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The elastoplastic stress is first defined as the stress which evolves as the actual strain rate is
induced in an imaginary quasi-static process of elastoplastic deformation, while internal vari-
ables evolve with the viscoplastic strain rate calculated by the viscoplastic constitutive equa-
tion. Further, the novel variable “overstress tensor” reaching the current stress from the ¢las-
toplastic stress is defined. Then, the overstress model is extended so as to describe also the
tangential viscoplastic strain rate induced by the overstress tensor component tangential to the
yield surface. Furthermore, the viscoplastic strain rate due to the change of stress inside the
yield surface is incorporated by adopting the concept of the subloading surface which falls
within the framework of the unconventional elastoplasticity describing the smooth elas-
tic-plastic transition fulfilling the smoothness and conﬁnuity conditions. ‘
Key Words: Overstress, plasticity, rate-dependence, subloading surface model, viscoplas-
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1. Introduction

The overstress model™™ is most widely used among

various viscoplastic constitutive equations. However,

the existing formulations for this model possess insuffi-

cient aspects for the prediction of rate-dependent de-
formation behavior as follows: ‘
1 ) It cannot describe the fact that the direction of vis-

’ coplastic strain rate deviates from the out-

“ward-normal to the yield surface in the general load-
ing process involving the nonproportional stress
path deviating from the outward-normal to the yield
surface.

2) Itis based on the conventional elastoplasticity® with the
yield surface enclosing a purely elastic domain. Therefore,
it violates the smoothness condition™” at the moment
when the stress reaches the yield surface and thus it is inca-
pable of describing the smooth elastic-plastic transition ob-
served in real materials. Needless to say, it cannot describe
the strain accumulation for the cyclic loading.3 ) If the

inelastic strain rate due to the stress rate tangential

to the yield surface is incorporated, it is suddenly
induced at the moment when the stress reaches the
yield surface since the interior of yield surface is
assumed to be a purely elastic domain. Then, the
continuity condition”'? is also violated, and thus
the uniqueness of solution does not hold for the
stress path along the yield surface. ‘

In this article a pertinent formulation without the
above-mentioned defects in the existing overstress
model is given as follows:

1) The elastoplastic stress is defined as the stress on the
yield surface, which evolves as the actual strain rate
is induced in an imaginary quasi-static process of
elastoplastic deformation.

ii) The novel variable “overstress tensor” is introduced,
which is defined as the tensor of stress reaching the
current stress from the elastoplastic stress.

iii) The tangential viscoplastic strain rate due to the
overstress tensor component tangential to the yield
surface is introduced based on the concept of tan-
gential inelasticity'*.

iv) The viscoplastic strain rate is described so as to develop
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gradually from the inside of yield surface by adopting the
subloading surface model'>" falling within the framework
of unconventional plasticity and thus the continuity and the
smoothness conditions™? are atways fulfilled.

2. Extended overstress model with tangential inelasticity

The overstress model™ is extended below incorporating

. the overstress tensor and the concept of ‘tangential inelastic-

ityl M54,

2.1 Quasi-static: elastoplastic deformation process

Denoting the current configuration of the material particle as
x and the current velocity as v, the velocity gradient is de-
scribed as L = gv/0x from which the strain rate and the
continum spin are defined as D=(L+L")/2 and
W = (L-L")/2, respectively, ()7 standing for the trans-
pose. Let the strain rate D be additively decomposed into the
clastic strain rate D¢ and the inelastic strain rate D/, while
the latter is further additively decomposed into the (nor-
mal-)plastic strain rate D% and the tangential inelastic strain
rate Di,ie.

D=D°+D/, D'=D{ +Dj, 0]
where D% and D; are induced by the stress rate components
normal and tangential, respectively, to the loading surface. Let
D¢ be related linearly to the stress rate as

De =E-1. | @

6 is the Cauchy stress, (°) denoting the proper coro-
tational rate with the objectivity, and the fourth-order
tensor E is the elastic modulus. Here, limiting to an
infinitesimal deformation but avoiding the influence of
rigid-body rotation on the constitutive relation, the fol-
lowing Zaremba-Jaumann rate is adopted for the coro-
tational rate.

T=t-wr+tw, €)
where T is an arbitrary second-order tensor, (°*) denoting
the material-time derivative.

2.2 Plastic strain rate
Consider the following isotropic yield condition in the sim-
plest form.

f(6)=F(H), @

where the scalar H is the isotropic hardening/softening vari-
able. f is assumed to be homogeneous fimction of stress ¢
in degrec-one fulfilling f(s6) = s/ () for any nonnegative
scalar s, and thus the yield surface keeps a similar shape.

The material-time derivative of Eq. (4) is given by

(f(G)

G)=FH, Q)

where

F'=dF/dH. : ©)
Hereafter let it be assumed that the tangential-inelastic strain rate
is normal to the yield surface and  thus it fulfills the following
equation:

9
(TP pi)-g Q)
Substituting Egs. (1) and (2) into Eq. (5) and consider-

‘ ing Eq. (7), one has

t{af ©) pn- D)} =F'H, ®)

Assume the associated flow rule
D= AN (1>0), )

where 1 is a positive proportionality factor and the sec-
ond-order tensor N denotes the normalized outward-normal to
the yield surface, i..

N=Z© /Haf(c)” (N|=D. 0

| II' denoting the magmtude. The proportionality factor 4 is
derived by substituting Eq. (9) into Eq. (5) as follows:
t{N@ED-L f6)}
- tr(NEN) ’

The following relationship due to the Euler’s theorem
for a homogeneous function in degree-one is used for
deriving Eq. (11).

(1D

eACHs
Jo)__1 oo SO N @
o6 tr(No) tr(No)

The variation of internal structure of material is induced by
the inelastic deformation and is described by the variation of
internal variables. Generally speaking, if the rate of deformation
increases, the viscous resistance increases and thus the elastic
deformation becomes dominant so that the rate of inelastic
strain rate in the strain rate decreases depressing the variation of
internal variables. Therefore, the rates of internal variables have
not to be calculated by the elastoplastic constitutive equation
which holds only in the quasi-static deformation process but
have to be calculated by the rate-dependent viscoplastic consti-
tutive equation. Then, the rate of internal variable in the consis-
tency condition (5) or (8) has to be calculated by the
viacoplastic constitutive equation formulated later and thus the
plastic flow rule (9) is not substituted to them, whilst remind
that the yield surface is updated by the rate of internal variable
calculated by the viscoplastic strain rate in the overstress model.

2.3 Tangential-inelastic strain rate

While the inelastic strain rate is induced also by the tangential
stress rate, it depends only on the divoiatoric component of tan-
gential stress rate'”. Then, let the tangential strain rate be given by
the following equation'®'? with the material function 7 of
stress @ ' and internal variable H , i.e. \
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D|=T&>, T=T(,H), (13)

where &7 is the deviatoric-tangential stress rate given as fol—
lows:

¢ =16=6,+6) (14)

6 =0*6 = tr(n*&)n*,

. (15
6*=I"6 =6*-6;
with
Ta =5 (848, +8,5,), i*—i—ll®1 (16
N*=I*N, n* ([n*|=1), an
“N*” [n*]
i*=n"®n*, f'=7"-i* (18)

1 is the fourth-order identity tensor and T* might be called the
Jfourth-order  deviatoric  transformation tensor leading to
I'T=T". Futher, i* and I* might be called the
Jourth-order norma-l and tangential-deviatoric transformation
tensors, respectively. It is postulated that D} does not influence

on the hardening behavior since it is tangential to the yield surface.

The tangential-inelastic strain rate is schematically shown in Fig,
1 of deviatoric stress space. Besides, its response to the input of
same stress rate with variation of stress state is illustrated in Fig. 2
where the violation of the continuity and smoothness condi-
7H0) 5

tions” " is violated.

Yield surface f(6)=F(H)

Fig. 1. Tangential-inelastic strain rate
in the deviatoric stress space.

Hereafter, let the elastic modulus be given in Hooke’s type
of rate form, i.e.

2
Eijkl = (K —'§G)5U5k[ +G(5ik5jl + é‘flé.}k ):
) = “(ﬁ_ 3G)356u+ 4G 6y Sudp)

a9
where K and G are the elastic bulk and shear moduli, respec-

tively, which are assumed to be the function of stress in general.
It holds from Egs. (1), (2), (9) and (13) that

D=8+ AN*+TE}s (20)
from which, noting
N; =I*N=N"-tr@*'N")n*= 0, a2y
we have
D} - (L +7)é1, @
where
D} =[*D =D*~ tr(*D*)n*. (23)

Substituting Eq. (22) into Eq. (13), the tangential
strain rate is described by the strain rate as follows:

o
D;= Dt
1+2GT

The stress rate is given from Egs. (1), (2), 9), (11) and
(24) by the following equation, noting the positiveness of the
proportionality factor A .

24

ED_E<tr{N(ED—%'Hc)}>N

tr(NEN)
6= ——2—61—1);‘ if f(6)—F(H)=0 (25)
1+W

ED if f(6)-F(H)<0

where () is the McCauley’s bracket, ie. (a)=a for a20
and (a)=0 for a <0 foranarbitrary scalar variable .

The normal-plastic strain rate of the second term in the
right-hand side of Eq. (25), has the different mathematical from
from the ordinary plastic constitutive equation but fulfills the
consistency condition (5) or (8) and obeys the plastic-flow rule
(9) and thus exhibits the identical response as the plastic constitu-
tive equation. Further, the denominator is always positive owing
to the positive definiteness of the elastic modulus tensor E .
Then, one can performs the judgment of loading or unloading by
the sign of numerator which exhibits the non-dimensional plastic
relaxation stress rate as known from

tr{a{a(:) ED} - =tr{N(ED-

! . a
E o)} | L2
(26)

2.4 Overstress model with overstress tensor

The overstress tensor is improved by introducing the
overstress tensor in this section.

Let it be assumed that the strain rate D is addi-
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T,

Yield surface

Input of tangential - deviatoric stress rate

Output of tangential-inelastic
Conventional elastoplasticiy

Yield surface

Output of tangential- inelastic
Subloading surface model

Fig. 2. Output of tangential- inelastic strain rate to input of identical
deviatoric-tangential stress rate with increase of stress state
illustrated for the Mises yield surface in the #z-plane.

additively decomposed into the elastic strain rate e
and the viscoplastic strain rate DP*? whichis further
additively decomposed into the normal-viscoplastic
strain rate DY and tangential-viscoplastic strain rate
D/ sie.

D= De + DVP, DVF — Dxp + D;’P (27)

The overstress model advocated by Bingham” is based on
the premise that the viscoplastic strain rate is induced by the
stress over the yield surface. The stress over the yield surface
has been evaluated merely by the scalar quantity of the ex-
panded quantity of the dynamic-loading surface from the yield
surface, while the dynamic-loading surface passes through the
current stress point and is similar to the yield surface. Here, we
introduce the imaginary stress'” defined as the stress on the
vield surface, which evolves as the actual strain rate is induced
in an imaginary quasi-static process of elastoplastic deformation,
and let it be called the elastoplastic stress, denoting it by the
notation &e? . The viscoplastic strain rate could be formulated
more precisely by introducing the tensor of stress reaching the
current stress from the elastoplastic stress. The elastoplastic

stress rate is given by the following equation with the replace-
ment of the stress ¢ to GeP.

: tr{Nep(ED—%fIGep)}
ED_E< tr(N?EN) >Nep

=1 2L __pr* if f(6)- F(H)=0

I+ 5=rer (28)
ED if f(6)-F(H)<0
where
I = tr{f, (6%, H)D?}, (29)
o _ F(6P) [|3f(6) ol —
B2 ] et o

N%*= T*N¥ nerr e NP° o =1 (€2))
| » = INP| (Jim ” )s

~ a —% ~
ne* = nep*®nep* s IEP* = I - nep*’

(32)

D* =1?D=D* - tr(®?*D*)n%*, (33)
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T?=T(c%, H). G4
fy isthe second-order tensor valued function of ¢, H.
Define the overstress temsor to be the tensor of stress
reaching the current stress from the elastoplastic stress and
denoteitby @, ie.

6 =6-06% (35)

Then, the deviatoric part G * of ‘G is decomposed into the

normal-deviatoric = component %; and the tangen-
. . . €—x*
tial-deviatoric component o' as follows:

Cr e ok

¢ =1"6=0,t06;, (36)
Cr g

G,=0"6=tr(n*G)n* 37
e A

o;=;5=5"-%G;

*
oy

Yield surface
f(@)=F(H)

Dynamic-loading surface

Fig. 3. Overstress tensor in conventional overstress model
in the deviatoric stress space.

Then, let the normal-viscoplastic strain rate D} and the
tangential-viscoplastic strain rate D;” be given by

DY =Cy(o, H, T)(-J:(;—)—l)”N , (39)

%

D = Cy(6, H, T)2¢ if f(6)~F(H)>0
-

(39
0 if f(6)-F(H)<0

where Cy and C; are the function of ¢, H and the abso-

lute temperature T,and N is the material constant.

The strain rate is given from Egs. (2), (27), (38) and (39)
by

E'é +C~(f1(:)-1>NN
D={ +G- itf(e)-F(H)20 @)

E-& if f(6)~F(H)<0

from which the stress rate is given as

ED- Co(L22-1) EN

f(©)
F

Qe
I

2668 if f(0)-F(H)20 @)
ED if f(6)— F(H)<0

3. Extension by the subloading surface model ‘

The constitutive equation formulated in the preceding sec-
tions is based on the conventional plastiéityG) with the yield
surface enclosing a purely elastic domain and thus it violates the
smoothness condition”'® at the moment when a stress reaches
the yield surface and further it violates the continuity condi-
tion”'? as the tangential-inelastic strain rate is induced suddenly
at that moment. ,

In what follows the constitutive equation formulated in the
preceding sections is extended so as to describe the inelastic
strain rate due to the rate of stress- inside the yield surface by
incorporating the concept of the subloading surface'>".

3.1 Subloading surface model
Here, it could be assumed in the quasi-static elastoplastic

deformation process that

a ) A plastic strain rate develops gradually as the stress

approaches the yield surface.

b ) A conventional elastoplastic constitutive equation holds
when the stress lies on the yield surface,

In order to formulate an unconventional elastoplastic consti-
tutive equation realizing these assumptions it is required to adopt
an appropriate measure expressing how near the subloading
stress approaches the yield surface. Then, let the following sur-
face, called the subloading surface (Fig. 4), be introduced,
whilst the yield surface in the conventional elastoplasticity is
renamed the normal-yield surface.

1. It passes always through the current stress point.

2. It has the similar shape and same orientation as the

normal-yield surface.

Thus, the subloading surface coincides completely with

the normal-yield surface when the stress reaches the

normal-yield surface.

The normal-yield and subloading surfaces with
similar shape and positioning possess the following
geometrical properties.

i) All lines connecting a point inside the subloading
surface and the conjugate point inside the nor-
mal-yield surface join at a specified point, called the
similarity-center and denoted by §, which is simply
fixed to the origin of stress apace in this section.

ii ) Ratio of a length of an arbitrary line-element inside the

subloading surface and that of the conjugate line-element in-
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side the normal-yield surface is constant, which is also iden-

tical to the ratio of the sizes of these surfaces. The ratio is

called the normalyield ratio and is denoted as

R(O<RXL)).

It should be noted that the subloading surface coincides
completely with the normal-yield surface when the stress
reaches the normal-yield surface, ie. R '=1. On the other hand,
the subyield surface(s) in the multi surface model® " or the
two surface mode” * never coincides with the outmost or
bounding surface but contact to them at a point. This geometri-
cal property brings about the singularity in the field of the elas-
toplastic modulus which leads to the discontinuous response of
these models. '

The subloading surface is described as

~ f(6) =RF(H). 42)

G,
Subloading surface
Sf(e)=RF(H)
Normalyield surface
f(e)=F(H)

Fig. 4. Normal-yield and subloading and
dypamic- loading surfaces.

The material-time derivative of Eq. (42) is given by

: tr{aj(;(:) E(D-D{)}=RF+RFH, &)
considering Egs. (1) and (2). Eq. (43) as it is cannot play the
role of the consistency condition for the derivation of plastic
strain rate since it contains rate variable R which is not
related to the plastic strain rate yet.

It is observed in experiments that the stress increases almost
elastically when it is zero and thereafter it gradually increases
approaching the normal-yield surface in the plastic loading
process. Then, let the evolution rule of the subloading ratio be
given by

R=UR)IDZ| forDE0, (@4
where [/ is a monotonically decreasing function of R, ful-
filling the following conditions.

o for R =0,
UR)=40 for R = 1, 45)
<0 for R>1.

Letthe function {J satisfying Eq. (45) be simply given by

U=-ulnR, - (46)
where u is a material constant. The fimction U(R) is sche-
matically shown in Fig, 5. ~

U(R)

D4 =0, D=0

Fig. 5. Function U(R) in the evolutionrule of
normal-yield ratio R.

The substitution of Eq. (44) into Eq. (43) leads to the fol-
lowing consistency condition for the subloading surface.

of (o .
tr{%E(D—Dﬁ)} =UIDILF+RF'H - (4T)
Further, substituting the associated flow rule

D =N (1>0) (48)
into Eq. (43), the positive proportionality factor is de-
rived as

tr{N(ED—%’I:IG)}

% tr (NG) + tr(NEN)

A= (49)

In this model, since the plastic strain rate is induced
even inside the normal-yield surface and develops
gradually as the stress approaches that surface, the dis-
tinction of constitutive equation on and inside the yield
surface is not required. Then, considering Eq. (49) into
Eq. (25)1, the strain rate is given as follows: '

r{n(ED-E o))

. >N_ 2G1 Dt
- tr (N6) +tr(NEN 1+———
Y tr (N6)+ tr(NEN) o

&=ED—E<

(50)
while T is the function of stress ¢, internal variable
H and the normal-yield surface ratio R in a mono-
tonically-increasing form and let it be given explicitly
by the equation with the function ¢ of ¢ and H,
ie.

T=¢RT, &=, H). (D

& isthe functionof ¢, H and 7 isthe material con-
stant. The continuity and smoothness conditions™'? are
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are fulfilled in this model as illustrated in Fig. 2 since
the tangential-inelastic strain rate develops gradually as
the normal-yield ratio increases.

3.2 Subloading-overstress model

The extension of the overstress model by the incor-
poratioh of the subloading surface model described
above is given below, while the extended model is
called the subloading-overstress model.

The surface (42) passing through the current stress
point and similar to the normal-yield surface is to be the
dynamic-loading surface. Since the distinction of con-
stitutive relations on and inside the yield surface is not
required in the subloading surface model, the elasto-
plastué stress rate is given in the following equation by
replacing of 6 to ger.

F' e
gopp-p(_ T ED )

>
tr (NPo ) +tr(NPEN®)

R%

-2 pr (sy)

1+—‘—“\7

2GT?

where
I.{ = tr{fH(Gep, H)D}vp}a (53)
P ACKI) (54)
F(H)

U® = U(R®), U?®=-ulnR%¥ (55)
Fo=goget, £7=£@7,H),  (56)

where R? (0 < R% <1) iscalled the subloading ratio.

of

Subloading-surface surface

f(oP)=R*F(H)
Normal-yield surface
f(@)=F(H)
Dynamic-loading surface
JS(6)=RF(H)

Fig. 6. Overstress tensor in subloading-overstress model
in the deviatoric stress space.

Noting that the distinction of constitutive equation
inside and on the yield surface is not required in the
subloading surface model, the strain rate and the stress
rate are given by extending Eqs. (40) and (41) as fol-

lows:

€%
D=E"'§+Ci(R-R?)'N+Ci 2L, (57)
€—x

=ED-Cu(R-R¥)"EN-2GC; B¢, (58)

where C, is the function of stress ¢, internal variable
H , absolute temperature T and the normal-yield ratio
R in a monotonically-increasing form and let it be as-
sumed to be given as

Ci=¢,(0,H, T)RY. (59)

k; is the material constant. The overstress tensor for
this model is illustrated in Fig. 6 of the deviatoric stress
space.

4. Further extension by the extended subloading
surface model

The subloading-overstress model formulated in the
preceding section 3 is incapable of describing the cyclic
loading behavior exhibiting the open hysteresis loop for
unloading-reloading process since the similarity-center
§ is fixed in the origin of stress space. The overstress
mode! is further extended below so as to describe the
cyclic loading behavior by introducing the extended
subloading surface model” in which the similar-
ity-center moves with the plastic deformation. Besides,
the anisotropy is also introduced in the formulation.

4.1 Extended subloading surface model
Introduce the yield condition with the anisotropy:

f(6,H) =F(H), (60)

where

6=6-0a. (61
The second-order tensor” @ is the kinematic hardening
variable, i.e. the back stress for metals and the sec-
ond-order tensor H is the anisotropic hardening variable
inducing the rotation of yield surface in soils for exam-
ple. The function f is assumed to be homogeneous of
degree one in G satisfying f(s&, H)=sf(6,H) for
any nonnegative scalar s, and thus the yield surface
keeps a similar shape for H=0.

The yield stress 6, on the normal-yield surface the
outward-normal at which is same as that on the
subloading surface at the current stress ¢ is described
by

G, =%{o_(1_ R)s} (6-s=R(6,-s)), (62)

where R is the extended normal-yield ratio, i.e. the
ratio of the size of extended subloading surface to that
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of the extended normal-yield surface of Eq. (60).

Substituting Eq. (62) into Eq. (60) in which o,
in Eq. (62) is regarded to be €, the extended
subloading surface for the extended normal-yield sur-
face of Eq. (60) is described as '

f(©,H) =RF(H), (63)

where
6=0-0 (=R6,), 64)
8,=6,-0, (65)

a=Ra+(1-R)s (-s=R(a-8)). (66)

a is the conjugate point in the extended subloading
surface for the back stress @ in the normal-yield sur-
face. In calculation first R is determined from Eg.
(63) with Eq. (64) by substituting values of H, @,
H, s and 6 and thereafter @ is found from Eq.(66).
The four plastic internal variables H, o, Hand § are
involved in the present model. The normal-yield and the
extended subloading surfaces are illustrated in Fig. 7.

Subloading surface
Sf(6.H) =RF(H)

Nomzl-yield surface
S(6,H) =F(H)

Fig. 7. Normalyield and subloading surfaces
in the extended subloading surface model.

The material-time derivative of Eq. (63) is given by

a G o a _’ o ——, o
w(TC ) (TG, (T H i)

=RF+RF'H,  (©67)
The following inequality must hold since the simi-
larity-center- § has to exist inside the normal-yield
surface.
fG6, B)<F(H), (68)
where

$=s-a. (69)
Let the ultimate state f(8, H)= F(H) be consid-

ered, in which the similarity-center exists just on the
normal-yield surface and thus the risk that the similar-
ity-center goes out from the normal-yield surface has to
be avoided. The time-differentiation of Eq. (68) in the
ultimate state leads to:

tr[af(s H)(s l{t (6f(s, H)H)—I:“}§)]so

for f(§, H)=F(H).  (70)

The inequality (68) or (70) is called the enclosing
condition of similarity-center. »

In the ultimate state f(S, H)Y=F(H), the vector
G, —S makes an obtuse angle with the outward-normal
vector Of (S, H)/ ds to the normal-yield surface at the
similarity-center, provided that the normal-yield surface
is convex. Noting this fact and considering the fact that
the similarity-center moves only with the normal-plastic
deformation, let the following equation be assumed so
as to fulfill the inequality (70):

$ + 2 {ir (f’f(s B i) -7 §=c|pf & ()

where c is a material constant influencing the translating
rate of the similarity-center and

6=06-5 (=R(Gy -S)) (72)

The translation rule of the similarity-center is now
derived from Eq. (71) as follows:

§=Cl|bf|l%+&+%{F'ﬁ—tr(%ﬁ)}§. (73)

It is conceivable that the similarity-center § ap-
proaches ¢, ascan be seen from the simple case of the
nonhardening state (4=H =0, H =0), although the
evolution rule (73) is derived on the fulfillment of the
requirement (70) in the ultimate state f(8, H)
=F(H).

The evolution rule of the extended normal-yield
ratio R is given by the following equation in the iden-
tical form of Eq. (44) for R.

R=0®)IDI forDf=0, (74)
where {J is the function of R having the same form as U
in Eq. (45) and thus the simplest explicit function is given by

U=-ulnR. (75)

The substitution of Egs. (73) and (74) into Eq. (67) leads
to the consistency condition for the subloading surface:

tr{af(“’ H pn-p? )} - t(af("’ H)g a)

(2

af(oHH> H)=0IDRIF+RF'H (76

with
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(21=&+%{F f-t (af(s H) f)}$

—nnzn{Us-c(E—l)&} an
Substituting the associated flow rule
Dy=AN (1>0), (78)

where ;1 is a positive proportionality factor and the sec-
ond-order tensor N denotes the normalized outward-normal
to the subloading surface, i.e.

— c,H o, H i
NG ERE] e

it is obtained that
5 N F’ = DS A S
=tr| NSED -~ - —(1-
7=t N{ED- T 15 -Ra-1-B))

v (PG}

/ [Utr{ﬁ(;a— §)} +tr(NEN)]- (830)

Referring to Eq. (50) for the subloading surface model
and substituting Eq. (80), the stress rate is given as fol-
lows:

:ED—- .
u{u[N{Ep-£ fr3-Ra-0-F)
+-Lur(@E D ns)]

/[otr{R(Ls- §)}+tr(NEN)]>N
-2 py, 81)
1+——
2GT
where
o N*
N*=TI*N, D¥'=—-r, (82)
fIN*]
ﬁEﬁ*@ﬁ*, f*ET*—ﬁ*’ (83)
]—)? Ef*D= D*_tr(—ﬁ*D*)ﬁ* (84)

where T is given by the following equation, replacing
the normal-yield ratio R to the extended normal-yield
ratio R .
£ =¢(0,H,0,H). (85)
4.2 Extended subloading-overstress model

Replacing the stress ¢ to the elastoplastic stress
o in Eq. (81), the elastoplastic stress in the extended
subloading-overstress model is given by

6% =ED-

E(tr[Nep{En-§ﬁaeP _R%6-(1-F)$

- t(af CE1 fyg}]

o™t —epmep)pﬁep
+
2GT?

where

H =tr{f; (6%, H,a, H)DY?}

a=f,6%, H,a, H)DY (87
ﬁ= fH(Gep, Ha (1, I‘I)D‘;{f7
6r=6%-q, (88)

No o LE2H) JACV) sojoy,

ooer oo
NZ*=T* NP, ne* = ljep* y 90
N vI N ”Nep*” o0
ne*=nerener, 177 =1*-a%% ()
DP* =I%*D=D* - tr(ae*D") ™ ©2)

—, Jf(©% H)
ep _ SO ) 93
R = o ts (93)
U?P=UR?), U®=-ulnR%, o4
&ep=cep_s, (95)

s C” P”62P+&+1{FH t(af(s H)H)}S

(96)

The second-order tensor fy and the fourth-order ten-
sor f,, fy are the functions of ¢%, H, @ and
H. Rs (0<Rs<1) is called the extended subloading
stress.

Noting that the distinction of constitutive equation
inside and on the yield surface is not required in this
model, the strain rate and the stress rate are given by
extending Eqgs. (40) and (41) as follows:

x
D=E'6+Cy(R-R?"N+C, ;f N7
=
6=ED-Cy(R-R¥YWEN-2GC, =, (9%)
where
«— < "
G = G,t O; 99)
R
G, En*(j:tr(n* G)n*
- . < (100)
6'=1"6=c"" G,
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Cv and C, are the functions of stress 6, internal
variables H,a,H, absolute temperature T, C, is
further the monotonically-increasing function of R as
follows:

(101)

Cv=Cy6,H, o, H,T),
Et Eéct(c,Ha a, H’ T)EKI-

The equation (86) was derived by the different
method that the associated flow rule is substituted into
Eq. (67) in the form of stress rate without the trans-
formation to Eq. (76) in the form of strain rate.

5. Concluding remarks

The novel variable “overstress tensor” is proposed,
which has been the missing link in the overstress model
and the constitutive formulation of overstress model is
improved based on it in this article. It is capable of de-
scribing the viscoplastic strain rate due to the rate of
stress
tial-viscoplastic strain rate due to the overstress compo-
nent tangential to the yield surface. The qualitative re-
sponse of this model and its comparison with test data
will b described in detail in subsequent papers.

inside the yield surface and the tangen-
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