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Flows with large scale vortices are often observed in many natural, geophysical as well as

anthropogenic activities. In this study, the Stuart vortices having both the singular points (the

vortex and saddle points) are considered to study the basic turbulent properties. Using a

realizable non-linear . k&-¢ model, the approximate solutions are derived and numerical
simulations are carried out. Using the approximate solution, the values of model constants are

tuned considering the predictability of turbulent structures at the vortex center. The numerical
results prove the effectiveness of the approximate approach, and reveals that the model with
the estimated constants is applicable to simulate large scale vortices. The spatial changes in the

topological structures of turbulent energy and turbulent stresses are found compatible with the

previous experimental results.
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1. Introduction

The presence of large scale vortices in a flow field
plays an important role in the intermittent character of
turbulence. The horizontal vortex at the interface of main
channel and flood plain in a compound channel is a practical
example of that. In a compound channel, because of the
velocity gradient between main channel and flood plain,
large-scale vortices are generated with the vertical axis at
the interface. The vortex formation causes momentum
transfer in the lateral direction from the main channel to

the flood plains, results in the decrease of channel -

conveyance and increase of the flow resistance. Since the
turbulent characteristics of this type of flows are highly
non-linear, the standard k-& model cannot produce such
flows satisfactorily because of its isotropic assumption of
eddy viscosity; on the other hand, the empirical functions
in a non-linear & ¢ model plays an important role to
generate the large scale vortices by accounting the
anisotropic turbulent behavior. Therefore, a non-linear 4- &
model is thought to be a superior tool for predicting such
complex flows. The superiority of non-linear &~ & model
over standard one is described in our previous paper

Stuart vortex, non-linear k - € model, RANS, realizability conditions

considering approximate solutions for some basic turbulent
flows such as non-swirl and swirl jet (Ali et. al.)”. However,
the applicability of this model to large scale vortices is still
to examine.

The non-linear £ — £ model is a generalized eddy
viscosity model, where additional non-linear terms of mean
strain rate are added. In other words, it is a two equation
model where two differential equations are solved for £ and
&, and the Reynolds stresses are determined from non-linear
algebraic equations by generalizing the eddy viscosity
model. Yoshizawa® introduced such non-linear relation to
Reynolds stresses to admit the anisotropy. Generally, in £ —
& model, the value of the coefficient of eddy viscosity (c,)
is assumed constant throughout the turbulent flow field.
This constant value of ¢, over predicts the eddy viscosity for
the flow field having large rate of strain and rotation. If the

_strain is sufficiently large, the model may produce negative

normal stresses. Thus, in the present study, the coefficient of
eddy viscosity (c,) is considered as a function of strain (S)
and rotation (Q) parameters. Considering the Reynolds
stresses as a non-linear polynomial function of mean
velocity gradient, such functional form for the coefficient of
eddy viscosity was firstly introduced by Pope”, but that was
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limited to two dimensional flows. Gatski and Spezille”
further extended it and proposed a new functional form
applicable for three dimensional flows. Recently, Kimura
and Hosoda” verified the modified £ — £ model with the
non-linear anisotropy term. They assumed a functional form
of ¢, similar to Pope”, and examined the realizability
conditions for different types of 2D basic flow patterns.

In this study, the Stuart vortices having both the
singular points (the vortex and saddle points) are considered
to study the basic turbulent properties. The work presented
in this paper can be classified into twofold. In the first part,
a heuristic solution is derived for turbulent characteristics of
Stuart vortices, to investigate the necessary conditions for a
non-linear k- £ model applicable to large-scale vortices. In
the second part of the paper, numerical simulations are
carried out to support the approximate solution.

Previous experimental and numerical investigations®
showed that the structures of turbulent normal stresses at
vortex point are elliptical in shape; on the other hand, the
turbulent shear stresses show hyperbolic profile. By tuning
the model constants in the approximate solution, it is
observed that the structures of turbulent stresses are changed
with the values of constants. The set of model constants that
generates the actual structures of turbulent profiles, is
considered to be satisfied the necessary conditions for
unSteady-RANS applicable to large-scale vortices. The
realizability conditions are also derived for a plane shear
layer to estimate the constraints for the coefficients of eddy
viscosity. In the second part, using the model constants
estimated by approximate solution, the numerical simulation
is carried out to determine the turbulent characteristics of
Stuart vortices, and the qualitative structures are compared
with approximate solutions as well as with previous
experimental results®. The spatial changes in the topological
structures of turbulent energy and turbulent stresses are also
explained.

2. Non-Linear k - & Model
2.1 Basic equations

The basic equations in a k¥ - & model for an unsteady
incompressible flow are as follows.
Continuity equation:

A
ox

i

=0 (1)

Momentum equation:

. oUU; —_— 2. ‘
%+ I g - 1oP +i(—u,-uj)+va Uz’ )
ot Ox; pox; Ox; ox;

k - equation:
OkU, —pU,

ok M) U, 0 (_Jﬁ} )

o ox; ox;  Ox; |\ oy ox

£ - equation:

de 0OeU,; e—0oU;, 98 |[v, o¢ &’

—+ =—Cy— U, —+—| =V |~ Cp—

or 0Ox; k ox; ox; |\ o, Ox; k
“

where, x; : the spatial coordinates, U; and u; : the average

and turbulent velocities respectively in x; direction, P : the
the density of fluid, v
kinematic viscosity, &

pressure, 0 : : the molecular
: the averaged turbulent energy, s

the averaged turbulent energy dissipation rate, v, : the eddy
viscosity, oy, 0, , ¢4, ¢ : the model constants (o;= 1.0, 6=

1.3, ¢, = 1.44 and ¢, = 1.92 are used)”.
2.2 Constitutive equations

In the standard £ — &£ model, the Reynolds stress tensor
-it; is'solved by linear constitutive equations derived from
Boussinesq eddy viscosity concept, which does not take into
account the anisotropy effect.

U,
wi; =S, k(S s 29U, & )

2
(A ox; o

—uu;
Here, v, is determined from the dimensional consideration
of k and g, and is approximated by
i2

Vi=cp— . 6

(= (6
Including the non-linear anisotropy term in the Reynolds
stress equation introduced by Yoshizawaz), the constitutive
equations can be expressed in the following forms

— 2 1
~u; = VS~ kS, - v,zc,{sﬂj 3Sﬂaa5,,.] )

Here, c; is the coefficient of non-linear quadratic term; and
Spy are defined as :

aU; oU; 1(8U, 8U; U, au,
” =2Zi ) i == Al SN Sdnd
Yo, o, Y ox, ox, ox; ox,
U, oU.
and Sy =—L—L. ®
Yook ox

It is known that the non-linear terms in equation (7) are

equivalent to the following mathematical formulation” .
1
o (S + QS ) + 0 (S Sy ~ ESkmSmk5U)
1
+a3(Q,Qy *Ekakaay‘) )

Where, the strain and rotation tensors are defined as
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oU, U,
g 90U, 09U, aU, oU,

i ’ iji =
v ox;  Ox > ;o Ox

(10)

Comparing Eq. (9) with the non-linear terms of Eq. (7), the
relations between the coefficients can be derived as

aq==203+a,—0;,c, =2y +03), 03 =204+, — 5 (11)

From this comparison, it is also inferred that the coefficient
of eddy viscosity (c,) is a function of strain and rotation
parameters. The strain parameter (S) and rotation parameter
(€2) are defined in Eq. (12), as used in the previous studies
of Pope”, and Gatski and Speziale”.

, k f
SijSij » Q=; Q,Q (12)

In this study, the assumed form of ¢, is more generalized
than previous one, which can be expressed as

1o (146,87 +,007)

Tt caS? ol +cmsg+cdﬂs + 00 + 0 S70?

(13)
Here, c.g, Cusy Cug> Cuss Cans Custs Casts Caal, and cyp are the
model constants. The functional form assumed by Gatski
and Speziale' can be obtained from the above equation
simply neglecting some higher order terms i.e. substituting
Cns Casns Casi» @Nd cgo; as zero. The more - simplified
functional form of ¢, suggested by Pope® for two
dimensional flows, can be obtained neglecting some more
terms from the above equation.

Assuming a similar functional form for ¢, Kimura and
Hosoda® compared the analytical results for diagonal
components of the anisotropic tensor with that of
experiments for simple shear flows. They showed that the
assumed functional form for the coefficient of quadratic
term c4, gave better results instead of taking their constant
values. In this analysis, the similar functional form is

assumed for cy.

1
1+ mdSSz + mdQQZ

Cp=Cg, (14)

where, my and m,q are the model constants.
3. Method of Solution

The work presented in this paper can be classified into
two fold. In first part, a heuristic solution is derived for
turbulent characteristics of Stuart vortices, to investigate the
necessary conditions for a non-linear k- £ model applicable
to large-scale vortices. In the second part of the paper,
numerical simulations are conducted to support the

approximate solution.

3.1 Approximate solution

The functional forms of &k and & distributions are
a first approximation. Substituting the
mathematical expressions of the assumed distributions into

assumed as

the non-linear £ — & equations, a set of algebraic equations
are derived considering the relation among the coefficients
with respect to the same power of variables (x and y).
Solving these simultaneous algebraic equations, the
unknown coefficients in the assumed distributions are
determined as the function of the non-linear k£ — £ model
constants. Approximate solutions for the distributions of
turbulence characteristics such as distribution of turbulence
intensities, turbulent shear stress, etc. are derived using the
constitutive equations of the model.

Previous experimental and numerical simulations
showed that the structures of turbulent normal stresses at
vortex point are elliptical in shape; on the other hand, the
turbulent shear stresses show hyperbolic profile. By tuning
the model constants in the approximate solution, it is
observed that the structures of turbulent stresses are changed
with the values of constants. The set of model constants that
generates the actual structures of turbulent profiles, is
considered to be satisfied the necessary conditions for
unsteady-RANS applicable to large-scale vortices. The
realizability conditions are also derived for a plane shear
layer to estimate the constraints for the coefficients of eddy

viscosity.
3.2 Numerical simulation

Using the model constants estimated by approximate
solution, the numerical simulation is carried out to
determine the turbulent characteristics of Stuart vortices and
the turbulent structures are compared with approximate
solution.

The flow field of Stuart vortices is given as input to
calculate the turbulent characteristics. The code solves the £,
€ and constitutive equations discretized with the finite
volume method and is based on a staggered grid system.
The hybrid central upwind scheme is used for the k and ¢
equations. Time advancement is achieved by
Adam-Bashforth scheme of second-order accuracy, in each
equation. The equations are discretized as fully explicit
forms and solved successively with the time increment step
by step. The wall functions are employed as the wall
boundary. conditions for % and e. Periodic boundary
conditions are used in upstream and downstream ends of the
flow domain. ‘
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4. Consideration of Realizability
4.1 Realizability inequalities

Realizability can be defined as the requirement of the
non-negativity of turbulent normal stresses and Schwarz’
inequality between any turbulent velocity correlations.” It is
a basic physical and mathematical principle that the solution
of any turbulence model equation should obey.® The
realizability inequalities for 3D turbulent flows are:

uu; 20 (152)

—_— — —

wy w2 U (i;tj) (15b)
w w

det | uyuy uyu, wuyus | 20 (15¢)

Uslhy  Usly Uzl

Einstein’s summation rule is not applied in Eq. (15). In a

two dimensional averaged flow, Eq. (15b) coincides with Eq.

(15¢). In this study, the restrictions on c, are derived from
the mentioned realizability equations for simple shear flow.
The functional forms for ¢, and ¢4, expressed in Eqgs. (13)
and (14) respectively, are applied in this study.

4.2 Analysis of inequality for simple shear flow

Applying Eq. (15a) to plane shear layer, the following
two equations are derived for the diagonal components of
the Reynolds stress tensor (non-negativity condition)

2 c#(2c1—c3)

Mih 2 Tl a2 50 (162)
k3 3

Uyly =E+ Cp(2c3 —CI)MZ >0 (16b)
E 3

Where, M = maximum (S,Q); for plane shear layer, M=S=Q.
Applying Eq. (15b), the following inequality equation can
be derived for Reynolds stress component, uu; (Schwarz’
inequality condition).

cfl {9M2 +(2012 + 2032 —5(:1c3)M4}— 2c,(c + (:3)M2 —-4<0

(16¢)
Since the value of c; is positive and c; is negative, Eq. (16a)
is satisfied regardless of M. Thus, the restrictions on c,,
derived from Eqgs. (16b) and (16¢), are as follows:

c, < 2

g (cl—2c3)M2 an

NG re )M +fle, +ey P M? +4{9+ (267 +2¢2 ~5c,c,) M

# M +(2¢2 +2¢2 = 5¢,c,)M?

(18)

Following values, for the coefficients of functional forms of

cp, are proposed from our previous studies in flows around
bluff bodies”:
¢ =0.40, ¢y =-0.13.

For plane shear layer, the realizability conditions [Egs.
(17) and (18)] as well as the proposed functional form of ¢,

¢ =0, and

[Eq. (13)] are plotted in Fig. 1. The calculations are made
with the following values of model constants.

Cu0™ 009, CpstCna™ 0.01 18, CastCaotCan = 0009, Cast
+CdQ1+ Ca01— 000035, My, + Mya= 0.013 (19)
009 == \\TT== Nownegstiviey condicion
\ Condition for Schwarz'
0.06 —— X:s?:ng?’pmﬁle of ¢ “
)
0.03 |
~ L
~ ~ -
0.00 1 ! | 1 -+

M(=S=0)

Fig.1 Relation between c,and M in a simple shear layer

These values of model constants are initially estimated
based on the realizability conditions as derived in Eqs. (17)
and (18). Using the estimated values, the approximate
solutions are derived for Stuart vortices and the values of
model constants are finally determined by tuning their
values considering the predictability of turbulent structures.
Eq.(19) shows the final values of constants obtained by such
a trial and error method, and Fig. 1 confirms that the model
obeys the realizability conditions with these values of
constants.

In the log-law region, the assumed functional form of c,
shows almost a constant value of 0.09. It can be noted that,
instead of functional form, if a constant value of ¢, (=0.09)
is used through out the turbulent flow field (shown as
horizontal straight dotted line in the figure), it fails to satisfy
the realizability conditions.

5. Turbulent Characteristics of Stuart Vortices

The Stuart vortices constitute a family of exact solutions
of the Euler equations often used to model 2D mixing layers.
The equation for stream function of the Stuart vortex can be
expressed as follows:

W= ln(cosh y+4 cos x) (20)

Here, 0 > A > -1 is & constant and indicates the eccentricity

of the elliptic streamline of wvortex. If A=0, the
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hyperbolic-tangent mixing layer is recovered, whereas for
A=-1, we obtained a single row of co-rotating vortices, with
circulation of -4, periodically spaced along the x axis with
period 2n. Fig. 2 shows the streamlines of Stuart vortices
with various values of A. In this study, moderate
eccentricity of A=- 0.5 is used to calculate the turbulent

characteristics.

2f (a)

1

[

> 0

-1

Fig.2 Contour of streamlines for Stuart vortex with (a) A=0
(b) A=-1/2 (c) A=-3/4 (d) A=-1.0

5.1 Derivation of approximate solutions

For the approximate analysis of Stuart vortices, the
viscous shear stress is assumed much smaller than the
turbulent shear stress”. Then the k and & equations [Eqgs. (3)
and (4)] can be simplified for a steady two-dimensional flow
in the following forms.

k - equation:
oU
U, ok L. ok vy oU, o, ouU, o
* ox 6y ax oy Ox
ou
2y 2 Vi Ok, O, Ok 1)
oy oylo, o ax o, Ox
& - equation:
oU
Ux§£+ Uyéf =Cg E U, aUx - uxuy aUX _uyux .
ox oy k ox oy ox
—0oU 2
—uu,— +_6_ Vi 9¢ +i vi %¢ —0528— (22)
oy oylo, 0y ) ox\ o, ox k

The equation of Stuart vortices as expressed in Eq.(20)
is expanded using Taylor function near the origin, and the
approximated stream function for the vortex point is
expressed as follows (eccentricity, A=- 0.5 is used) '

1 1 1 5
W:ln(%)+5x2 +y2 —Ex4 —E y —Ey (23)

The corresponding velocity field is approximated as

61// 5
U =2y-x’y-=
$= o T 3y (24)
U, =—%{—:—x+xy2 +%x3 (25)

The contour of streamlines for vortex point approximated by
Taylor function near the origin (Eq. 22) is shown in Fig.3.

©)

T T

4 05 0 05 1

Stuart vortex
approximated by Taylor function near the origin

X
Fig3  Contour of streamlines for

As first approximation, the following polynomial
functional forms are assumed for the distributions of & and &

k = kyy + kgpx + kyoy + koo x® + kygy® + Ky yxy (26)
27

Where, ko, kos k10, ko koo, Ky are the unknown coefficients

£ = Egy + Eg X + gy ++EQRX® + Ex0)” + £ XY

for k and gy, £, £;0, 02 E20 & are that for & distributions.

Substituting the assumed & and ¢ distributions, into & —
£ equations [ Egs. (21) and (22)], the following algebraic
expressions are derived considering the relations of
coefficients for the same power of variables (x, y) in
each equation. To avoid complexity in solving a large
number of equations, the higher order terms of %y, &y, k02,
k0, k11, €01, €10, €02y €20 and g;; are neglected to form a set of
linear equations.

k-equation:

0: ¢, k2 (1), = (2) +—22 koo{zkmzkzo}(l)0 =0(28)

x2: —ky = Akg, + Begy + Cslkgy +kq0)+ C, 31)
Y2 2k = Akyy + By — Colkey + ko )+ C, (32)
& _-equation:
0: CeCuy koogoo (1)0 —Ce 500 (2)0
€ _ (34)
+ koo {Zkoz + 2k }(1)0 =0
O—E

- 810 = Ck01 + DSOI (35)

2 - & =Cky, + Deg, +C, (802 + 520)+ C, 37
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y* 1 26 =Chy + Déy, _Cs(goz +5zo)+c4 (38)
xy: dgy — 285 = Cky + Dgyy (39)
Here,

A= [c o Eookoo {1 (2, +18my0)+ (4)y(2c,, +18¢,0))
+2¢,, Eookoo (U)o (4)o — Zookon (2)o (214, +18m,0)

— Eg0ko0 (4)0 — Egokoo (4)0 {sgo (20 s T 0C0 +1 8cd9)

+ 4K (c g0 + 940 + 81,00 ]2 (4)s)

B= [2‘7 PR a0k {(1)0 + (4)0 }+ Sl k3o (1)0 (4)0 - {2(2)0 £9
+ 4530 (4)0 + ggokgo _(4)0 (2cdv +6c0 + lscdﬂ)

+(2),(4), }]/ {(2)0 (), }

C = [e ucaiohio (Do2my, +18mug )+ @y (2 +18c,0))
+2¢,, ¢ Eaokoo (Do (@) = ¢, Ea0ko0 (2)o (2my, +18m )

— ¢4, koo (@)s {ego (24 + 640 +18c40)

K3 (can +9¢4n + 81,0 /12D @ koo )

D= [20 1, Eq0kdo {(1)0 + (4)0 } +2c,c.¢ ookgo (1)0 (4)0
¢, {2(2)0 Eo0 + 4500 (4)o + £0ke0 (4)o(2c4 +6cu +18cua)

* € (2)0 (4)0 } / {(2)0 (4)0 Koo }

G = [‘ Eookao {(2)0 (2md\' - lsmdn) +£5 (4)0 (2% —18c4q )}
+2¢, Eookoo (1)0 (4)0 +Cu Eookop (1)0 (2mdv - 18md9)
+Egokoo (4)o {C o (2¢,,, ~18¢,0)+ ey —8leu )}]/{(2)0 @)}

C, = |- 0ok (@) 8y, —36m,0) - 523, (@)y By + 36cuq
+1 scdsﬂ)} -8¢,, gookgo (1)0 (4)0 +Cu l"'ookgo (1)0 (‘ 8m

- 36mdn)+ 500"30(4)0 {Cy(, (‘ 8¢y — 36ch)

— (8¢ 4y +162¢ 40, — 27y )}]/ {(2)0 O }

G = [— Ce, & gokgo {(2)0 (2mds - 18mdn) +& go (4)0 (2%
—18¢40 )} +2¢,c.8 d0ko0 (1)0 (4)0 T Ce & o0ka0 (1)0
(2, = 18m )+ £k (@) 01,0, (2, —18,)
+4cy(can —8legn )}]/{(2)0 @) }

Cy= [— s, ook {(2)0 (- 8my, —36muq)— £50(4)y (Be
+36c,0+18c40 )} —8c,,ce Egokgo (1)0 (4)0 +C,,Cq Eovkao (1)0
(“ 8my— 36md§2)+ 3301‘30 (4)0 {cyoce:l (— 8¢, — 36ch)

—dc,, (4c g +162¢,0; — 27¢ 400 {20 @o oo

C = [(2"#0 / Oy )— 500"30 {(1)0(2mdv -1 Sma'Q)
+ (@), (2c,, ~18¢,0)}/{(2)o(4),}

Cs = [(20;10 / o k)_ Eookoo {(1)0 (Smds + 36'”dn)

+(4), (8¢, + 36,9 )}]/ {(2)0 (4), }
G = [(2C 1o / o s)“ 5ookgo {(1)0 (2mds - lsmdn)

+ (@) (2c ~18¢,0)f} {(2)o (@)}

Cy= [(zc,uo / o, )‘ Eookoo {(1)0(8"% + 36’"d9)

+(4)y(8c, +360c, )}]/ {(2)0 (4)0}
(1o = 3 + cukio + Ienakin
(2)0 = £ (530 + ek +3cunki + 9k )

+ kgo (Cm + C'mkg0 +9¢ 401 +81c 401 )

2 2 2
(4)0 = Ego + Mykio + Imnkso

Tablel. Estimated values for the coefficients of ¢,

and ¢
Model  Values of model constants
constants Runl Run2
Cuo 0.09 0.09
Cps 0.005 0.01
Cuor 0.0068 0.007
Cis 0.008° 0.008
Cia 0.004 0.004
Cuso -0.003 -0.003
Cast 0.00005 0.00005
Caol 0.00005 0.00005
Casol 0.00025 0.00025
my, 0.01 0.01
Mya 0.003 0.003

Solving the twelve equations from Egs. (28) to (39),
twelve unknowns are determined in terms of model
constants. Then the distributions of turbulent intensities and
shear stresses are derived by constitutive equations.
Substituting the obtained values of unknown coefficients
into assumed & and & profiles in Eqs. (26) and (27), the
profiles are inferred. It is reported that, the turbulent normal
stresses, and hence %k and & profiles, show elliptical
structure near the vortex point; on the other hand the
turbulent shear stresses show hyperbolic profile. The values
realizability
considerations are tuned so that the turbulent structures

of model constants estimated =~ from
become compatible with previous investigations®. The final
values of model constants are tabulated in Table 1 (RUN-1).
It can be noted that, the turbulent structure is changed with
the change of the values of model constants. Among the
numerous trials, one of the trial set of model constants are
shows in RUN-2. The estimated values of c,,, ¢,q are 0.005
and 0.0068 respectively as shown in RUN-1. Keeping all
other model constants as same as previous RUN-1, ¢,, and
cno are increased to 0.01 and 0.007 respectively in RUN-2
(the changed values are underlined in the table).

Although, the flow field is two-dimensional,
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three-dimensional turbulent fields are calculated. Figs. 4 and
5 show the turbulent structures determined by approximate
solution using the estimated model constants for RUN-1 and
RUN-2 respectively. It is observed from Fig. 4 that, for
RUN-1, turbulent kinetic energy (% ) and its dissipation rate
() profiles [Figs. (a) and (b)] as well as the turbulent normal
stresses in x, y and = direction expressed as uu;, u,u, and
usus respectively [Figs. (c), (d) and (e)] show elliptical
structure; on the other hand the turbulent shear stress in xy
plane (u,u, ) show hyperbolic profile [Fig. (f) ] near the
center of vortex . On the other hand, if the model constants
are changed to RUN-2, the same solution gives hyperbolic
profiles for turbulent kinetic energy and turbulent normal
stresses as shown in Fig. 5 (a), (c) and (d). Similar change is
observed by the change of other model constant values. The
turbulent structures are changed due to the change of c,
distribution. The comparison of ¢, distribution in xy plane
for Run-1 and Run-2 are shown in Fig. 6. Maximum
difference is observed at the center of vortex, where the
strain and rotation parameters have their maximum values.

0.5

05 |
05 025 0 025 05

&9
[
o
N
o
o
o
iy
w
o
[

Fig.4 Turbulent structures by approximate solution for
RUN-1: (a) turbulent kinetic energy, & (b) turbulent
energy dissipation rate, € (c) turbulent normal stress
in x direction, uu; (d) turbulent normal stress in y
direction, uu, (e) turbulent normal stress in =
direction, %;u; (f) turbulent shear stress in xy plane,

Uiy .

(a) (b)
0.25 0.25]
> [ > [}
-04257 -0.25]
0.5 / 0.5
05 025 0 025 05 05 -025 025 05
X X
0.5 = 0.5
0.25 \/F 025
> 0> B [
-0.25 ﬁ 0. 25>
- /ﬁ -0 5.
01%.5 -0.25 0 0.25 0.5 0':6.5 -0.25 [¢] 0.25 0.5
X X
0.5 0.5
e) ®
0.25] 0.25
> of S 0y
Msy ]
-O‘% 0.5
05 -0.25 0 025 05 05 -025 0 025 05
X ’ X

Fig.5 Turbulent structures by approximate solution for
RUN-2: (a) & (b) € (c) wu; (d) uu; (e) usuis
(B uu;

0.5

(b)) — —

0.25

0.25] /

-0.25

Cy

0.04

002 : *

0.10 .

008

0.04

002 . L . .
0 0.1 02 0.3 04 05

Fig.6 Distribution of c, in xy plane (a) RUN-1 (b)
RUN-2; (¢) ¢, profile along y-axis, (d) ¢, profile
along x-axis [ (0, 0) is the coordinate at vortex
center].

-729 -



: X
Fig.8 Turbulent structures by numerical simulation for

-730 -

RUN-1: (a) turbulent kinetic energy, k& (b)
turbulent energy dissipation rate, € (c) turbulent
normal stress in x direction, 7;u; (d) turbulent
normal stress in y direction, uu; (¢) turbulent
normal stress in z direction, wu; (f) turbulent

shear stress in xy plane, u;u;

N ——

T T T T T
-2 2} 2 4 8 8
X

Fig.9 Turbulent structures by numerical simulation for
RUN-2: (a) k (b) & (c) wu; (d) wu, (€) usus

O u;
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Fig.10 Turbulent structures by numerical simulation
using Standard k-¢ model: (a) k (b)e (c) u,

(d) wau, (& usus (O uu,

Since, the values of RUN-1 predict the actual structures
of the turbulent stresses (as per previous research® ) near the
focus of the vortex, it can be concluded that the present
model with the estimated model constants is capable to

simulate the flow field with large scale vortices.
5.2 Numerical simulation

In the previous section, approximate solutions are
derived for the turbulent characteristics of Stuart vortices,
and the model constants are estimated by tuning their values
by numerous trials considering the turbulent structures. In
this section, numerical simulations are carried out using the
estimated model constants and the results are compared to
approximate solution to assess the effectiveness of the
approximate approach.

The equation of actual Stuart vortex expressed in Eq.
(20) gives the following velocity field.

0 sinh
oy sihy o)
Oy coshy+Acosx
0 Asin
U, =-H- X (41)
Ox coshy+dcosx

For this velocity field, the turbulent stresses as well as & and
g profiles are determined. As shown in Fig. 7, two vortices
are considered in the flow domain with a periodic boundary
condition at upstream and downstream end.

The periodic turbulent structures simulated for RUN-1
are shown in Fig. 8. Turbulent kinetic energy (k) and its
dissipation rate (€), turbulent normal stress in x, y and =
direction (expressed as u,u;, usu; and uzu; respectively) are
showing the contours in elliptical shape at the vortex center.
On the other hand, the turbulent shear stress in xy plane
(u;) is showing hyperbolic profile (saddle pattern). The
results satisfy the approximate solution, and prove that the
conditions derived for the constitutive law with the estimated
model constants are applicable to simulate large scale
vortices.

In the approximate solution it is shown that, the
turbulent structure is changed with the change of the values

-of model constants; the evidence is also presented using the

mode} constants of RUN-2. The simulation results for
RUN-2 are presented in Fig. 9. Considering turbulent kinetic
energy and turbulent normal stresses as shown in Fig. 9 (a),
(c) and (d), the hyperbolic profiles (saddle pattern) are
observed instead of elliptical one. The results of numerical
simulation fully satisfy the approximate solution.

Fig. 6 shows that at the center of vortex, where the
strain and rotation parameters are large, the value of ¢, is
less than 1/2 of its far field value. However, in the standard
k-& model, the coefficient c, has no dependency on the rate
of strain and rotation, and bears a constant value (=0.09)
throughout the turbulent flow field. This deficiency of
standard k-& model causes an inconsistent prediction of
turbulent structures at the center of vortex. Fig. 10 shows
the results simulated by standard %-& model. The model
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failed to generate the elliptical profiles (focus pattern) for &,
£ and turbulent normal stresses. The result is consistent with
RUN-2 (Figs.5 and 9), where the value of ¢, is not sufficient
to count the effect of strain and rotation rates.

From the consideration of spatial distribution, it is
observed (RUN-1, Fig. 8) that the topological structures of
turbulent normal stresses at vortex center are elliptic, and at
saddle point the topology changes to hyperbolic profile
(saddle pattern). The simulated results for turbulent
structural topology in singular points are found compatible
with that of previous experimental investigations of
coherent structures in free shear flows®.

6. Conclusion

Based on a realizable non-linear % £ model,
approximate . solutions are derived for the turbulent
properties of Stuart vortices. It is observed that the
structures of turbulent stresses are changed with the values
of constants. The values of model constants are tuned
considering the predictability of turbulent structures near the
vortex center; and the set of model constants that generates
the actual structures of turbulent profiles, is considered to
satisfy the necessary conditions for unsteady-RANS
applicable to large-scale vortices. '

The realizability conditions are also derived for a plane
shear layer to estimate the constraints for the coefficients of
eddy viscosity.

Numerical simulations are carried out using the
estimated model constants and the results are compared to
approximate solution to assess the effectiveness of the
approximate approach: The results satisfy the approximate
solution, and prove that the conditions derived for the
constitutive law with the estimated model constants are
applicable to simulate large scale vortices.

The topological structures of turbulent energy and it’s
dissipation as well as the turbulent intensities are found to
be changed from elliptical to hyperbolic for the spatial

change from vortex center to saddle point respectively.

Appendix: Notation of Symbols

Cua, € =k— & model constants

¢ g (cy, €2, €3) = non-linear k — & model constants

Cuts Cns» CnQ> Cds» Cds Cass Cdst> Cais Cason = model
constants for ¢,

Cho = the model constants for ¢4

k = turbulent energy

koo, ko, k10, Koz k2o k1= coefficients of the assumed &

distribution
mys , Maq = model constants for cg
P = pressure

S = strain parameter defined by Eq. (12)
Sy = strain rate tensors
U = average velocity in x; direction
U,, U,, U, =velocities in Cartesian coordinate system
u; = turbulent velocity in x; direction:
U u; = Reynolds stress tensor
X; =spatial coordinates
x,y, = = Longitudinal (stream-wise), transverse

(width- wise),

directions in Cartesian coordinate system

and vertical (depth-wise)

£ = turbulent energy dissipation rate

Eoo, Eop E1or Eg2r En, E11= coefficients of the assumed &
distribution

) = density of fluid

v = molecular kinematic viscosity

v, = eddy viscosity

o 06, =k—¢& model constants

Q = rotation parameter defined by Eq. (12)

Qi = rotation rate tensor
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