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A coupling of the traditional finite element method (FEM) with the recently developed scaled
boundary finite element method (SBFEM) is applied for analyzing two-dimensional (2D) linear
elastic fracture mechanics problems. Since shape functions of SBFEM are compatible with finite
element shape functions and no discontinuity occurs across the interface, the FEM can be coupled
with SBFEM without any special treatment that require for the coupling with others methods. The
SBFEM has an ability to analytically compute stress and displacement field of singularities region at
the crack-tip more accurately without any a priori assumptions. The SBFEM was employed for the
modelling of near cracks region, where their capabilities can be exploited to the greatest benefit, and
the FEM for areas away from cracks, where no singularities in the stress fields are expected to arise.
The effectiveness of the proposed coupled method was examined by computing the mixed mode
SIFs and T-stress in 2D cracked structures. The computed results are in excellent agreement with
those obtained from existing numerical methods.
Keywords: finite element method, scaled boundory finite element method, coupling, fracture
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1. Introduction

The modelling of fracture and damage is one of the dominant
research areas in solid mechanics today in order to implement
simulations essential for failure prediction of engineering
structures”. For these modelling, the finite element method
(FEM) is obviously a dominant computational method in
engineering because of its great flexibilities and wide range of
applicability. Unfortunately, the FEM has some limitations and is
inefficient to deal with fracture mechanics problems. In order to
capture the stress singularities occurring near crack-tip/
discontinuity (material or geometric), it is necessary a precise
discretization of the crack-tip region / discontinuity, which
reduces its efficiency, or the use of specialized elements of the
singular type. When studying crack growth phenomena, working
with the FEM can become cumbersome, because the precise
representation and discretization of the discontinuity must be
preformed for each configuration of the discontinuity during
crack growth. In order to overcome these deficiencies,
considerable research has been directed towards developments of
sophisticated mesh generation procedures or adaptive techniques
such as hybrid crack element (HCE) method?, extended finite
element method (XFEM) ¥, and S-version FEM (s-FEM) ¥. On
the other hand, compared to the FEM, the boundary element
method (BEM) is particularly attractive for the analysis of linear
elastic fracture mechanics (LEFM) problems. However, it needs

complicated mathematics procedures with fundamental solution
and the standard boundary element formulation is not effective
for numerical modeling of certain crack problems such as, cracks
as narrow slits with upper and lower surfaces slightly separated *.
More recently, the dual boundary finite method ©, displacement
discontinuity BEM (DDBEM)” and Green’s function BEM?,
which are in developing stage, seems to be an efficient way of
modeling crack problems in BEM. Likewise, the meshless
methods ®-? have been developed and used with increasing
frequency over the last decade. The meshless methods are very
flexible concerning geometrical updating of the model but it does
not delete the necessity of the modal rearrangement to keep the
accuracy of the calculation during crack propagation. As
compared with the standard FEM approach, the meshless
methods generally require more computational time to solve the
system equations™® '”. Even though much achievement has been
made in crack modeling techniques, it is necessary to have
excellent solutions surrounding the tips, including the asymptotic
behaviour, where the fracture process occurs '2.

Recently, the scaled boundary finite element method
(SBFEM)  developed by Wolf and Song is emerging as an
efficient altenative approach in order to overcome the above
mentioned deficiencies of the FEM. Authors™ and other
researchers '*™ have presented the versatility of SBFEM to
compute the fracture parameters - stress intensity factors (SIFs),
T=stress and higher order terms of the crack tip stress field. The
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SBFEM has a significant advantage over the FEM and the BEM
to analytically compute stress and displacement field of
singularities region at the crack-tip without any a priori
assumptions so that accurate fracture parameters can be
calculated directly from the definition. Likewise, the SBFEM has
its unique properties that no discretizations of side-face
boundaries are required ', so that the computation cost can be
further reduced. Because of these specific advantages of SBFEM,
fine mesh or special singular element that required near crack-tip
in FEM can be avoided. Moreover, for crack propagation
simulation, authors®™ *" have recently demonstrated the
SBFEM’s flexibility than FEM and proposed a simple
remeshing procedure than BEM.

However, the SBFEM has certain limitations. It requires the
scaling of material variations with relative to the so-called scaling
center and many sub-divisions to deal complex geometry
problem that leads to increase the computational load. Besides, it
is considered linear elastic material behaviors for elastostatics
problems within the domain. These SBFEM’s weaknesses can
be FEM’s strengths. Therefore, it is often desirable to couple the
SBFEM with FEM. To our knowledge, none of the previous
studies have addressed the fracture analysis by a coupled FE-
SBFEM. ’

The main aim of this paper is to couple the FEM with
SBFEM to fracture mechanics applications. It is often
advantageous to use SBFEM only in the sub-domains closed to
cracks, where their capabilities can be exploited to the greatest
benefit and the conventional FEM in areas away from cracks,
where no singularities in the stress fields are expected to arise.
Since shape functions of SBFEM are compatible with finite
element shape functions and no discontinuity occurs across the
interface, coupling of FEM with SBFEM is ‘a straightforward
process and easy than that with others methods such as Meshless
and BEM. Numerical examples are considered to compute SIFs
and T-stress of 2D cracked structures. The computed results are
in excellent agreement with those obtained from existing
numerical methods

2. Review of scaled boundary finite element method

The scaled boundary finite element method is a new
semi-analytical fundamental solution-less BEM based on FEM™.
It is BEM-like method that decreases the spatial dimension by
one. However, it does not require a fundamental solution. It is
based on the FEM formulation. The solution is analytical in the
radial direction and more accurate than the circumferential
direction. It is, therefore, semi-analytical method that it
transforms the partial differential equation of a variety of linear
problems into ordinary differential equations. These ordinary
differential equations can be solved analytically in radial direction
and the coefficients of these equations are determined by the
finite element approximation in the circumferential direction.

The SBFEM formulation based on weighted residual method
and virtual work principle has been presented in Ref ™ 2,
respectively and authors have summarized the derivation in
Ref for bounded domain. The summary is reproduced here
with some modifications for convenience as follows.

The basic concept of the SBFEM is presented in Fig. 1. The
figure shows that the discretized boundaries are scaled with

Scaling center

x
Fig. 1 Scaled boundary finite element co-ordination
system in bounded domain with side faces.

respect to the so-called ‘scaling center’ by introducing a scaled
boundary coordinate system with a radial coordinate, & and a
circumference coordinate, 7. The displacements at any point in
the domain defined by scaled boundary coordinates (& 77) can be
expressed in the form

W&y = XN @ =Ivolwey O

where M(7) is the shape function in the circumferential direction,
which are constructed as in FEM. 1) defines the displacements
along the radial lines. The key relations defining in SBFEM for
plane problems are as follows. (See Ref. ' for details)

According to these derivations, the governing equations of the
SBFEM for elastostatics is as follows

[E )} o HIETHET ~[E ) HE 1 u)y=0 @)

{PY=1EAu&)}, . HE'T {u(®)} €)

where {u(& )}and {P}are the nodal displacements and nodal
forces respectively, and the [E°], [E'], [E*] are the coefficient
matrices which depend on the material properties and the
geometry of domain/sub-domain boundaries. These matrices can
be computed element by element over the boundary, and
assembled together for the entire boundary in the same manner
as the stiffness matrix is determined for the entire domain in the
standard finite element method.
The general solution of Eq. (2) is in the form

{u, (&)} = z e {d,} @

where the exponents A and vectors ¢ are represented as a  radial
scaling factor and a displacement modes shapes. The integration
constants, ¢ represent the contribution of each mode to the
solution, and are dependent on the boundary conditions.

Substituting this solution into Eq. (2) yields the quadratic
eigenproblem

ETET -’ ¢}= l{¢} )
[ENETHET -4 -[ENET |lp) |

The solution of this eigenproblem yields 2 displacement
modes, where 7 is the total degrees of freedom (DOFs) on the
boundary discretization, and hence is also the size of the
coefficient matrices. The eigenvectors contain the modal
displacements and the equivalent modal node forces. For a

- 188 -



bounded domain 0 < £ < Tonly the » modes with non-negative
real components of A lead to finite displacements at scaling center.
This subset of # nodes is denoted by @ = {@; ¢, ¢3...0,} and
corresponding equivalent model forces

From Egs. (3) and (4), the nodal forces becomes

{Py=((E°IN+[E'] Ye (6)

On the boundary or interface of sub-domain, Eq. (4) becomes
{u,}=Pc @)
where , is the nodal displacements on the discretized boundary
the integration constant, ¢ ={¢; ¢ ¢s...c,,}.
After substituting ¢ from the Eq. (7), the Eq. (6) becomes

{(Pr=(E° 1020 +[E'} ){u,} ®)
Therefore, the equilibrium equation is as follows
{P}=[K"1{u,} ©
and stiffhess matrix of the sub-domairy/ domain
[K']=[EJ0i0™ +[E'] (10)

The displacement fields and stress fields inside the sub-domain/
domain can be obtained using

(&, = [N(m]g"lc,«:*f @} an

o m}=[DBles A8 I+B g (12)

where D is the elasticity matrix and B'(;j) and B(z)) are relevant
matrices depending on geometry of the sub-domain / domain

boundary only.
3. SBFEM for fracture analysis

To compute the fracture parameters ie. SIFs and T-stress
and higher order terms of the crack-tip stress fields, authors have
presented two different formulations by comparing the classical
linear elastic field solution (Williams® eigenfunction series) in the
vicinity of a crack-tip with the scaled boundary finite element
stress and displacement field solution at any point ahead of
crack-tip in Refs."?™ ' respectively. In these formulations, the
so-called ‘scaling center’ of SBFEM is considered at the
crack-tip, as shown in Fig, 2 and the stress/displacement field
along the radial direction emanating from the crack-tip where the
stress singularity occurs are analytically calculated to
approximate the crack-tip along the line of propagation of the
crack. According to Ref. ', the mixed mode SIFs and Tstress of
the stress fields are computed by the following relations.

K, =c6, 27 (13)
Ky =6 \277 (4)
T =c(6,,) (15)

where K; Ky and T are SIFs for mode I and mode 11 and

T-stress, respectively and O, , 6,, and G, are the stress

A
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Fig. 2. SBFEM element with different coordinates

components along the axis as shown in Fig. 2.7 is the radial
distances of the boundary nodes from scaling center, and c is the
integration constant. Only the basic equations of the proposed
formulation are presented here. For a more detailed description
see Ref'?,

4. Discrete equations of FEM and SBFEM

Consider a two-dimensional elastostatics problem of solid
mechanics in domain Q bounded by I The equilibrium
equations is the following differential equation

V.o+b=0 in Q (16)

This equation. must be satisfied at every point within the
domain, . Here ¢ = A ¢ is the stress vector, which corresponds
to the displacement field u= {1, v}", b is the body force vector,
and V isthe divergence operator.

The boundary conditions on displacements and surface

tractions are given as follows:
u=u on I, (17a)
o-n=t on I (17b)

where, {i and t are the vectors of prescribed displacements and
surface tractions at the boundary and the superposed bar denotes
prescribed boundary values, n is a unit normal outward to
domain Q. I and I, are the positions of the boundary where
tractions and displacements are prescribed, respectively.

The altemative form of the Egs. (16) and (17 ) is the virtual
work statement as follows

j'agTo—dQ- jaqudQ- j&ﬂ?.dr:O (18)
Q Q r

The FEM and SBFEM use the variation given in the equation.
Using the virtual work, FEM reduce the non-homogenous set of
goveming partial differential equations (PDEs) to a set of linear
equations, but, as mentioned above, SBFEM reduces the PDEs
to a set of ordinary differential equations, which can be solved
analytically. The resulting equations represent a stronger
equilibrium requirement than the linear finite element equations.

The approximation of the displacements {u(x,))} at any point
in the FEM can be written as ®

{ulx,)y= D Wi,y =[Wix, )] {8} (19)

i=]
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where ¥x, y) is the FEM shape functions and # is the nodal
displacement. From Egs. (18) and (19), the equilibrium equation
resulting from FEM formulation can be written as

(K7 ¥a}= P} @0

where [K] is the stiffness matrix, and P is the force vectors
for FEM and superscript, f designate for the FEM.

For the SBFEM, the approximation of displacement (Eq. (1))
and the equilibrium equations (Eq. (9)) have been given in
Section 2.

5. Coupling the FE - SBFE methods

Consider a 2D problem domain Q is divided into two
non-overlapping domains — Osprry, SBFEM domain and Qe
FEM domain, i.e. Q = Qsprav \“ Qrevt, With interface boundary,
I; as shown in Fig. 3. In Fig, 3, e (white circle), s (gray circle),

‘and i (black circle) present the nodes on FEM region, SBFEM
region and interface boundary respectively. The interface
boundary possesses displacement compatibility and force
equilibrium in coupling Osprenv and Q. This means that

Uy SBFEM = Wi(FEM) (21a)

Fysgrens + Firery =0 (21b)

where Ui sprEvg, Ui (FEMD P,- (SBFEM)» and Pi FEM) A€ the
displacements and forces on the interface boundary obtained by
SBFEM and FEM respectively.

Since the SBFEM shape function is compatible with FEM
shape fimction, the displacement compatibility equation (21a)
along the interface can be written as

G} =¥ 0] =[Nty over I (22)

These compatibility equations can be satisfied exactly over
the entire interface as the SBFEM region has some number of
degrees of freedom controlling the approximation.

The equilibrium equations, ie. Eqs. (20) and (9) can be
written in matrix form as follows

kL kZlf«)_[R
- ) = . 23)
K K |\# 2§
K;s ng us BY .
= 24
K, K llu] 12 @
where, the subscripts, 7, e and s designate interaction nodes, and
non-interaction nodes for the FEM and SBFEM region as shown

8§ I Interface i
) 5 I Scaling
center
' [QFIZ‘M E'V
{ [e [ ! QBF[{.!\-I

Fig. 3 Domains contains SBFEM and FEM regions

in Fig3, respectively and superscript, s designate for the
SBFEM.

Due to the compatibility of the displacements and equilibrium
of the forces at the interaction nodes between FEM and SBFEM
regions, the stiffness matrices of FEM can be added to the
stiffness matrix of SBFEM as follows

} (25)

KL KL 0|,
KL K] +K; K;{m}={
Eq. (25) is full system equation of the coupling method. The
stiffness matrices of both the methods can be assembled to form
the system stiffness matrix as usually used in the FEM.

Yo N

8

6. Numerical examples

A computer coding of the coupled FE-SFEM in MATLAB
was developed on the base of above coupling formulation. Then,
the effectiveness of the coupled method was demonstrated to
perform linear-elastic fracture analysis, especially the analysis of
stress field near crack-tip of crack specimens. The following two
fracture specimens were simulated.

i) Athree-point bending beam, and
i) Asingle edged cracked plate

The first was considered as a single loading (Mode I)
condition problem while second was considered for mixed mode
(Mode I & 1) problem. The main objective of the analysis is to
compute the fracture parameters — SIFs and T-stress. As
mentioned above, the SBFEM has the greatest benefit in the
discretization near crack region and it can deal more accurately
and efficiently the stresses near the crack than FEM. Therefore,
near crack region was modelled from SBFEM and other regions
are modelled from FEM. The discretization employed in this
study consisted of three-node iso-parametric quadratic line
elements on the boundary for SBFEM region and eight-node
iso-parametric quadratic plane elements for FEM regions. For
the fracture parameters computation, only the stress along the
radial line passing through first node of first element of SBFEM,
as shown in Fig. 2, was calculated to approach the crack-tip
along its line of propagation. The scaling center was placed at the
crack-tip in SBFEM mesh and, therefore, the straight crack face
and the face ahead of the crack-tip were not discretized.

6.1 A three-point bending beam

The first problem is a three-point bending beam with single
edge crack at the middle. The schematic diagram is as shown in
Fig. 4, where L and D are the span and depth of beam

T
D
34

Fig.4 Schematic diagram
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Fig. 5 Analytical Models and Stress, o, contour of
(/) FE- SBFEM and (i) FEM

respectively and a is the crack length. The applied point load per
unit thickness was P = 1 unit at middle as shown in Fig 4. The
analyses were carried out using plane strain condition with
Young’s modulus £ = 1.0 and Poisson’s ratio v =0.3. Unit
thickness was assumed for the analysis. All units are consistent
with that of E. Only a half of the specimen (hatched portion in
schematic diagrams) was modeled by virtue of symmetry.

The problem was analysed to compute the SIF and T-stress
with span to depth ratio L /D = 4 and the relative crack length,
a /D = 02. A typical FE-SBFEM model with 166 DOFs and
Lg/Lg= 025 used for analysis is given in Fig. 5 (a), where Lgand
Ly are length of SBFEM region and FEM region respectively. To
demonstrate the efficiency of the coupled method, the problem
was also analysed using FEM and compared the stress along the
perpendicular direction of crack face, o,. The FEM model with
1418 DOFs is shown in Fig .5 (c). Fig. 5 (b) and 5 (d) are
presented the stress contours of the FE-SBFM coupled method
and FEM method results respectively. It shows that the coupled
method’s result with less than 15 percentage DOFs of FEM is
significantly similar result with the FEM resuilt.

Then, the fracture parameters — SIFs and T-stress were
computed using Eqgs. (13) and (15) for different domain size of
the SBFEM and FEM. The computed results of the normalized
SIFs, Kl/co(na)m and the nommalized T-stress, T/oy, for three
different length ratios, Lg/L- are presented in the Table 1, where,

Table 1 Computed resuits
L/L Normalized SIFs Normalized T-stress
F Present Ratio-  Present Ratio
0.25 0.3101 0.99 0.2353 1.00
0.50 0.3090 0.99 0.2361 1.00
0.75 0.3083 0.99 0.2367 1.01

* Ratio with the values (0.312 & 0.2355) from [22]

o =3PL/2D" and the ‘ratio’ is the comparison of the computed
results with respect to the references results. These FE-SBFEM
results of the normalized SIFs are compared with the results
obtained by Guinea et al. (1998), while the computed normalized
T—stress are compared with the results obtained by HCE method
from Ref*. The comparison shows that FE-SBFEM results are
in an excellent agreement with the references values and
significantly similar results in all the domain size, i.e. no major
effects in the results due to domain size.

6.2 A single edged cracked plate

A single edged cracked plate with fixed at the one end and
subjected shear stress of T= 1 unit on the other end was simulated
for mixed mode fracture parameters computation. It is a widely
used benchmark example for mixed mode crack problems. The
schematic diagram is shown in Fig. 6 (a), and the parameters are:
a=35 W=7and L= 16. Young’s modulus E = 10° and
Poisson’s ratio v=0.25. All units are consistent with that of £,

For the analysis, whole structure was modeled with single
SBFEM domain near crack-tip and two FEM domains for far
field. The FE-SBFEM analytical model is shown in Fig. 6 (b)
where © + ” sign presents so-called the scaling center of the
SBFEM. The scaling center was placed at crack-tip to compute
the stress along the radial line ahead of crack-tip as a necessary
condition of SBFEM’s fracture mechanics formulation presented
by authors. The computed mixed mode SIFs and T-stress
values obtained from Egs. (13) to (15) were compared with those
of HCE method from Refs. ?, respectively in Table 2. It shows
that the computed SIFs and T-stress are in good agreement with

®)
Fig. 6 (a) Schematic diagram and (b) Analytical model
of FE- SBFEM
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the literature results with less than 2% deviation.

Table 2 Comparison of fracture parameters

Fracture Present HCE?  Error%
Parameters  FE-SBFEM
K . 33.89 3400 032
K 4.561 4550 024
Testress 27259 26864 147

7.  Conclusion

In this paper, a coupling of the newly developed scaled
boundary finite element method and the traditional finite element
method has been implemented for two-dimensional linear-elastic
analysis of fracture mechanics problems. Since shape finctions
of SBFEM are compatible with finite element shape functions
and no discontinuity occurs across the interface, the coupling of
FEM with SBFEM is a straightforward process and the coding
of SBFEM can be easily inserted in FEM coding. The SBFEM
was used to model near crack region, where their capabilities can
be exploited to the greatest benefit, and FEM in areas away from
cracks. When compared with FEM, the complexity of crack
modeling can be significantly reduced by the coupled method.
The numerical examples show that the efficiency and accuracy
of the proposed coupled method for analyzing two-dimensional
linear elastic fracture mechanics problems.

Indeed, the coupled method has been applied here for only
simple two-dimensional bounded problems with single crack for
the computation of fracture parameters — SIFs and T-stress under
single (Mode T) and mixed mode conditions. It can be easily
applied into complex geometry, multi-cracks, three-dimensional
and unbounded problems by extending the present approach.
Moreover, the formulation has been so far limited to a linear
elastic fracture parameters computation; it can be extended to
crack propagation simulation and non-linear fracture analyses,
which will be appeared in the authors’ forthcoming publication.
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