
alytical results. The verification of the existence of
inertia and viscous regions and the findings on their
characteristics through simple similarity assumptions
in this study has provided an general insight of the
flow characteristic of viscous fluid. In the sense of
engineering application, this findings can be used to
verify experimental or numerical results related of the
determination of rheological properties of various in-
dustrial fluid. In industry field, the intrusion time
of poisonous fluid and relatively dense gas can be es-
timated by knowing the characteristic of the flow in
advance. This study also provide a stepping stone for
future work to construct an integral model which can
describe the motion of the flow immediately after the
initiation of motion for the whole flow domain.

REFERENCES

1) Hosoda, T.,Kokada, T. and Miyagawa, T.: Study
on a method of obtaining yield values of fresh
concrete from slump flow test, Concrete Lib. of
JSCE Vol.32, pp.29-41, 1998.

2) Shao, S. and Edmond Lo, Y.M.: Incompress-
ible SPH method for simulating Newtonian and
non-Newtonian flows with a free surface, Adv. in
Water Resource Vol.26(7), pp.787-800(14), 2003.

3) Huppert, H.E.: The propagation of two dimen-
sional and axisymmetric viscous gravity currents
over a rigid horizontal surface, J. Fluid. Mech.
Vol.121, pp.43-58, 1982.

- 768 -

4) Jain, S.C.: Open Channel Flow, John Wiley and
Sons, Inc., New York, 2001.

5) Koshizuka, S.,Nobe, A. and Oka, Y.: Numerical
analysis of breaking waves using the moving par-
ticle semi-implicit method, Int. J. Num. Meth.
Fluids. Vol.26, pp.751-769, 1998.

6) Gotoh, H.[Ikari, H.,Memita, T. and Sakai, T.:
Lagrangian particle method for simulation of
wave overtopping on a vertical seawall, Coastal.
Eng. J. Vol.47, Nos. 2 & 3, pp.157-181, 2005.

7) Ng, C. and Mei, C.C.: Roll waves on shallow
layer of mud modeled as a power-law fluid, J.
Fluid. Mech. Vol.263, pp.151-183, 1994.

8) Huang, X. and Garcia, M.H.: A Herschel-Bulkley
model for mud flow down a slope, J. Fluid. Mech.
Vol.374, pp.305-333, 1998.

9) Hogg, A.J. and Pritchard, D.: The effect of
hydraulics resistance on dam-break and other
shallow inertial flows, J. Fluid. Mech. Vol.501,
pp-179-212, 2004.

(Received April 12, 2007)





