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Using a realizable non-linear k¥ - & model, the approximate solutions are derived for the

fundamental properties of a swirl jet. The functional forms of velocities and % - & distributions

are assumed as a first approximation. The unknown coefficients in the functional forms are

obtained as the functions of the non-linear £ - & model constants by substituting the assumed

mathematical expressions into the continuity, momentum and non-linear % - & equations. The

coefficient of eddy viscosity (= ¢,) is determined as a function of strain and rotation parameters

to satisfy the realizability. Approximate solutions for the turbulent properties are derived from

the non-linear Reynolds stress equation. Neglecting the swirl parameter, the same solution is

applied to a round jet without swirl. A well agreed comparison is attained between approximate

solutions and previous experimental results.
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1. Introduction

Due to the circumferential motion of jet, the flow field
of a swirling jet 1s more complex than that of a non-swirling
jet. However, this type of flow is observed in many natural
geophysical as well as anthropogenic activities. Tornado is
an example of natural swirling flow. Since the presence of
swirl in a jet changes the geometry, coherent structure,
spreading and dilutions .of the jet fluid, it is sometimes
mmparted to the flow to control its development. The
practical examples include flows through combustors,
propulsion devices, cyclone separators etc. Swirl jet can also
be used in any environmental mixing devices, where a faster
spreading or rapid mixing of jet fluid is necessary.

Most of the previous experimental as well as
computational works on swirl jet mainly focused on the
region close to the source. Examples are the experimental
investigations conducted by Panda and Mclaughin®, Billant
et al.?, Ribeiro and Whitelaw® as well ‘as Paschereit et al®,
where the interaction of coherent structures of swirl jet just
downstream of the nozzle was the main concern. On the
other hand, Pratte and Keffer” performed the experiments to
study the turbulent field of the jet up to a well downstream

Swirl jet, non-linear k - £ model, RANS, realizability conditions

distance of 30 jet diameters. Although some numerical
studies have been performed on near nozzle region of
turbulent swirling flows using Reynolds stress model (e. g.
Gibson and Younis®) and Large eddy simulation (e.g.
Mellwain and Pollard”, Wang et al.®), to the best of our
knowledge, the & - & model is yet to be applied successfully.

Among the turbulence models, £ — ¢ eddy viscosity
model is the simplest ‘complete’ model that can be used on
modern personal computers. Due to its simplicity, it became
one of the most popular model and found to be adopted
frequently. This is a two equation model obtained by solving
the turbulent kinetic energy (%) and its dissipation rate (s )
from two differential transport equations. Although this type
of model has been applied for prediction of many turbulent
flows with high degree of success, it is unable to predict
satisfactorily some fundamental flows containing strong
streamline curvature, vortices and rotations” '©. This
deficiency of this model is due to the isotropic assumption
of eddy viscosity that causes mostly a linear relationship
between stress and strain rate throughout the turbulent flow
field. Thus, in this study, a modified non-linear k¥ — & ‘model
with consideration of some realizability conditions is

applied to derive the approximate solutions for fundamental
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properties of a circular swirling jet.

The non-linear k¥ — & model is a generalized eddy
viscosity model, where additional non-linear terms of mean
strain rate are added. In other words, it is also a two
equation model where two differential equations are solved
for k and & , and the Reynolds stresses are determined from
non-linear algebraic equations by generalizing the eddy
viscosity model. Yoshizawa'” introduced such non-linear
relation to Reynolds stresses to admit the anmisotropy.
Generally, in & — & model, the value of the coefficient of
eddy viscosity (c,) is assumed constant throughout the
turbulent flow field, that over predicts its value, especially
in the case of large rate of strain and rotation. If the strain is
sufficiently large, the model may produce negative normal
stresses. Thus, in the present study, a functional form is used
for the coefficient of eddy viscosity (c,) with the strain (S)
and rotation () parameters, that gives a variable c,.
Considering the Reynolds stresses as a non-linear
polynomial function of mean velocity gradient, such
functional form for the coefficient of eddy viscosity was
firstly introduced by Pope'”, but that was limited to two
dimensional flows. Gatski and Spezille'® further extended it
and proposed a new functional form applicable for three
dimensional flows. Recently, Kimura and Hosoda'? verified
the modified £ — & model with the non-linear anisotropy
term. They assumed a functional form of ¢, similar to
Pope'®, and examined the realizability conditions for
different types of 2D basic flow patterns.

In this paper, the approximate solutions are presented for
the fundamental properties of a swirl jet such as spreading
rate, distribution of turbulence intensities, turbulent shear
stress, turbulent kinetic energy etc., derived by using the
modified non-linear £ — & model. The derived approximate
solutions are useful to understand the distributions of
turbulent characteristics, the sensitivity of model constants
to the distributions of turbulent energy among the turbulent
normal stresses, the relation between spreading rate and
model constants, etc. The assumed functional form of cuisa
more generalized one in comparison to previous studies.
The constrains of this function is determined considering
the realizability conditions for a simple shear flow.
Neglecting the swirl parameters from the derived solutions,
the spreading rate and turbulent properties -are also
calculated for a round jet without swirl. Tuning the model
constants, the derived solutions are compared with the
previous experimental results.

2. Non-Linear & - & Model
2.1 Basic equations

The basic equations in a k& - & model for an

incompressible steady flow are as follows.
Continuity equation:

i ¢))

Momentum equation:

oU U, — 2U.
Ox; pox;  Ox; Ox;
k - equation:
OkU, —aU,
. ﬂi{(_Ja_k} .
Ox; ox;  ox; |\ 0% Ox;
& -equation: V
Ol ; —8U. 2
]‘=—cgliu,-uj%’—+i Mgy e —cng— O]
o, k ox; x|\ o Ox; k

Where, x; : the spatial coordinates, U; and u, : the average
and turbulent velocities respectively in x; direction, P : the
pressure, o : the density of fluid, v : the molecular dynamic
viscosity, k : the averaged turbulent energy, & - : the averaged
turbulent energy dissipation rate, v, : the eddy viscosity,
O O, , Cy, Cg © the model constants (o= 1.0, 67 10,cy =
1.44 and ¢, = 1.92 are used).

To obtain the basic equations of turbulent shear flows,
the following assumptions are made®:

a)  The pressure gradient is small i.e. g—f =0

b)  Viscous shear stress is much smaller than the turbulent
shear stress, and can be neglected.

¢)  Diffusion in the direction normal to the flow (3- and
z-coordinates) is much larger than the diffusion in the
direction of flow (x-coordinate). .

Thus, the momentum equation in x-direction as well as the

kand & equations can be presented in a simplified form as

follows. .

The momentum equation in x-direction:

u, s, U, 0Uy iy Ve _ 0 (—uxux)+ 9 (_uxuy)
Ox oy 0z ox oy
0
+—\-u 5
az( xu) &)
k - equation:
UxZ+Uy%+Uz Zk = Uy xagxx TUMy 6gyx Uytt, a;]x
- Oz
ou ou ou
U, 2 U, 24 uyu, Y —uu, U, —u,u U,
ox dy 0z o 7 oy
—-uzuzaUz+i v, Ok +_<?_ v, Ok ) ©)
0z oyl\lo, 0y ) Oz\oy, 0z
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& -equation:

Ux%xi +Uy%1§+Uz%=c81%l:—uxux——a§xx —u, 6;)]},5
ou U ou oU
— U, 6zx —Uuy 6xy—uyuy ayy —uyu, azy
vy ou, 7 aUz_uu ou,
z¥x o 4y 6}) ¥z oz
2
+i v, Ok +_6_ v, Ok —0528— )
oy\o.0v) oz\o, &z k

2.2 Constitutive equations

In the standard £ — & model, the Reynolds stress tensor
-itjl; is solved by linear constitutive equations derived from
Boussinesq eddy viscosity concept, which does not take into
account the anisotropy effect.

U, , Y,
Ox.:

J i

—upt; =v,S; ——;—ké'y. , Sy =

ey ®)
Here, v, 1s determined from the dimensional consideration
of kand ¢ , and approximated by

Vt:(,’/l? . (9)

Including the non-linear anisotropy term in the Reynolds
stress equation introduced by Yoshizawa'?, the constitutive
equations can be expressed in the following forms

— 2, . k3 1
—uity =Sy~ kS ——v,zcﬂ(sﬂ,j -gsﬁmfs,jj (10)
>4 =

Here, ¢4 is the coefficient of non-linear quadratic term; and
Sy are defined as :

U, oU ; 1{oU,oU; 0U, 8U.
..:—I—j fe DD e 4 ]+ 4 !
Wk, ax,” 2| oy ax,  ox; ox, )

au, oU
and Sy =—L—L. an
ox; o,

It is known that the non-linear terms in equation (10) are

equivalent to the following mathematical formulation'" 2.

1 .
o (Sp€2y + €S ;) + oy (S8 — ESkmSmkag')

1 v
+a3(€2,;Q _EkakaSij) (12)
Where, the strain and rotation tensors are defined as
. oU.; . oU .
S..:%Jr I ..=%__L (13)
v Ox; O y ox; O

Comparing Eq. (12) with the non-linear terms of Eq. (10),
the relations between the coefficients can be derived as

q==201+o, —ay,c, =2ax, foz3) ,C3 =204 + o, — a5 (14)

From this comparison, it is also inferred that the coefficient
of eddy viscosity (c,) is the function of strain and rotation
parameters. The strain parameter (S) and rotation parameter
(€Q) are defined in Eq. (15), as used in the previous studies
of Pope'?, and Gatski and Speziale13).

k[1 kol
S=; ESySw Q== 29 (15)

In this study, the assumed form of ¢, is more generalized
than previous one, that can be expressed as

€ (142,87 +¢,50%)

O = 1+¢48% + 007 +¢408Q +¢,,8* + ¢ 0 Q2 + €S2

(16)
Here, ¢u0, Cps, Cagy Cass Caqy Caserr Cast> Caqr, and C g0y are the
model constants. The functional form assumed by Gatski
and Speziale'® can be obtained from the above equation
simply neglecting some higher order terms i.e. substituting
Cnt» Castr» Cas;y @nd Cyy as zero. The more simplified
functional form of ¢, suggested by. Pope'” for two
dimensional flows, can be obtained neglecting some more
terms from the above equation.

Assuming a similar functional form for ¢ Kimura and
Hosoda'? compared the analytical results for diagonal
components of the anisotropic tensor with that of
experiments for simple shear flows. They showed that the
assumed functional form for the coefficient of quadratic
term ¢, gave better results instead of taking their constant
values. In this analysis, the following functional form is
assumed for cg.

1+m,S? +m, Q2
€p=Cpo 2 2

an
Where, m,,,, m,q, Mg, , and m qare the model constants.
3. Procedure for the Solution

Firstly, the functional forms of velocities and & — &
distributions are assumed as a first approximation. Using the
integral equation of momentum conservation, the parameter
accounted for swirl (introduced in velocity distributions) is
derived as function of non-dimensional swirl number, Sy.
Substituting the mathematical expressions of the assumed
distributions into the continuity, momentum and non-linear
k — & equations, a set of algebraic equations are derived
considering the relation of lowest order with respect to the
power of (l/4). Solving these simultaneous algebraic
equations, the unknown coefficients in the assumed
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distributions are determined as the function of the non-linear
k — & model constants. Approximate solutions for the
distributions of turbulence
distribution of turbulence intensities, turbulent shear stress,

characteristics such as

etc. are derived using the constitutive equations of the
model.

The coefficients in the functional forms of ¢, and ¢z are
mitially estimated considering realizability conditions for
plane shear layer. Neglecting the swirl parameters, the
derived solutions for swirl jet are applied for a round jet
without swirl. The results are compared with the previous
experiments, and the model constants are finally determined
by tuning their values for best fitting with the previous
results. The fundamental properties of swirl jet are then
predicted using the same model constants, and compared
with the previous experimental data.

4. Consideration of Realizability
4.1 Realizability inequalities

Realizability can be defined as the requirement of the
non-negativity of turbulent normal stresses and Schwarz’
inequality between any turbulent velocity correlations.? It
1s a basic physical and mathematical principle that the
solution of any turbulence model equation should obey.

The realizability inequalities for 3D turbulent flows are:

wu; 20 (18a)

- - _2 . .

U, Uy 2 Ul (1;&]) (18b)
s

det|u,y  usuy uyus [ 20 (18¢c)

Usty  Uglly;  Uslig

Einstein’s summation rule is not applied in Eq. (18). In a

two dimensional averaged flow, Eq. (18b) coincides with Eq.

(18c). In this study, the restrictions on ¢, are derived from
the mentioned realizability equations for simple shear flow.
The functional forms for ¢, and ¢y, as expressed in Egs. (16)
and (17) respectively, are applied in this study.

4.2 Analysis of inequality for simple shear flow

Applying Eq. (182) to plane shear layer, the following
two equations are derived for the diagonal components of
the Reynolds stress tensor

w2 <2q-¢)
k 3 3

M?>0 (192)

Ugtty _ £+ clu(2c3 —cl)M2 >0
k 3 3

(15b)

Where, M = maximum (§,(); for plane shear layer, M=S=Q.
Applying Eq. (18b), the following inequality equation can
be derived for Reynolds stress component, u ;2.

<k {9M2 +Q2cf +2c% - 5clc3)M4}— 2¢,(q +c)M? -4<0

(19¢)
Since the value of ¢; is positive and c; is negative, Eq. (19a)
is satisfied regardless of M. Thus, the restrictions on ¢,
derived from Egs. (19b) and (19¢), are as follows:

¢, < Q0

2
(cl - 203)M2

< (ateMyle+oPM +40+ 2 20} - Sae M’

# M +(2¢ +2¢2 ~5c,c)M>
@n
0.09 |
Realizability Eq. (20)
Realizability Eq. (21)
———- Eq.(16)
006 ' \\ N\ .e-e---.
S
0.03 |
~N o - ~
0 1 | ! L 1 1
0 5 10 15 20 25 30
M
Fig.1 Relation between ¢,and M in a simple shear layer

Following values, for the coefficients of functional forms of
cg, are proposed from our previous studies in flows around
bluff bodies:
cp =040, ¢y =0, and ¢z =-0.13.
For plane shear layer, the realizability conditions [Eqs. (20)
and (21)] as well as the proposed functional form of ¢, [Eq.
(16)] are plotted in Fig. 1. The calculations are made with
the following values of model constants.
0=0.09, Cuitc,g=0.014, cartcatosn=0.009, ¢z
+eaont Ccan=0.00035, m,t muo=0.004, my +ma=0.022
@2
These values of model constants are initially estimated
based on the realizability conditions as derived in Egs. (20)
and (21). Using the estimated values, the approximate
solutions are compared with the previous experimental
results and the values of model constants are finally
determined by tuning their values for best-fitted results.
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Eq.(22) shows the final values of constants obtained by such
a trial and error method, and Fig. 1 confirms that the model
obeys the realizability conditions with these values of
constants.

In the log-law region, the assumed functional form of ¢,
shows almost a constant value of 0.09. It can be noted that,
instead of functional form, if a constant value of ¢, (=0.09)
is used through out the turbulent flow field (shown as dotted
line in the figure), it fails to satisfy the realizability

conditions.
/ . plane wall

Fig.2 Definition sketch of swirl jet (Pratte and Keffer”)
5. Derivation of Approximate Solutions

Figure 2 shows the definition sketch of a swirl jet with
Cartesian and Cylindrical coordinate systems. Consider, U,
U, and U are the jet velocities in axial (x), lateral ("), and
transverse (z) directions (in Cartesian coordinate system)
respectively. In the self-similar region, the following
relations can be obtained for the attenuation rate - of
hydraulic variables of an axisymmetric swirl jet,'®'”

1

Bex, Umoc;, kooc?, &y

- 23)
Here, B 1s the jet width, U, is the centerline maximum
velocity of the jet, kp and & are the centerline values of
turbulent kinetic energy and its dissipation rate respectively.

The following assumptions are made for the functional
forms of velocity and k& — ¢ distributions, which are
compatible with the decaying power low of velocity and &k —
¢ along the centerline of jets.

2 2 2 2 2 2
Yy +z ]+03y +2z exp( y +z J (24)

72x2 2.2 }/2x2

U, =—alexp(—
x X y°x

by V+z2| oz V2422
U, =——exp| ———— +—exp| — 25
r p[ PR P N @5
2, .2 2, .2
AT D T 0 W P P 26)
7T 32 3 3.2
» yx » yx
1 y? +22 y2 422
k=—ky+ky,=——|exp| -2 @n
xz( 02 y2x2 72x2
1 y2+z2 y2+z2
g=—-»/|¢gy,+¢ exp -3 28
4 [ 072 y2x2 y2x2

Where, ay, as, b, a, and y are the unknown coefficients of the
velocity profile, and k,, k,, &, and &, are that of the k-¢
distributions.

To define the swirl parameter, consider the cylindrical
coordinate system, and assume that U,, U,, and U, are the
velocities in axial (x), radial (r), and azimuthal (§) directions
respectively. Rajaratnam'” showed that for the circular jet
with swirl, integral of the pressure plus momentum (J¥) as
well as angular momentum (7) are preserved. They are
defined by

m .
W= j [Ug ——Gerr 29)
) 2
and T= J' r2U,U ,dr (30)
0
respectively.

Considering U, >> Uy, Eq. (29) can be reduced to

W= j U2rdr 6D
0

Substituting the assumed velocity distributions into Egs.
(30) and (31), the following relations are obtained (Uj is
calculated from U, and U).

2
W= %(24112 +2aa,+d’) (32)

3
T =%(a1 +a,) (3)

Usually, a non-dimensional parameter combining W and T is
used to represent the relative amount of swirl in a flow
called swirl number (Sy).

T

Sy =——
N Wro

G4

where, 7, is the radius of the jet nozzle.
Using Egs. (32) to (34), the swirl number can be defined as
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2

6ay
=— 35
N 25br, ©39)
Hence,
258,bry,
o =200 (36)
6y

Substituting the assumed velocity distributions [Egs. (24)
to (26)] into the continuity equation, the following algebraic
relations are derived.

2b 2b
a,=—, a3=—— (37-a,b)
Y 3y
The integral equation for conservation of momentum flux

also results in Eq. (38).

2,2 2 2.2
My =U,24, = 27{ "147 +2 al‘gy + "387 J 38)

Where, 4o, Us, and M), are the area, velocity, and initial
momentum flux of the jet at inlet respectively.

Substituting Eq. (37) into Eq. (38), the coefficient of
attenuation of radial velocity ‘6’ is determined in Eq. (39) as
a function of inlet conditions.

b:%/% . (39)

For the assumed velocity and k- ¢ distributions,

using the Reynolds equation in the x-direction and k —

& equations, the following three algebraic expressions
are derived as the relations of lowest order with respect to
the power of V/x.

Reynolds equation in x-direction:

1 2 2,1 of o oB )| 2
x—s. - {80 +_2-cdsk0 401 +8';'£- _2cy060k0

kg 2(2a; 2
{502 +%cm —‘;(45112 +8b—2]}[i23—i21—22 (40)
: 0

€ e Y 4 4

k-equation:
ey (—2 ko+e 52+—1— k2|4 2+8b2

7 kg T €9 & zcds 0| 44 -
x ¥

Cuy o Bk, Sk\| 2 1 KX ., _b?

oy Yoy 2 5 ¥

(41n

& -equation:

1. ( N 2,1 of, 5 b
i —dayepky + 080 hgg +Ecdgko 4a1+87

= cﬂgokg(i‘f;_sigj{eg +lcnsk—§(4a12 + 8%)} (42)
Oy oy 2 " 4

The values of b, a; and @; are determined by Egs. (37)
and (39). Substituting the values of &y and & which are the
k— & wvalues at centerline, the development rate of swirl jet
() can be estimated by Eq. (40). For any known value of
swirl number Sy, the value of ‘@’ can be determined using
Eq. (36). The coefficients of & and ¢ distributions are
determined by solving the Egs. (41) and (42).

The radial distributions of turbulent intensities as well
as turbulent shear stresses are derived by constitutive
equations. The derived equations for turbulent intensities in
axial (x), radial (¥) and azimuthal (f) directions, expressed
as ut,, Ui, and ugigrespectively, as well as the component
of turbulent shear stress u,u, are shown in the Appendix -A.

6. Results and Discussion
6.1 Round jet without swirl

Eliminating swirl parameter i.e. taking swirl number (Sy)
and hence the swirl parameter (a) as zero, the solutions for
swirl jet derived in previous section are applied for a round
jet without swirl. Tuning the model constants (estimated
from realizability considerations), their values are finally
determined for best fitting the approximate solutions with
the previous experimental results. Table 1 shows the
obtained values for model constants.

The turbulent distributions . are calculated with the
centerline values of &k and & for round jet as k,=2.94 Ui,
and & =26.33 U03A03/2 respectively. Figures 3, 4, and 5 show
the radial distributions of turbulent intensities for axial,
The results are
compared with the experimental data by Wygnanski and

radial and circumferential velocities.

Fielder', and Wang and Law'®. Figures show an excellent
agreement between approximate solutions  and measured
distributions. In Fig. 6, the calculated shear stress profile is
compared with the range of experimental results by
Fukushima et al’?, where two experimental profiles
represent the lower and upper boundary of a number of
measured profiles for different downstream distances.

Using the approximate solution, the turbulent intensities
are also calculated by the standard k — & model as shown in
the figures by dotted line. Since, the standard 4-s model
cannot handle the anisotropic phenomena of turbulence, its
prediction 1s not as good as that of non-linear one. In the
analysis of non-linear k—& model, the value of model
constant o, is taken as 1.0 instead of its standard value of
1.3. The comparative predictions are shown in Figs. 3 and 6.
Although the difference is very small, in comparison to

experimental results, 6=1.0 shows better fitted results than
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o= 1.3. 03
The distribution of turbulent kinetic energy (k)
normalized by U,’ is favorably compared with the

experiment of Wygnanski and Fielder'®, and shown in Fig.7.

: .. 02 ¢
The normalized turbulent energy dissipate rate (a&/U,’) , 5
compared with the experimental data of Wygnanski & 3
Fielder as well as with that of Sami®”, is shown in Fig. 8. é

The available experimental data on turbulent kinetic energy
are quite scattered. The present prediction coincides with the
Wygnanski & Fielder’s data near the central region of jet

and it is close to Sami’s data for higher radial distances. In 0.0

comparison to experimental results, a little deviation is 0.0 0.1 0.2 03
r/x

Fig.4 Distribution of turbulent intensity of the radial
velocity in a round jet without swirl

observed in the spreading of k¥ and ¢ profiles; it can be
noted that this deficiency is due to the simple assumptions
that made in the exponential part of k and & distributions
[Egs. (27) and (28)].

0.3
Table 1. Values for the coefficients of ¢, and ¢4
Model constants ~ Values for model constants
Cuo 0.09
Cns 0.006
Cha 0.008
Cys 0.008
Caa 0.004
Caser -0.003
Cdst 0.00005
Canl 0.00005
. 0.1 02 0.3
Canl 0.00025 0.0 "
My 0.002 ) e . .
m 0002 Fig.5 Distribution of turbulent intensity of the
g, 0.03 cm‘:umferentlal velocity in a round jet without
ma 0,008 swirl
- = -X- - - Fukushima et al.
¢  Wang & Law B — ~ — — Standard k- &€ model
0. o O  Wygnanski & Fiedler 30 Present study (o, fl .0)
03 B %9 L8 —_—— 1S)t:a.ndaid k-¢ n!‘ode{ 0 = - +—- Present study (g, =1.3)
—_—.— er-:::gt st gﬂj =l33 NO Q(‘}?_Zi\\
=2 /.
%20 | R/ \
DEO.Z N»E ’)5/ VXX \\
< 2 % x* X
£ 3 ; EaAN
< 510 | \
I W
o1 he ; R
. 3o
00 : a
0.0 0 00 0.1 02
0.0 0.1 02 0.3 r/x

r/x Fig.6 Radial distribution of turbulent shear stress in a

d jet without swirl
Fig.3 Distribution of turbulent intensity of the axial FoUne jet wathiout swir

velocity in a round jet without swirl
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0.12

O  Wygnanski & Fiedler
0] o )
0.00 L Present study
o
= 006 |
8]
o
0.03 | o)
O
0o
0.00 L ~
0.0 0.1 02
r’x :

Fig.7 Radial distribution of turbulent kinetic energy in
a round jet without swirl

0.20
— - & - — Wygnanski & Fielder
+--©--- Sami
0.15 Present study
= 0.10
=
w
%
0.05
0.00
0.0 0.1 0.2
r/x

Fig 8 Radial distribution of turbulent kinetic energy
dissipation rate in a round jet without swirl

6.2 Swirl jet

Using the model constants estimated in Table 1, and
taking estimated centerline values of k and & for swirl jet as
ky=2.0U74, and £,=10.2U.4," respectively, the
fundamental properties of a swirl jet are obtained and
presented below.

In Fig. 9, the estimated jet half-width for a moderate
swirl of Sy =0.3 is plotted against downstream distances;
both are normalized with initial jet diameter D. Here, the jet
half-width (7, is defined as the radial distance (7), where
the axial velocity is half of the maximum centerline velocity.
The present prediction shows a good agreement with the
previous experimental data of Pratte and Keffer” (Sy=0.3)
as well as that of Rose®™ (Sy=0.23). The prediction of
Reynolds Stress Model (RSM) by Gibson and Younis®,
which is limited to 15 jet diameters of downstream distances,
are also shown for comparison. The swirl jet reasonably
spreads faster than the round jet. The value of jet half-width
for swirl jet evaluated by approximate solution is 0.144,
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O Sy =0.30 (Pratte & Keffer)
6t A Sy =023 (Rose) ,
¢ - RSM Prediction (Gibson)
Present study (Sy=0.30)
— — — —Present study (Sx=0) 7
a4l
) -~
L] -7
P -
2 | A
Ol -~
-’
Qs
0 1 ! Il
0 10 20 30 40
x'D
Fig9 Comparison of jet half-width
e} x/d=30 (Pratte & Keffer)
) O A xd=12 (Pratte & Keffer)
03 L a} x/d=6 (Pratte & Keffer)
— — — — Standard k- £ model
q Present study
502
2
£
g
0.1
0.0 = o
0.0 0.1 0.2 0.3 04
r/x

Fig.10 Distribution of turbulent intensity of the axial
velocity in a swirl jet

0.25
0.20
5 015
&
E
s 010
0.05
0.00 .
0.0 0.1 0.2 0.3 0.4

Fig.11 Distribution of turbulent intensity of the radial
velocity in a swirl jet
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Present study (- =0.30)
0.25 , "
------- resent study (=1.50)
03 L . === Present study (SN=2.50)
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similar comparison with a difference of 25% between the
jet-half width of swirl and non-swirl round jets.

a swirl jet

- 829 -



The turbulent
circumferential velocities are calculated with the same swirl

intensities for axial, lateral and
number. The results are compared with experimental data by
Pratte and Keffer” in Figs. 10 to 12. The root-mean-square
turbulent intensities and radial distance are normalized by
centerline maximum velocity and the downstream distance
respectively. The figurers show that the prediction of
standard k—¢ model is not as good as that of non-linear one.

In Fig. 13, the distribution of normalized turbulent
1 —_—
kinetic energy (?)3 I, (where, q2 is twice the turbulent

kinetic energy), is favorably compared with the previous
experiment. Figure 14 shows the radial distribution of

turbulent Reynolds stress u u, .

The distributions of turbulent intensities are found to be
changed significantly depending on swirl number. For
different swirl numbers of Sy = 0.3, 1.5 and 2.5, the
turbulent intensities are calculated. The radial distributions
of turbulent intensities for axial, radial and circumferential
velocities are shown in Figs. 15, 16, and 17 respectively. It
is observed that, with increasing swirl number the turbulent
intensity is decreased for axial velocity component and
lateral and = circumferential

increased for velocity

components.
7. Conclusion

Based
approximate solutions for the fundamental properties of a

on a realizable non-linear %— £ model,

swirl jet are derived. The functional forms of. velocities as
well as k and & distributions are assumed as a first
approximation. The unknown coefficients in the functional
forms are obtained as the function of the non-linear k — &

model constants by solving the continuity, momentum and
non-linear ¥ — & equations. The turbulent intensities and
shear stresses are derived from a non-linear Reynolds stress
equation. The coefficient of eddy viscosity (c,) is
determined as a function of strain and rotation parameters,
and- the constraints of the functions are determined
considering the realizability conditions for a simple shear
layer problem.

Neglecting swirl parameter, the same solutions are
applied for a round jet; and the calculated spreading rate,
radial distribution of turbulent intensities, turbulent shear
stress, turbulent kinetic energy and dissipation rate of
turbulent kinetic energy are compared with the previous
experimental results. A well agreed comparison to previous
experiments revealed the performance of the present model.

For swirl jet, the calculated spreading rate and turbulent
intensities are well agreed with the previous experiments.
Through this comparison, the applicability of this model to

estimate the fundamental properties of the swirl jet is
verified. However, further studies are required to verify the
applicability of this non-linear % — & model to various
turbulent flows especially for large scale vortices.

Appendix-A: Derived Equations

Derived equations for the distributions of turbulent
intensities in a swirl jet are given below.

2 r2 2
r‘{4a, 6a, || c k" 1 r
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4 2 5 ) The derived equation for the turbulent shear stress is as
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Appendix-B: Notation of Symbols
2(2a” 3 4b(2a, 2a) 4b> 40b° _
+02{g[ a; —%J+§;[-%——‘-}J+g—4—g—z} Ay = area of the jet at inlet
g 7 o g 7 ay, a3, b = coefficients of the assumed velocity profiles
1(2a° 1{2a, 2q ’ 2 2012 3aiay B . =Jet width
+F 3,4 +¢ 3152 T2 +§ — T ¢ €2 =k— & model constants
4 r 4 4 4 Cu, Cp (€1, €2, €3) = non-linear k — & model constants

C,;o, Cns: Cns Cds, Caqs Casqrs  Cdsts Caqis Cason = model
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constants for ¢,

Co = the model constants for ¢z

k = turbulent energy

ko k, = coefficients of the assumed % distribution
M, = initial momentum flux of the jet

My, Mgy, Mys , Mag= model constants for ¢g

P = pressure

o =radius of the jet nozzle

ri2 = jet half-width

S = strain parameter defined by Eq. (15)
Sy =swirl number

Sy = strain rate tensors

U = velocity of the jet at inlet

Un = centerline maximum velocity of the jet
U; = average velocity in x; direction

U., U,, U, =velocities in Cartesian coordinate system
U,, U,, Uy = velocities in Cylindrical coordinate system

u; = turbulent velocity in x; direction

U u; = Reynolds stress tensor

X =spatial coordinates

X, ¥,z =axial, lateral, and transverse directions in

Cartesian coordinate system

x, r, 0O=axal,radial and azimuthal directions in
Cylindrical coordinate system

a,y = coefficients of the assumed velocity profiles

g = turbulent energy dissipation rate

&, &  =coefficients of the assumed ¢ distribution

0 = density of fluid

v = molecular dynamic viscosity

v = eddy viscosity

0y, O, =k— & model constants

Q = rotation parameter defined by Eq. (15)

Qi = rotation rate tensor
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