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This paper reports the results of laboratory model tests subjected to bearing capacity of rigid strip footing. Based

on the resulis, this paper proposes a numerical procedure for estimating the bearing capacity of rigid strip

footing under some complex conditions. The procedure uses a smeared shear band approach and a modified

initial stress method to provide an explicit collapse mechanism represented by the stress yield condition,

assuming the Mohr-Coulomb yield criterion with a simple non-associated flow rule. The procedure employs a

simple constitutive model which requires a small number of soil parameters, so that it may be applied to

practical design work rather than the simulation of actual failure behavior. Comparison is made between the

results calculated by the numerical procedures and those of the laboratory model tests.
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1. Introduction

Conventional stability analysis based on the limit
equilibrium method and so on, is as yet the most powerful
means for estimating the bearing capacity of rigid strip footing.
However the stability analysis often tends to become uncertain
and unreliable for a soil stratum which consists of multiple
layers, or which includes materials having quite different
stiffness. This is because the stability analysis does not consider
the stiffness of materials, but evaluates the material properties
only by its final strength. At first, laboratory model tests are
carried out to evaluate the actual behavior of settlement and
collapse mode of soil stratum under footing pressure. Secondly,
based on the findings of the model test, proposed is a numerical
procedure for bearing capacity, which considers the stiffness
and strength of materials. Based on a smeared shear band
approach and a modified initial stress method, assuming
Mohr-Coulomb vyield criterion with a simple non-associated
flow rule, the proposed procedure attempts to provide an
appropriate bearing capacity which is supported by an explicit
collapse mechanism represented by stress yield condition. This
method employs a simple constitutive model which requires a
small number of material parameters, so that it may be applied
design work rather than the simulation of actual failure
behavior.

2. Laboratory Model Test

2.1 Test Equipment

Fig. 1 shows the soil container made of steel, which is used
for laboratory model test. The inner size of the soil container is
shown in Fig.1. In order to observe the experimental behavior,
a hardened glass with grids of 5cm size is fixed on one side of
the soil stratum. Earth pressure meters are installed in the
ground (as shown in Fig. 2) to measure vertical earth pressure.
A laser telemeter is used to measure the settlement of loading
plate. Beans or colorful sands are interspersed in layers among
the soils which enable to visualize the formation of active
failure wedge under footing, Considering the friction between
soil stratum and soil container, we use a thin rubber membrane
smeared with a thin layer of silicon grease on the surface of
side walls of soil container. We perform also the other model
test without rubber membrane, and compare the friction effect
to bearing capacity. To apply loads to the loading plate, a
Bellofram Cylinder is used, in which the air pressure obtained
from air compressor. We use two sizes of loading plate, 10cm
and 15cm in width. A sand paper is glued onto the undersurface
of loading plate, so that it may simulate rough condition on
base friction.

2.2 Soil Material
Considering the specimen characteristics and size effect of
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loading plate, the model tests are performed based on three
different types of subsoil made of dense (Toyoura) sand, loose
(Toyoura) sand and mountain sand respectively. Table 1 lists
the soil parameters, where E: Young’s modulus of the soil
stratum, B: width of loading plate, Li: Poisson’s ratio, and c,
¢: Mohr-Coulomb strength parameters. ¢ and ¢ are obtained
by a direct shear test. E is back-calculated by the footing:
settlement observed. The elastic modulus of geotextile is
determined by a tensile test. Y denotes the model test with
geotextile, while N denotes the test without geotextile. Material
properties of geotextile (polyester) are as follows, length:
900mm, width: 200mm, thickness: 0.21mm, tensile strength:
117.6kN/m?, strain at tensile failure: 19%, mass density:
130g/m’, E: 1200MN/m’. A piece of geotextile is put on the
location shown in Fig.25.

2.3 Test Procedure

As stated above, foundation subsoil is made respectively of
three types of soil material shown in Table 1, which is assumed
to be homogenous. For normal sand, the subsoil is produced by
spreading equipment, which is a vessel of triangular prism with
a spindly vessel. The spreading equipment is suspended on a
hoist, and travels at a constant speed, by which the sands
dropped into the soil container uniformly through a screen with
16 meshes. The vessel can be used to adjust the density of
filling by altering the magnitude of nozzle. The nozzle size of
2mm is used for dense sand, while 10mm for loose sand. For
mountain sand, the foundation subsoil is manufactured by step
loading. Firstly, after the filling is added to the position on
which earth pressure meters installed, the load of 24.78kg in
weight are pressed on the soil layer for 2 minutes to compress
subsoil. Secondly, earth pressure meters and colorful beans are
placed, and afterwards sands are added to the scheduled height
of soil container. Finally, the subsoil is compressed by the way
of four phases’ loads of 24.5kPa, 49kPa, 73.5kPa and 98kPa. In
the early three phases the pressure is kept for 2 minutes and the
last phase for 5 minutes.

After completing the subsoil, a loading plate is put on the
subsoil, on which loading pressure is applied by Bellofram
Cylinder. The subsequent process is summarized as: (1) An
increment of load to the loading plate is applied and kept
constant. The amount of increment was decided by considering
the bearing capacity, so that the steps of loading may become
about 10 to 20. (2) After three minutes, the settlement of
loading plate and the earth pressure corresponding to current
load are measured. (3) Repeat steps 1 and 2 until the failure of
subsoil.

2.4 Test Results
Test results show that the bearing capacity is considerably

Table 1. Properties and conditions of soil specimen

Soil type dense loose mountain
sand sand sand
loading plate
width: B (cm) 10]15]10[15] 10 | 15
¢ (kPa) 0 0 1225
() 4138 29.78° 30.96°
E (kPa) 3924 981 3924
y (KN/m’) 15928 | 14.034 15.66
Ds;(mm) 0.12 0.12 035
i 0.33
geotextile | N | Y| N|Y|[ N | Y
=
: H
g | |8
4 Z
g
L_ﬁlh g &
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Fig. 1 Soil container
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Fig. 2 Distribution of earth pressure meters

Photo. 1 Formation of active wedge
(dense sand, B=15cm)

affected by many test conditions, such as friction of sidewall of
container, placement of earth pressure meters, and so on. The
case when we set lubricating membrane on the sidewall is
called frictionless case, and the case when we use no
membrane is friction case. Fig, 3 shows that the bearing
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capacity in frictionless case is smaller than that of friction case
for dense sand, while there is not so much difference for loose
sand. Fig. 4 shows that the placement of earth pressure meters
may improve bearing capacity, due to the reinforcement effect.
Fig. 5 compares the results performed on the same condition
for investigating scatter in test result. For dense sand, due to
time lag of construction of global collapse mode, test result
scatters remarkably, while for loose sand the probability of
reappearance is high. Hereafter we employ only the test result
under the condition of frictionless case and placing earth
pressure meters. Fig. 6 shows the effect of earth reinforcement.
In dense sand case, we can obtain the clear failure point. In Fig.
6 (a), in any condition an active wedge below footing has been
formed (see Photo. 1) and explicit slip surface is observed
before the settlement increases remarkably. In Figs. 6 (b) and 6
(c), the evident active wedge cannot be observed. In any case
the earth reinforcement gives much larger bearing capacity.
Fig. 7 illustrates only a part of vertical earth pressures
monitored. The earth pressure near the centerline tends to
increase after failure, while the pressure apart from center
decreases. This phenomenon may be related to the occurrence
of active wedge under footing,

3. Numerical Procedures 1

3.1 Outline

Many analytical and numerical techniques can be used to
calculate the bearing capacity of a rigid strip footing. The
conventional stability analysis is based on the limit equilibrium
" method, slip line method and so on. The limit equilibrium
method represents kinematical conditions only by using the
mechanically reasonable shape of a slip surface as shown later
in Fig. 12, and evaluates the material properties only by its final
strength. The method does not explicitly allow to consider the
stiffhess and deformation of materials which may play an
important role for evaluating earth reinforcement, and which
may affect the globe collapse mode. Due to the defect, some
methods are proposed. Many researches indicate that classical
FEM does not necessarily provide a reasonable collapse
mechanism"?. Subjected to Mohr-Coulomb material, the limit
analysis has not completely overcome the difficulty that the
limit theorems cannot be proven without the normality rule in
plasticity, and that the normality rule may not hold for the
material, although it is known that the analysis provides a
suitable solution in most cases” . In spite of many researches,
the accurate description of localization phenomenon in soils is
still open to question. For instance, the bifurcation analysis that
tries to simulate actual localized deformation seems to give a
promising view, while the analysis may not give reasonable
solutions for complicated boundary value problems like
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Fig. 5 Dispersion of test results (frictionless)

bearing capacity® ?. This may be because in bearing capacity
problems it is not easy to duplicate the rotation of principal
stresses from the below part of footing to the peripheral region.
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The adaptive procedure appears to require a lot of numerical
efforts and to contain a certain numerical difficulty in some
cases™ ), In this paper, based on a modification of smeared
19 and on a new calculation scheme for
nonlinear FE analysis, a simple and practical procedure for

estimating the bearing capacity is discussed, which enables to

shear band approach
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Fig. 7 Distribution of vertical earth pressure

create a reasonable collapse mode. The conditions to get such a
collapse mode are as follows: 1) Assume an active wedge
below footing, 2) Treat the yielding mass as a stratified material
resulting from the smeared shear band approach, and 3)
Perform rigorously the nonlinear FE analysis based on the
modified initial stress method.

3.2 Yield Criterion
To relate the proposed procedure to conventional stability
analysis, Mohr-Coulomb and Coulomb yield criteria are
employed respectively to plane strain soil mass and friction
interface between structure and soil. For the friction interface
we employ the thin layer finite element as shown in Fig. 8",
Mohr-Coulomb:
Fyv= {(ox-0y) 2+4-c,(y2}1/2-{( ox10y) sing+2c cosp} =0 (1)
Coulomb:
Fe=|14l-c-oitan ¢ @
where, 0y Oy and Tyy: stress components, and o; and Ty normal
and shear stresses in friction interface (see Fig. 8).

global coordin{a(te

Fig. 8 Coordinates in interface element

3.3 Constitutive Relationship

(1) Stress-strain Relationship for Coulomb Interface
Subjected to Coulomb interface, Fig. 9 schematically

illustrates the relationship between stress vector {G} and strain

vector {€ }. Both for Mohr-Coulomb and Coulomb materials,

linear elastic responses are assumed before yielding. When

(&%)
Tst (56"} AEFC

A Q

Tst
TstB
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e ep
Y
[

shear strain Y

Fig. 9 Stress-strain relationship
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applying further footing pressure after yielding, the stress state
will move along the yield surface as seen in Fig. 9. This is
because normal stress G;becomes larger with the increase of
footing pressure, and because yielding shear stress increases
with normal stress for frictional material. Point B in Fig. 9
corresponds to a plastic equilibrium state at an arbitrary
position within a yield region. At the elasto-plastic state from
point A to B shown in Fig. 9, we employ a simple
non-associated flow rule or plastic potential Q¢ defined as 2

Qc=|tl-g 3)

where g: a hypothetical parameter which is not cited actually,
because Qc is used only by its differential form. For the thin
layer element shown in Fig. 8, Egs. (2) and (3) give the
elasto-plastic stress-strain relationship as "

{80} =[Dy”] {367} @

where {86} = {8cs, 80, 8t} ", {06} = {0e,, 8e%, 8T}
[Dy®] = [DHDHEF/0{c} } {Qu/d{c} } DV {oF/d{c}}"
[D]x {8Qc/d{c}}=[d;]
dy=d5=Cy, d17=d21=C,, dj5=dp=d33=0,
d31 = :I:Cztand) d32= iCItand)
Cr=E (1-p/ {(1+1) (1-2 W)}, CAEW {(1+p) (1-2 )}

where {86} and {8c™}: stress and elasto-plastic strain
increments (see Fig. 9), [Dg"]: elasto-plastic stress-strain
matrix in local coordinate st in Fig. 8, [D]: elastic matrix, and
d;j: component of [DP]. The stress and strain components are
also defined in coordinate s-t. The upper sign in Fig. 9
corresponds to a positive shear stress.
(2) Stress-strain Relationship for Mohr-Coulomb Material
When shearing a finite size of soil element, it is well known
that we often observe a shear band or slip surface as shown in

Fig. 10 (a). Despite many theoretical and experimental studies

devoted to the mechanism of shear band formation, we still
have not reached a final agreement with regard fo inclination
angle of shear band o defined in Fig. 10 (2)™"". Since our
main concern is to get a practical design procedure, we employ
the most fundamental expression as

o=m/4+2 Q)

Without introducing an additional interface element
corresponding to a shear band, Pietruszczak et al. "” proposed
the smeared shear band approach which evaluated the average
stress-strain response of solid and shear band. Based on this
approach, we assume elastic response of solid and
elasto-plastic response of shear band herein, because this
postulate yields a convenient constitutive behavior as described
later. According to the procedure by Pietruszczak et al, the
average stress-strain matrix is given as follows. Assume that a
plane strain solid element reaches a yield state, and that a shear

band has been created as shown in Fig. 10 (a). Regarding the
shear band as a thin layer finite element illustrated in Fig. 8,
strain components in shear band are given in local coordinate
s-tas

{8} =[D™T" {80} (©)
Assuming elastic response except in shear band, strain
components in solid region are

{8} =[D]" {8} ¢

Superposing two strains in Egs. (6) and (7) by smeared shear
band approach, average stress-strain matrix of the whole
element [D™'] and that in global coordinate x-y [Dy,"] is

[D™] = {[DeT"t/+/A cosp

+DT' (1-t/VA cosp)}” =[a] @®)
[Dg™1=[T] D™ [T] ©

where t: thickness of shear band, [T]: coordinate
transformation matrix, and a;;: component of [Dy™]. Note that
both [Dg™] and [Dy,™] include no current stress components.
Research on shear band thickness demonstrates a; approaches
to dj defined in Eq. (4) with increasing t. This means that the
yield plane strain element becomes close to the stratified or
cross-anisotropic material as illustrated in Fig. 10 (b) when t
exceeds a certain thickness. In the bearing capacity calculation
given later, we can get a collapse mode analogous to Fig. 12
when assuming a; to be equal to djj. Considering this result,
throughout the following case studies we suppose

[Ds"}= [Ds™] (10)

This assumption means to neglect t. Though the introduction of
strain softening may be effective to clarify a collapse point, the
proposed procedure considers no softening behavior, because
of reducing the number of material parameters for practical use.

Ol

1/‘"0'3 b
b—q —

( a) shear band

/

-— O3

]

AR RN R R R R RN

\

( b) stratified material

Fig. 10 Shear band formation

(3) Direction of Shear Band

Generally a set of two shear bands or slip surfaces A-A' and
B-B' is possible for a finite soil element according to the
principal stress state as shown in  Fig. 11 (a). In practical
problems, it may be troublesome to determine one direction of

-355-



shear band, for instance, according to bifurcation analyses.
Most of representative stability analyses suppose the active
wedge below footing base and often apply the classical passive
earth pressure theory in which surface C-C' in Fig. 12 is
regarded as a wall surface. Many experimental researches have
observed actually the active wedge developed (see Photo. 1).
Based on these reasons, we assume the active wedge below
footing, which is represented by a series of interface elements
in Fig. 8. Considering the above results, we assume the shear
band B-B' defined in Fig. 11 (a) within the active wedge in Fig.
12, and assume the shear band A-A'" in Fig. 11 (a) outside of the
active wedge as seen in Fig. 12, The direction of A-A' or B-B'
line in Fig. 11 (b) is generally determined as(see Fig. 11b)
p=—0-06 :A-A'line
=a-0 :B-B'line (11)

where [3: inclination angle of shear band from horizontal axis,
and 6: angle of the major principal stress from vertical axis.
Note that compressive stress is positive here and that shear
stress Ty is negative along A-A' line in Fig. 11 (a) and positive
along B-B' line.

3.4 Definition of Loading State

As stated above, a stress state is assumed to move along the
" yield surface after yielding. The linear stress-strain relationship
also happens to make a stress state move along left side in Fig.
9 when applying the relationship to a boundary value problem.
Such a movement sometimes produces exceedingly high
tensile stress for some finite elements'. To avoid ‘this
confusion, we introduce a constraint with respect to oy, which
compels a stress state to move along right side in Fig. 9.

dor = 0 (12)

Eq. (12) means that normal stress perpendicular to the slip
surface never decreases. The finite element, in which stresses
violate Eq. (12), is called tensile element hereafter.

3.5 Modified Initial Stress Method

With increasing friction angle ¢, it makes numerical analysis
quite troublesome to assume stratified material shown in Fig,.
10 (b). The original initial stress method often provides
unreasonable distribution of displacement and unstable bearing
capacity for the case. In the original stress method, the
incremental procedure, which treats the nonlinearity as
piecewise linear, does not create the collapse mode as
illustrated in Fig. 12, even though assuming the stratified
material. This difficulty requires developing a modified initial
stress method introduced below. Fig. 13 (a) defines actual stress
of initial state {Gy}, yield stress {Ga}, actual stress of plastic
equilibrium state {og}, elastic stress {Og}, virtual initial stress
{co}, total strain {€}, elastic strain {&}, and elasto-plastic

strain {€®}. For the convenience of solving bearing capacity
problems, we apply footing pressure by many loading stages
subdivided. In the application of initial stress method, we use
the same stiffhess matrix throughout all the loading stages,
because we assume a linear response of subsoil before yielding
and assume a different linear response after yielding as given
by Eq. (4). Yield stress {c,} is isolated by Nayak, et al.””. To
determine the direction of shear band, it is necessary to find
direction of the major principal stress 0. We determine 6 by
using yield stress {Ga}, and use it throughout the succeeding
loading stages, because the other methods do not necessarily
provide a collapse mode as shown in Fig, 12.

The original initial stress method is based on an iterative
procedure. At each iteration step, the method applies initial
stress {oo} = {og}-{os} Where {og} is calculated by using
{oo} found at the preceding iteration step. Thus the original
initial stress method is a special application of the modified

-Newton-Raphson method from mathematical viewpoint™.

When applying the original initial stress method together with
the constitutive model described above, the numerical results
are considerably affected by the finite element subdivision
system, and unreasonable distributions of stress and
displacement are often observed. These difficulties are avoided
by introducing a modified initial stress method, which finds
directly the initial stresses without iterative procedure. The
constitutive model employed here, which is a linear equation
also at the elasto-plastic state, enables to apply the modified
initial stress method. Firstly initial stress vector in s-t coordinate
is

{6x0}= {0, S0, Tsto} (13)
(o] ! 8
l I
1 ‘6
A B 2 \\\
A
<—-—G—; \\
‘\? Cap
\\ aa
B A i ¥ k

(a)two slip surfaces (b ) direction of slip surface in an element

Fig. 11 Direction of shear band

Fig. 12 Isolation of slip surface
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Referring to Eq. (4), component d;; in [Dy] is the same as the
component of elastic- matrix [D] except the third row
components. This means that both 6 and Gy in Eq. (13)
vanish both in interface and plane strain yield elements. The
application of Eq. (13) reduces the numerical effort and
clarifies the mechanical meaning of initial stresses. Referring to
Fig. 13 (b), in which the stress state has attained to yield state at
the present loading stage, the basic equation in the initial stress
method is given as

{r}i= {oso}i- [T} {{oe}i- ({oa}i*+ & {0a}))
= {0, 0, ts0}i- [T} (D}~ [Py (B (KT ({36
+ % [BY [T} {ow} AD}i- 8 {£°) =0 (14)

{08} = {o} "'+ [D] [B] {8u}

8 {op} = [Dy™13{e"} = [Dy™ [DI" ({08} -{oa})
= [Dy™] [DI' (ID] [B] {8u}-({ca}-{c}™")

where {r}; residual, [B]: matrix for calculating strain
components from nodal displacements, [K]: global stiffness
matrix, {6f}: load increment vector, A;: area of the element,
and suffixes i and j denote element number. 8{€°} in Eq. (14)
and Fig, 13 is calculated as [D]'({oa}-{c}™"). The constraint
given by Eq. (12) is represented as

{r}i= {oso}r [Tl {{or}{oc}i}={0, 50,0} T]; ' [DI;
(B {IKT" ({3} +%; [B];" [T; {00} AD}-3{T}) =0 (15)

where {oc}i ={Ga}; or {oc}i ={c}{*' respectively when the
element has yielded at the present loading stage # or when the
element yielded at the preceding stage. Since both Egs. (14)
and (15) are linear equations with respect to unknown {G o}, it
is possible to directly solve Egs. (14) and (15) as a set of
simultaneous equations. For instance, Eq. (14) for finite
element / is given as

{50} T ' ((D}i-[Dy™ 1) BIHIKT ' ZBY [Th{ow}iA
= [T} (DI{Dy™1) (BIAIK] ' {86}:-3{e7}) =0  (16)

with respect to unknown {Ggqo}; given as

@- | [T} DID™) BIKT'BY [T} A | 10,070}
= | [T (DI ™) (BIIKT (66 %3 |5 17

where| 13 denotes the third component of vector, etc. When
solving Egs. (14) and (15), we must assume the constant
numbers both of unknown 1ty and o. Thus the following
additional iteration is required for determining the yield finite
elements and tensile elements. The numerical steps during a
typical loading stage are summarized as follows. 1) Performing

where,

an elastic analysis by using actual load increment {of},
calculate {og} and {8¢} in Fig. 13 (b). 2) Find the yield finite
elements in which {og} violate the yield criterion, and tensile
elements in which stresses violate Eq. (12). 3) For the yield

elements, calculate yield stress {G4} both from {og} and the
preceding stress state. 4) Concerning {G4}, calculate direction
of the major principal stress 0, and find shear band inclination
angle B by Eq. (11). 5) Calculate [Dg"] by Eq. (8). 6)
Determine {oyo} by solving Egs. (14) and (15). 7) Again, find
the yield and tensile elements by performing an elastic analysis
by use of both {6f} and {cg} determined at 6). When finding
new yield or tensile elements, determine {Gyo} subjected to the
total yield and tensile elements including the new yield and
tensile elements. Repeat this procedure until neither new yield
nor tensile element is found. 8) Based on the final results at 7)
calculate necessary state variables {og}, settlements, and so on.

{0’5 E
T
{00} {00}
{o8) {oe
(o BB gl | (Fon
. (ox}
{0’1} 58 i &ep |
0 e [
Ls—l—‘c’e{——i n-1 5 loading stage n

(a) initial stress method ( b ) initial stress method at a loading stage

Fig. 13 Modified initial stress method

4. Numerical Procedure 2

Numerical procedure 2 is a conventional elasto-plastic FE
analysis, in which we employ the stress-strain relationship and
non-associated flow rule shown in Fig. 9 without assuming
shear band. For Mohr-Coulomb material, the plastic potential is
given as:

Qu= {(ox0y) + 414} - 2¢ (18)

By using Egs. (1) and (18), the incremental stress-strain
relationship is calculated. This problem is successfully solved
by the original initial stress method developed by Zienkivicz et
al?,

5. Numerical and Experimental Results

5.1 Hypothetical Case Studies

Fig.15 shows FE meshing for a hypothetical case study.
Material parameters are given in Fig. 15, in which y: unit
weight and T: thickness of footing. The footing or loading plate
is modeled by beam elements and represented by elastic
modulus and moment of inertia. Interface elements are set
between footing and soil deposit, in which shear modulus
G=E/2 (1. For convenience, we introduce 'footing pressure
ratio R' defined as
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R=q/qu (19)
where q: current footing pressure applied and q,: ultimate
bearing capacity given by Terzaghi®’. Throughout all the
following case studies, angle o in Fig. 15 is given by eq. (5),
regarding the vertical footing pressure as the major principal
stress. This assumption is valid because the shear stress
between footing base and subsoil is quite small before collapse
due to small lateral deformation at the upper surface of subsoil.
When considering, for instance, coefficient of earth pressure in
rest Ko=1-sin¢™, the proposed procedures provide much
lower bearing capacity than conventional solutions. Thus we
give isotropic initial stresses {oi} as follows: 6y= overburden
pressure, horizontal stress cy=oy, and 1,~0 as well as
assumed in conventional limit equilibrium analyses. Fig. 14
shows R-settlement curves calculated by Numerical procedures
1 and 2. When R exceeds 1.06 in Fig. 14, Numerical procedure
1 gives larger settlement at a loading stage than the settlement
at the preceding stage. This suggests that we cannot find a
mechanically stable state at the loading stage. Fig. 15 shows the
yield region or collapse mode by the procedures for R=1.06. In
Fig. 15 (a) a solid line in each finite element represents the
direction of shear band defined in Fig. 10, and that the element
has yielded. Numerical procedure 1 seems to give a global
collapse mode analogous to Prandt]l mechanism illustrated in
Fig. 12. Note that the collapse mode is represented by stress
yield condition as well as the conventional stability analysis.
Since Numerical procedure 1 does not sufficiently simulate the
strain localization or the concentration of strains, the procedure
may not give a complete collapse mode. Fig. 15 (a) suggests
that the collapse mode produces an infinite plastic shear flow of
subsoil or unreasonable distribution. of displacement for R
equal to 1.06. Thus we consider R=1.06 as the bearing capacity
solution of this problem, which is in good agreement with
Terzaghi solution?. The bearing capacity in terms of R is
called 'critical footing pressure ratio R, The collapse mode in
Fig. 15 (a) is supported by the displacement field shown in Fig,
16 (a) and stress filed shown in Fig. 16 (b) that appear
mechanically reasonable. The collapse mode is created by
considering the weight of subsoil, stiffhess of footing and
subsoil, friction between footing and subsoil, and stress
concentration at the edge of rigid footing in the proposed
method, while most of which are ignored in the limit
* equilibrium approaches. A little difference between the collapse
mode in Fig. 15 (a) and Prandtl mechanism is discussed as
follows. The yield region in Fig. 15 (a) tends to distribute
deeply below footing. Despite the lateral plastic flow as
illustrated in Fig. 15 (a), the vertical pressure must reach lower
subsoil due to the vertical equilibrium condition, and the
pressure makes lower subsoil yield. Although conventional
stability analysis provides little information about yield state
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except on the location of slip surface, there is the possibility
that the region lower than the slip surface may yield. In Fig.
16 (a) we observe little deformation of lower subsoil. The
proposed procedure represents a collapse mode by yield
condition of stresses, which is the same as conventional
stability analysis and different from most application of
conventional FEM using strain distribution. Since Numerical
procedure 2 neither constructs a global collapse mode as
Numerical procedure 1 nor gives remarkable settlement after
exceeding R, it is not easy to define R, explicitly. Numerical
procedure 1 gives the settlement larger than Numerical
procedure 2, by the plastic shear flow along the sequence of
stratified material constructed after yielding,

5.2 Comparison between Numerical and Experimental
Results

FE meshing for the experiment is shown in Fig. 17, in which
the depth of the active wedge varies with o defined by Eq. (5).
Material parameters are given in Table 1. Fig. 18 compares
calculated and monitored R-settlement relationships for all the
cases listed in Table 1. For Numerical procedure 1, ultimate
bearing capacity R, is given for each case according to the
definition stated before. Fig. 19 shows the yield region or
collapse mode by Numerical procedure 1 for the
above-determined R It contains a slip surface assumed by
Prandtl, which is given by assuming no lateral boundary. In any
case, Numerical procedure 1 seems to give a collapse mode
analogous to Prandtl mechanism. It is not easy to define the
bearing capacity by Numerical procedure 2, because the
procedure neither constructs a clear collapse mode nor gives a
clear turning point in R-settlement curve. Fig. 20 gives
examples of yield region by Numerical procedure 2. Fig. 21
shows an example of nodal displacement by Numerical
procedure 1.

From Fig. 18, we can observe that Numerical procedure 1
provides larger settlement than Numerical procedure 2 for
dense and loose sand due to the reason stated before.
Numerical procedure 1 does not intend to simulate stress-strain
behavior but to estimate the value of ultimate bearing capacity.
Numerical procedure 2 provides somewhat reasonable
settlement, but does not give a clear tuming point. For
mountain sand our procedures cannot consider the
characteristic of soft soil with high compressibility, and they
provide the calculated results considerably different from
monitored ones.

The model test provides R;~1.0 for B=10cm and R~1.36
for B=15cm in dense sand, which are close to Terzaghi solution,
while Numerical procedure 1 gives lower bearing capacity.
Comparing with Prandtl mechanism in Fig.19, Numerical
procedure 1 tends to give more shallow collapse mechanism.
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8 g
Q
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8 §
o o
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Fig. 17 FE meshing
footing pressure ratio R
0 0.5 1 1.5
- 0
g -50 R=0.75 |
g —o— Numerical procedure 1
-100 | —s— Numerical procedure 2
'ﬂ —a— Test results
“.150
B=10cm, dense sand
0 0.5 1 1.5
0 ¢ revererarwy !

Rs=0.85

—s— Numerical procedure 2
—a— Test results

E -100 || —e— Numerical procedure 1
3

-150
B=15cm, dense sand
0 1 2 3 4 5
e
50 - Ra=1.06

= -100 +
g -150 H __e— Numerical procedure 1
%

200 H —=— Numerical procedure 2|
—a— test results

B=10cm, loose sand
0 1 2 3 4 5
0 1 1 J

-50 T

T -100 Rg=1.10
g -150
E:

—o— Numerical procedure 1
—e— Numerical procedure 2
-200 H —a— test results

=250 B=15cm, loose sand
0 0.5 1 1.5

0 1 |
-50 an
-100 - R,=0.85"
-150 £
.200 || —e— Numerical procedure 1
250 | —— Numerical procedure 2
- [l ~a— test results

settlement (mim)

-300 N
B=10cm, mountain sand
0 05 1 1.5

0 1 I ]
’g 50
& -100
E -150
g 200 | |—e—Numerical procedure 1
g 250 | |~ Numerical procedure 2
% 300 —a— test results

B=15cm, mountain sand

Fig. 18 R-settlement relationship

That is, as shown in Fig. 21, the subsoil deforms upward near
the lateral boundary. Numerical procedure 1 may seem to
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search the most dangerous collapse mode under the given
condition. Note that the prbcedure gives the similar bearing
capacity with Terzaghi solution when foundation soil is
sufficiently wide as shown in Fig.15 (a). This tendency may
probably reduce the bearing capacity in Fig. 19. One more
reason is that Numerical procedure 1 tends to give smaller R;
than Terzaghi solution with increasing ¢, as shown in Fig. 22.
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For loose sand, Numerical

procedure 1 provides R
close to Terzaghi solution.
This is mainly because the

collapse mode similar to
Prandtl can be formed
completely as shown in Fig.
19 (b). _
Figure 23 compares
calculated and monitored
distributions of wvertical
earth pressure. We observe
that the large difference
between calculated and monitored vertical earth pressures.
Experimental results indicate that the earth pressure is large in
centerline due to concentration of stress in sands as particulate
media. Compared with experimental results, a peak value
appears apart from center in Numerical procedure 1. This is
because the element at this peak point yields later than others.
Fig. 24 illustrates the earth reinforcement effect on the
bearing capacity in comparison with natural subsoil. FE
meshing and material parameters are the same as those on

Fig. 21 Nodal displacement
(Numerical procedure 1)
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non-reinforced cases except the geotextile is practiced by truss
material. The material properties are given in 2.2. In any case
the earth reinforcement gives much larger bearing capacity
than that in natural subsoil. Since in dense sand the deformation
modulus of soil is larger, the effect of reinforcement becomes
smaller than the effect in loose sand. Fig. 25 illustrates the yield
region for reinforced subsoil in loose sand. As shown in Fig. 24,
Numerical procedure 1 restricts the settlement after failure, but

the procedure does not give correct solution of seftlement after
yielding as stated before. Numerical procedure 2 shows a little
improvement on bearing capacity and settlement. The
conventional ability analysis uses the collapse mechanism
assumed without reinforcement, and evaluates the
reinforcement material only by its final strength. The method
neglects the stiffness of reinforcement material which may
restrict the deformation of subsoil and which may largely
contribute to the improvement of bearing capacity. This case
study proves the possibility of applying the proposed procedure
to the stability analysis of earth reinforcement, which takes the
stiffness and displacement of material into consideration. The
optimal combination of material stiffness with strength,
placement etc. will have to be investigated in the future study
based on many trial applications of the proposed procedure.

6. Conclusions

This paper performed the laboratory model tests subjected to
bearing capacity of rigid strip footing and proposed a numerical
procedure for calculating the bearing capacity of strip footing
considering stiffness of material and collapse pattern. The
procedure aims to fill a gap existing between conventional
stability analysis and classical FEM. The procedure employs
Mohr-Coulomb and Coulomb yield criteria respectively for
soil mass and friction interface between soil and structure. By
assuming a linear elastic response before yielding and a simple
non-associated flow rule after yielding, and by employing a
smeared shear band approach and a modified initial stress
method, the procedure provides a -collapse mechanism
analogous to a slip surface assumed in conventional stability
analysis. At the collapse mode created, a stress yield criterion is
satisfied as well as along a slip surface supposed in
conventional stability analysis. Such a definition of collapse
mode is different from most applications of FEM which tend to
emphasize plastic shear deformation. Some case studies prove
that the proposed procedure provides a solution close to the
conventional solution. The procedure produces a coliapse
mechanism as assumed in conventional stability analysis, and
that the mechanism is supported by a displacement field and a
stress field. This characteristic indicates the possibility of
applying the procedure to the stability analysis which takes
stiffness and deformation of material into consideration.
Comparisons with experimental results show that the
procedure provides a reasonable solution of ultimate bearing
capacity but does not give an appropriate settlement after
failure. Because this proposed procedure (Procedure 1) does
not sufficiently simulate the actual stress-strain behavior. It
gives higher value of settlement due to the plastic shear flow
along the sequence of stratified material constructed after
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yielding. The major purpose of this research is to estimate the
bearing capacity by the collapse mode comprised of yielding
elements rather than simulate the failure behavior. The
procedure should be applied to practical design work to
evaluate bearing capacity.
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