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A high friction coefficient is first observed as a sliding between bodies commences,
which is called the static-friction. Then, the friction coefficient decreases approaching the
lowest stationary value, which is called the kinetic-friction. Thereafter, if the sliding stops
for a while and then it starts again, the friction coefficient recovers and a similar behavior
as that in the first sliding is reproduced. These are fundamental characteristics in the fric-
tion phenomenon, which have been widely recognized for a long time. In this article the
subloading-friction model with a smooth elastic-plastic sliding transition is extended so
as to describe these facts by formulating the rate-dependent hardening/softening rule of

sliding-yield surface adequately.
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1. Introduction

Description of the friction phenomenon as a constitutive
equation has been attained first as a rigid-plasticity’>. Further,
they have been extended to an elastoplasticity”™® in which the
penalty concept, i.e. the fictitious springs between contact sur-
faces is incorporated and the isotropic hardening is taken into
account so as to describe the test results'” exhibiting the smooth
contact traction vs. sliding displacement curve reaching the
static-fiction. However, the interior of the sliding-yield surface
has been assumed to be an elastic domain and thus the plas-
tic-sliding velocity due to the rate of traction inside the slid-
ing-yield surface and the accurmulation of plastic-sliding due to
the cyclic loading of contact traction cannot be described by
these models. They could be called the conventional friction
model in accordance with the classification of plastic constitu-
tive models by Drucker'®. On the other hand, the first author of
the present article has proposed the subloading surface model”
~2Dyyithin the framework of unconventional plasticity, which is
capable of describing the plastic strain rate by the rate of stress
inside the yield surface. Further, the authors proposed the
subloading-friction modeP® describing the smooth transition
from the elastic- to the plastic-sliding state by incorporating the
concept of subloading surface. Besides, in this model the de-
crease of friction coefficient with the increase of normal contact

traction observed in experiments”**? is described by incorpo-

rating the nonlinear sliding-yield surface, while the decrease has
not been taken into account in Coulomb friction law which has
been adopted widely in friction models.

It is widely known that when bodies at rest begin to slide to
each other, a high friction coefficient appears first, which is
called the static-friction, and then it decreases approaching a
stationary value, called the kinetic-friction. However, this proc-
ess has not been formulated so far, although the increase of fric-
tion coefficient up the peak has been described as the hardening
process” ™9, Further, it has been found that if the sliding ceases
for a while and then it starts again, the static-friction recovers
and the identical behavior as that in the initial sliding is repro-
duced®39, The recovery has been formulated by equations®™
% including the time elapsed after the stop of sliding. However,
the inclusion of time itself leads to the loss of objectivity in con-
stitutive equations as known from the fact that the elapsed time
varies depending on the judgment of time as the stop of sliding,
which is accompanied with the arbitrariness especially when the
sliding velocity fluctuates. Here, it should be noted that the
variation of material property has to be described by internal
variables and their rates.

The decrease of friction coefficient from the static- to ki-
netic-friction and the recovery of friction coefficient mentioned
above are to be the fundamental behavior of friction between
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bodies, which have been recognized widely. Difference of the
static- and the kinetic-friction often reaches up to several tens
percents. Therefore, the formulation of the transition from the
static- to the kinetic-friction and vice versa is of importance for
the development of mechanical design in the field of engineer-
ing. However, the rational formulation has not been attained so
far.

Tn this article the subloading-friction model is extended
so as to describe the decrease of friction coefficient from the
static- to kinetic-friction by the softening due to the plas-
tic-sliding and the recovery of friction coefficient by the hard-
ening due to the creep deformation under the contact pressure.
The extended model would be called the time-dependent
subloading-friction model.

2. Formulation of the constitutive equation for friction

The subloading-friction model proposed recently by the
authors® is extended below to the time-dependent fiiction
model describing the static-kinetic friction tramsition, ie., the
transition from static- to kinetic-frictions, and vice versa.

2.1 Decomposition of sliding velocity
The sliding (relative) velocity r between contact surfaces
is additively decomposed into the normal component 1, and
the tangential component 1; as follows:
F=r,+n, »
which are given as-

r,=(ren)n=(maen)r, }

r,=r-r,=(I-n®njr,

@

where 1 is the unit outward-normal vector at the contact surface,
(s) and ® denote the scalar and the tensor products, respec-
tively, and I is the identity tensor. On the other hand, it is as-
sumed that r is additively decomposed into the elastic (pen-
alty)-sliding velocity r¢ and the plastic-sliding velocity r?,
ie.,

r=reé+r? 3
with
r,=ré+r},
. @
T Eritr.

First, let the elastic-sliding velocity be given by

i)'" =&, rfv
©)

9
ft =—Q; ri,

where f, and f; are the normal component and tangential
component, respectively, of the traction vector f applied to a
unit area of contact surface, i.e.

f,=(mfin=(mnon)f,

f,=f-f,= I-n®n)f, ©
and, (°) denoting the corotational rate, f, and f, are the
normal component and tangential component, respectively, of
the corotational rate f of the traction vector f ,ie.,

fn E(n-?)n = (n®n)f',

e g g o Q)

fi=f-f,=I-n®nf,

which are related to the material-time derivative denoted by
(*) asfollows:

f=f-of,

0 . 8
£, =f,— Of,, ®
,=f,-0f,,

where  the skew-symmetric tensor Q  designates the
rigid-body rotation of the contact surface. ¢, and ¢, are the
contact penalty parameters representing the fictitious contact
elastic moduli in the normal and the tangential directions to the
contact surface. Thus, it follows from Eq. (5) that

f=fu+f, =CF, ©®
where the second-order tensor C° is the fictitious contact elas-
tic modulus tensor between contact surfaces and is decomposed
into the normal and tangential components, i.e.,

Ce=C8+C (10)
with
C’=-aqn®n,
(11)

Ci=-a,(I-n®n).

2.2 Normal-sliding and sliding-subloading surfaces

Assume the following sliding-yield surface with isotropic
hardening/softening, which describes the sliding-yield condi-
tion.

At lEh=F, (12)

where || | designates the magnitude, and F is the isotropic
hardening/softening function denoting the variation of the size
of sliding-yield surface. In what follows, we assume that the in-
terior of the sliding-yield surface is not a purely elastic domain
but that the plastic-sliding velocity is induced by the variation of
traction inside that surface. Therefore, let the surface described
by Eq. (12) be renamed the normal-sliding surface.

Next, in accordance with the concept of subloading sur-
face'™ 2, we introduce the sliding-subloading surface, which
always passes through the current traction f and keeps a similar
shape and a same orientation to the normal-sliding surface with
respect to the zero traction point f=0. Then, the slid-
ing-subloading surface fulfills the following geometrical char-
acteristics.

i) All lines connecting an arbitrary point inside the slid-
ing-subloading surface and its conjugate point inside
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the normal-sliding surface join at a unique point,
called the similarity-center, which is the origin of
the contact traction space in the present model.

ii) All ratios of length of an arbitrary line-element con-
necting two points inside the sliding-subloading sur-
face to that of an arbitrary conjugate line-element
connecting two conjugate points inside the nor-
mal-sliding surface are identical. The ratio is called
the similarity-ratio, which coincides with the ratio of
the sizes of these surfaces.

Let the similarity-ratio of the sliding-subloading surface to
the normal-sliding surface be called the normal-sliding ratio,
denoted by R (0<R<1), where R=0 corresponds to the
null traction state ( f = 0) as the most elastic state, 0 < R <1
to the subsliding state (0< f < F), and R=1 to the nor-
mal-sliding state in which the traction lies on the normal-sliding
surface ( f = F'). Therefore, the normal-sliding ratio R plays
the role of three-dimensional measure of the degree of approach
to the normal-sliding state. Then, the sliding-subloading surface
is described by

(e

The material-time derivative of Eq. (13) leads to

fl)=RF. (3)

B

I i+ D td, —RFiRE, (4
o[t o[t;|
where
f f,
=" t=—l 15
"SI TR (13
Eq. (14) is obviously transformed to
S S W Y (16)
o[t o|if|

since the function f is a scalar variable, while we can
confirm easily the rationality of this transformation by
substituting Eq. (8) into Eq. (14), noting the equation

a+(Qa)=0 a7
for an arbitrary vector a.

2.3 Evolution rules of the hardening function and the

normal-sliding ratio
It could be stated from experiments that

1) If the sliding commences, the friction coefficient reaches first
the highest value of static-friction and then it reduces to the
lowest stationary value of kinetic-friction. Physically, this
phenomenon could be interpreted to be caused by the
separation of adhesion of surface asperities between contact
bodies due to the plastic-sliding. Then, let it be assumed
that the reduction is caused by the contraction of the nor-
mal-sliding surface, i.e. the isotropic softening due to the
plastic-sliding,

2) If the sliding ceases after the reduction of friction coefficient,
the fiiction coefficient recovers gradually with the elapse of
time and the static-friction is reproduced after a sufficient

time. Physically, this phenomenon could be interpreted to
be caused by the reconstruction of the adhesion of surface
asperities between contact bodies subjected to the contact
pressure. Then, let it be assumed that the recovery is caused
by the expansion of the normal-sliding surface, i.e. the iso-
tropic hardening due to the creep deformation under the
contact pressure.

Taking account of these facts, let the evolution rule of the iso-
tropic hardening function F be postulated as follows:

Fer(f-D)"IeelnQ-£y 08

where Fy and Fj (F; > F;) are the ultimate values of F
for the static- and the kinetic-friction, respectively. x and m
are the material constants influencing the decreasing rate of F
with the plastic-sliding, and 77 and » are the material con-
stants influencing the recovering rate of F with the elapse of
time, while they would be functions of absolute temperature in
general. The first and the second terms in Eq. (18) stand for the
deterioration and the formation, respectively, of the adhesion
between surface asperities.

It is observed in experiments that the tangential traction in-
creases almost elastically when it is zero and thereafter it gradu-
ally increases approaching the normal-sliding surface in the
plastic-sliding process. Then, we assume the evolution rule of
the nonmal-sliding ratio as follows:

R=UR)|r7|| forr? =0, (19)

where U is a monotonically decreasing function of R fulfilling
the following conditions.
U=+x for R =0,
U=0 forR =1, (20)
(U<0 for R>1).
The simplest function U fulfilling Eq. (20) is given by

U =-ulnR, 2D
where # is the material constant.

2.4 Sliding velocity

The substitution of Egs. (18) and (19) into Eq. (16)
gives rise to the consistency condition for the sliding-subloading
surface:

o ke g

——n Ofn+———
ol olf:|

- — A F m _Ey
=Ulir#||F+R{ K(—F—];—-l) ez 147 (1 ) }@
Assume the following sliding-plastic flow rule.
r? =-Ait (1>0), 23)

where A is a positive proportionality factor, where the sign
minus in the right-hand side is added since the plastic-sliding
rate is induced in the opposite direction of the tangential contact
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traction. Substituting Eq. (23) into Eq. (22), the proportional-
ity factor } is derived as follows:

{ o (mef)+—2—

(to f) R(1-L£
a1t b} nr(-

6Hf
RK(—F;—I) —~UF

- @8

2.5 Contact traction rate-sliding velocity relation

The expression of the sliding velocity in terms of the con-
tact traction rate is given from Egs. (1), (4), (5), (23), and
(24) as follows:

r=@+r2)+(xf +r/)

L AP +nR(1-E-
oo Ry,

RK(E—l) ~UF

@5)
On the other hand, the substitution of Eqgs. (4), (5), and
(23) into Eq. (22) leadsto

o gy
an——n.(r,,~rn )— —2 _te (rt )
|t E
=U“I‘P|| F+R{—K(%_l)m”rpII_*_’](I_FLS);'[}’
which is further rewritten as
of of
a,——nen®@Mmer)—a, ——(r+A4t)
olt| ol

= Uﬂ,F+R{—K(—%—l)m,l+7](l—%)n} (26)
by Egs. (2), (4), and (23). The proportionality factor ] ex-
pressed in terms of the relative velocity, rewritten as A, is
given by

PR A AP
7 T DA S
_RK(F 1) +UF+a,a“{”

The rate of contact traction is given from Egs. (1)-(5),
(23) and (27) as follows:

f= —a, (6, — 17 )=, (5, — 1)
= —q,(ner)n —a{r—(mer)n+At}

= —ar—(a,—a)(mem)r

A, U N _Fyn
(g™ %)~ 7R (1)
of

o]

ts

F m
-R K(——Fk - 1) +UF+a
which results in

f'=—{a,l+(an— o;)(n®n)
® @™ g EAF
-RK(F —1)"+UF +a, o o

ot
77R(1 —*)
+oy t. (28

o
-R -1
K(F )" +UF +a et Al

The loading criterion® for the plastic-sliding veloc-
ity is given as follows:

rp¢0:A>0,}

29
r’=0:4<0 @)

due to the requirement of positiveness for the propor-
tionality factor A.

3. Concrete constitutive equations

Formulated below are concrete constitutive equations for
friction, in which concrete forms of normal-sliding surface are
adopted. It can be stated from experiments that the friction coef-
ficient decreases with the increase of contact pressure. There-
fore, the sliding-yield surface would not be described appropri-
ately by the Coulomb friction law in which the tangential con-
tact traction and the normal contact traction are linearly related
to each other using the angle of fiiction and the adhesion. In
what follows, nonlinear relation of tangential contact traction
and normal contact traction is assumed below, by which the
reduction of friction coefficient the normal contact traction is
described.

We assume first the following quadric surface® for the
normal-sliding surface:

FAe0L 18D = g4 4. (30)
where
|| || 7, 1
Z=—M—, A—m. (31)

M is a material constant depending on the frictional property. It
holds for Eq. (30) that ¥ <2 and

o o _ 4
al] P4 G T 2m (2

for which Eq. (28) becomes
f=— [a,l +(a,— o;)(n®n)
AZ
- 2 A
t®{a, (- ) 4n+ay St}

A2
2M

-,
t —Rx (%—l)m+ UF +a,
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R (1-L)"
+a, ( Fs) t.

F m 1
_RK-(__I) +l]F atW

Furthermore, we adopt the following tear-shaped surface
for the normal-sliding surface® (Fig. 1), which was first pro-
posed for the yield surface of soils by Hashiguchi®™®.

SAE] D =€ )8 » 39
where
2
B Eexp(%) . (35)
Itholds for Eq. (34) that
o d _x
=(1-x%B, =B 36
3t o]~ M ©0
for which Eq. (28) becomes
f=- [atl +(a,— a;)(n®n)
t® {on(1- 22)B+a, 47 Bt}]
— af
—RK(T—I) +UF+a, 57
nR (1- L
+tay ( E S) t. (37

~Ric (%—l)m+UF+a, Zp

While Coulomb law involves the angle of friction and the cohe-
sion as the material constants, the above-mentioned sliding-yield
surface could describe the decrease of friction coefficient with the
increase of normal-tangential traction without increasing the
number of material parameters (two: M, F). They are iden-
tical to material parameters included in the normal-yield sur-
face of soils. That is, the height of friction coefficient is de-
scribed mainly by A and its continuation with the increase
of normal traction is described by F.

M
1
>
0 RFNe FRhle RF Fog

Fig.1 Tear-shaped normal-sliding and sliding-
subloading Surfaces of Eq. (34).

4. Basic response of the present model

4.1 Numerical experiments

Below, we examine the basic response of the present fric-

tion model by the numerical experiments of the linear sliding

phenomenon without a rigid-body rotation under a constant
nommal traction as follows:

r, =0, f,=const., Q=10 (38)

as shown in Fig. 2 in which the sliding velocity of the body A
relative to the body B is denoted by r and the tangential trac-
tion acting to the body A from the body B is denoted by f. In
this figure the two-dimensional coordinate system (7,7) is
adopted, where the axes ¢ and » . is directed toward —t and

n respectively, ie.
-1 0
t= , = 39
3 S
Fig. 2. Slidiﬁg velocity r of body A relative to body B
and traction facting to body A frombody B
in the coordinate system (z, n).
For the quadric sliding surface (30), it holds that
S
R=-"4, 40
7 (40)
AZ
df;z_at 1- 273 2M du,
kR(E-1)"+UF + e
T E 2M
1R (1-4-
+ay dt 41)
AZ
—xR (7—1) +UF+ a5
or
AZ
du;=~ 1 + 2M
% _kR (£-1)"+ur
Fy
n
7R (1- 7 )
dfi- o , (42)
xR (L~1)"+UF + o, A
Fy
where df;= f,dt (= f,dt) and du =redt (t:time).

For the tear-shaped sliding surface (34), it holds that
/
rR=I2p, 43)
7 (
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Fig. 3. Variations of friction coefficient and
hardening function with tangential
sliding distance and stationary time
for various tangential sliding velocity

(1=100).
.
=B
dftz_at{l_at F AZ ¥ }dut
—RK(E"l) +UF +a, 4 B
7R (1-L£Y
+a ( Fs) dt 4

‘R (%—1)m+UF+a, %B

or

du,=—{ai+ MB - }
! —RK(»}%—I) +UF

R(-£)

For the numerical experiments the tear-shaped sliding sur-
face (34) is adopted and the material parameters and the nor-
mal traction are selected as follows:

0.8
0.6
St
0.4
0.2
00 1 1 1 1
0.0 005 010 015 020 025
u, (mm)
0.8 -
% =1.07" mm/s _1000- fz/‘fn
0.6
il Ju
0.4 iz,
100 '
0.2 50
10
00 L 1 1 1
0.0 005 010 0.15 020 025
u, (mm)
0.8 =
= mm's  4=1000
t U f;v/fn
0.6 |
fil fu
0.4 F 11,
100
0.2 10
5
00 ] i 1 []
0.0 005 010 015 020 025
u, (mm)

Fig. 4. Influences of the material constant u
on the relation of friction coefficient
vs. tangential sliding displacement for
three levels oftangential sliding rate.

F=FF100MPa, F;=30 MPa,
x=1000 MPa/mm, m=1, 7=10MPafs, »n=2,
=5, 10, 50, 100 and 1000 mm”,
=100 MPa/mm, o~100 MPa/mm,
f=10 MPa,
where [ is the initial value of F.

Variations of the contact traction ratio f; /f, and
the tangential sliding displacemént », and stationary
time for various tangential sliding velocity are shown in
Fig. 3, while f® andf* are the values of f, calcu-
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lated from the normal-sliding condition choos-
ing F = Fy and F;, respectively. It is observed that the
peak tangential traction, i.e. the static-friction and the
lowest stationary tangential traction, i.e. the ki-
-netic-friction decrease with the increase of tangential
sliding velocity #;. The reduction of the hardening
function F with the tangential sliding distance and its
recovery from the minimum value in the kinetic-friction
with the time t elapsed after the complete unloading
are also shown in this figure. Besides, the influence of
the value of u# for the evolution rate of normal-sliding
ratio R is shown in Fig. 4, while it is observed that the
curve becomes smoother for the smaller vale of u.

The influence of the stationary time on the recovery of
friction coefficient is shown in Fig. 5. It is observed that the re-
covery is larger for a longer stationary time, while almost com-
plete recover is realized for the stationary time 200s.

4.2 Comparison with test data _

The validity of the present theory for the prediction of friction
behavior of real material is verified comparing with some test
data for linear sliding behavior in this section.

0.8

0.6
Ji! f
0.4

0.2

0.0
0.0 0.1 0.2 0.3 0.4 0.5

0.8

0.6
Sl T

0.4

0.2

0.0
0.0 0.1

Fig. 5. Relationships between contact traction ratio
and tangential relative displacement with
stationary contact time ( #, =1.07 mm/s,

u =100mm/s ).

0.6
O Experiment
— Present theory
0.5,
Jel T
0.4 Stationary time: 400s
034

0.2 +
0.0 0.01 002 003 004 0.05
u, (mm)

Fig. 6. Recovery of friction coefficient by the stop of
sliding in the reduction process from the static-
to kinetic- friction under the infinitesimal sliding
velocity (Test data after Ferrero and Barrau,

1997).
0.4
8
031 g Q
ST maﬂ
021
X Experiment
O Present theory
01 1 1 1 1
0 10 20 30 40 50

Stationary contact time (s)

Fig. 7. Recovery process of friction coefficient
with the elapsed time after the stop of'slid-
ing (Test data after Brockley and Davis,
1968).

Reduction process of friction coefficient from the static- to
kinetic-friction and recovery of friction coefficient by the stop
of sliding is shown in Fig. 6. The test curve™ under the infini-
tesimal sliding velocity 7 < 2x10™ mm/s and the station-
ary time 400s is simulated sufficiently well by the present
model, where the material parameters are selected as follows:

FeF=120MPa, Fe25MPa, M=028,
x=3000 MPa/mm, m=2, 1=0.1 MPa/s, =2,
7= 1500 mm™,

o=10 GPa/mm, =10 GPa/mm,
£=10MPa, #~2.0X 10™*mmys.

Recovery process of friction coefficient is shown in
Fig.7. The sliding was first given reaching the ki-
netic-friction and then the tangential contact traction was
unloaded to zero. Further, after the stop of sliding for a
while the sliding was given again. The relations of the
non-dimensional maximum value of frictional coeffi-
cient f"*/ f, vs. the time elapsed after the stop of
sliding are plotted in this figure. The test curve’” is
simulated sufficiently well by the present model, where
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the material parameters are selected as follows:

F=F~1200kPa, F=200kPa, M=0.16,
=10 MPa/mm, m=2, r=230kPa/s, =2,
= 3000 mm’’,
o=10 MPo/mm, - o~10 MPa/mm,
fn=138kPa, r~=1.0"mm/s (before stop of sliding).

5. Concluding remarks

The time-dependent subloading-friction model is formulated
in this article in order to describe the reduction of frictional co-
efficient from the static- to kinetic-friction and the recovery of
frictional coefficient, and the basic characteristics of this model
is examined by the numerical experiments of linear sliding
phenomenon. It would be capable of describing the transition
from the static- to the kinematic-fiiction and vice versa ade-
quately, which have not been formulated as a constitutive equa-
tion up to present. Further, the quantitative predictability of the
present model was be verified by comparing with the various
basic test results.
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