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In order to describe cyclic plasticity phenomena plastic stretching within a yield

surface has to be considered, whilst conventional elastoplastic constitutive equations

are only capable of describing deformation behaviour for a stress path near the

monotonic/proportional loading. The subloading surface model categorized in the

unconventional plasticity model and describing a smooth elastic-plastic transition

would be applicable to non-proportional loading process including cyclic loading

behavior of materials with a smooth yield surface. In this study the model is extended

for materials exhibiting an elastic response under a particular state of stress, named

elastic boundary, whilst they also exhibit a smooth elastic-plastic transition.
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1. Introduction

The lifetime prediction of structures is one of a
dominant factor to achieve an optimum design. Also, it is
well known that cyclic loads produce failure of structural
parts for values of stress lower than those obtained in
monotonic tests. This phenomenon is so-called fatigue and
is the main cause of failure of machine parts in service.
Classical approaches to study these phenomena involve the
characterization of total fatigue life to failure by using the
stress amplitude-life (S-N) curves, while some studies are
based on the fracture mechanics”. On the other hand,
continuum description of cyclic deformation and fatigue
phenomena is also useful for its understandings.

In order to simulate these fatigue phenomena the plastic
stretching within a yield surface has to be described, whilst
the plastic strain is induced remarkably as the stress
approaches the yield stress. The traditional plastic
constitutive equation, however, is capable of describing
deformation behaviour for the stress path only near the
monotonic/proportional loading, since its inside of the yield
surface is assumed to be an elastic state. Therefore, various
constitutive models, in the
framework of unconventional plasticity® premising that an

which are categorized

interior of the yield surface is not the elastic' domain, have
been proposed up to the present. Among them™® the

1N smooth

subloading surface mode describing a
elastic-plastic transition has a mathematical structure
applicable to the description of deformation behaviour in
an arbitrary loading (including unloading and reloading)
process of materials with an arbitrary smooth yield surface.
The model fulfills the basic mechanical requirements'” ",
i.e. the continuity condition, the smoothness condition, the
work rate-stiffness relaxation and the Masing -effect.
Furthermore, in order to describe the vertex (tangent) effect,
causing the dependence of not only the magnitude but also
the direction of the inelastic stretching on the stress rate,
the extended vertex type of constitutive model have been

9 It has been verified that a smooth

proposed'?”
elastic-plastic transition can be well described for many
kinds of soils""'”. The validity of these models were also
verified for monotonic and low cycle deformation behavior
of metals'®*®. On the other hand, it is well known for
many metallic materials that a purely elastic response, such
as Hooke’s type, would be observed under a particular
lower state of stress, so-called proportional or elastic limit,
whilst they also exhibit a smooth elastic-plastic transition

as the increase of stress to the dominant yielding state. To
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describe fatigue phenomena, appropriate description of
deformation behavior for cyclic stresses lower than a yield
stress is required.

In this article, to propose the unconventional plasticity
model describing the cyclic loading behavior for the stress
cycles lower than the yield stress, the subloading surface

" model is extended by incorporating the concept of the
elastic boundary together with the consistent material
function. The proposed model exhibits a purely elastic
response under the particular state of stress and a smooth
elastic-plastic transition keeping the mechanical features of
the subloading surface model. The mechanical responses of
the model are examined to the cyclic loading condition.

2. Extended Elasto-plastic Constitutive Model

Denoting the current configuration of the material point
by x and the current velocity by v, the velocity gradient is
described as L=0v/0x . Now the stretching and the
continuum spin are defined as D (=(L+LT)/2) and W
=L —LT)/ 2), respectively, where ( )' stands for the
transpose.

2.1 Stretching and Stress Rate

In the rate-form elastoplasticity, the stretching D is
additively decomposed into elastic stretching D¢ and
plastic stretching D7, i.e,

D =D?+D”? (1)
where D is given by

D¢=E"c )
Cauchy stress. (°) denotes the
Here, avoiding the

is the
co-rotational rate.
rigid-body rotation on the constitutive relation, the
following Jaumann rate is adopted.

where ©
influence of

T=T-WT+TW 3)

Here, T denotes the arbitrary second-order tensor with the
dimension of the stress, and (*) denotes the material-time
derivative. Hereafter, the rate form of Hooke's law is
adopted, and thus the elastic modulus tensor E in Eq. (2) is
given as follows:

1+ V;(zlz_ ) 2(1%1 v) i 6udin) (4)
where E and v are Young’s modulus and Poisson’s ratio,
respectively, and 5,7 is Kronecker's delta, i.e. 5ij =1 for
i=jand &;=0fori=j.

Eyy = 60 +

2.2 Plastic Stretching

We assume that the yield condition can be written in the
form:

f(6,H)=F(H) 5)

subloading surﬁicg R4

-
-
N -

elastic boundary surface

normal-yield surface

Fig. 1 The normal-yield, the subloading and
the elastic limit surfaces.

where

6=06y-a (6)
The second-order tensor 6y is the current stress in the
plastic yielding state and a is the reference point on or
inside the yield surface, which is the so-called back-stress
and plays the role of the kinematic hardening variable as it
translates with the plastic deformation. F is the isotropic
hardening/softening function, and the second-order tensor
H and the scalar H are anisotropic and isotropic hardening
variables, respectively. The kinematic hardening of the
yield surface describes the Bauschinger effect characterized
by early re-yielding, which is mainly due to the motion of
less stable dislocations, such as piled-up dislocations. The
isotropic hardening of the subloading surface represents the
global work-hardening associated with the formation of
stable dislocation structures, such as cell walls.

Let it be assumed that the loading function f(¢,H) is
homogeneous of degree one in the tensor & . Then, if
H=const., the yield surface keeps a similar shape. Drucker
(1988) defined unconventional elastoplasticity as the
extended elastoplasticity such that the interior of the yield
surface is not a purely elastic domain, but plastic
deformation is induced by the rate of stress inside the yield
surface”. In the subloading surface model”, the
conventional yield surface is renamed to the normal-yield
surface, since its interior is not regarded as a purely elastic
domain.

Now, let the subloading surface be introduced, which
always passes through the current stress point ¢ . The
subloading surface keeps the similar shape to the
normal-yield surface and the positioning of similarity to the
normal-yield surface with respect to the similarity-center s.
The normal-yield and subloading surfaces are illustrated in
Fig. 1, where &y is regarded as the conjugate stress of the
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current stress 6 on the normal-yield surface at which the
normalized outward-normal N is the same as that at the
current stress on the subloading surface. The similarity of
these surfaces the following geometrical
properties.

i ) All lines connecting an arbitrary point inside the

POSSESSES

subloading surface and its conjugate point inside the
normal-yield surface, join at the similarity-center s
which is the origin of the stress space in the present case.
) All of the ratios of length of an arbitrary line element
connecting two points inside the subloading surface and

=

i

that of an arbitrary conjugate line-element connecting
two conjugate points inside the normal-yield surface, are
identical. The ratio is called the similarity ratio which
coincides with the ratio of the sizes of these surfaces.

Let the similarity ratio of the subloading surface to the
normal-yield surface, which plays the role of 3-dimensional
measure of the degree of approach to the normal-yield state,
be called specifically the normal-yield ratio and denoted by
R. Therefore 0<R<1 corresponds to the subyield state, R=1
to the normal-yield state in which the stress lies on the
normal-yield surface and R=0 to the stress state, in which
the stress coincides with the similarity-center s. Then, it
holds that

6y =%{c—(1—R)S} (6-s=R(cy-3)) ™

The substitution of Eq. (7) into Eq.(5) gives the
expression of the subloading surface as

JS(6,H)=RF(H) (3)

where
6=6-a (=R06) )
a=s—R(s-a) (a—s=R(a-s)) (10)

o on or inside the subloading surface is the conjugate
point of a on or inside the normal-yield surface, which
would correspond to the back stress of the subloading
surface.

The time differentiation of Eq. (8) is given by

w{ LEWGy (L)~ kit 1)

where tr () stands for the trace operation and
_ dF
F's T (12)
As observed in experiments, the stress asymptotically
approaches the normal-yield surface in the plastic loading
process D? = 0 . Thus, the following evolution equation of
the normal-yield ratio R in plastic loading state is assumed.

R=U/D?| for D? #0 (13)

where [ / stands for the magnitude. It has been assumed
that the function U is a monotonically decreasing function

of the normal-yield ratio R, satisfying

+0 for R =0,
0 for R = 1, (14)
(U <0 for R>1).

The function U satisfying Eq. (14) has been simply
assumed to be given by

U=-mhR (15)

where m is a material constant prescribing the approaching
rate of the current stress to the normal-yield surface with
plastic deformation. It has been verified for the models
adopting Eq. (15) that the mechanical responses of soils
can be well described for monotonic and cyclic loadings far
lager than yield stress™'®.

Let the associated flow rule be adopted for the plastic
stretching D? as

D?=4AN (16)

where A is the positive proportionality factor and N is the
normalized outward normal of the subloading surface, i.e.

_ of(6,H) /I of(c,H) _
N=C. /H e " (M=) @a7)

Substituting Eqs. (13) and (16) into Eq. (11), the positive
plastic multiplier A is given by

_ tr(Ne)
A Y (18)
where the plastic modulus M? is given as follows:
F’ 1 o (6,H)
MP=tr| N({ —h——tr(———h
IN({E AL o ZC)
+%}a+§)] (19)

where h, h are a functions of the stress, plastic
internal-state variables and N of degree one. These are
related by

p=tL p=H (20)

A A
EE-%=R3+(1—R)Z—U(S—G.) Q1)
Ei, ZEi 22
) ) @2)

The stretching D is given from Egs. (1), (2), (16) and
(18) as

—2N (23)
The positive proportionality factor in the associated

flow rule of Eq. (16) is expressed in terms of the
stretching D, rewriting 4 by A, as follows:
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A tr(NED) 24
MP +tr(NEN)

The inverse expression, i.e. the analytical expression of the
stress-rate in terms of the stretching is obtained as follows:

6=ED- t_r(Nl?B)__EN (25)
MP +tr(NEN)
The loading criterion is given as follows:
PP £0: A>0,
(26)
D =0: A<0,

which is applicable not only to a hardening state but also to
a perfectly-plastic and a softening state. The mechanical
background of the loading criterion of Eq. (26) has been
examined®".

Subloading surface model was applied to the prediction
of deformation behavior and shear band formation analysis
of soils'?!17, The validity of this model was also verified

for monotonic and low cycle stress behavior of metals'®'?.

2.3 Translation Rule of Similarity Center

The similarity-center s is required to translate with
plastic deformation in order to describe realistically the
cyclic loading behavior exhibiting the so-called Masing
effect. This translation rule for s is described below.
hold
similarity-center s has to lie inside the normal-yield

The following inequality must since the

surface”.
fEH<F(H) 2N

where

S=s—-a (28)
Let the ultimate state f(§,H)=F(H) be considered, in
which the similarity-center s just lies on the normal-yield
surface, and thus there exists the possibility that the
similarity-center s goes out from the normal-yield surface.
The time differentiation of Eq. (27) in the ultimate state
gives:
of8,H) o o 1 of(8,H) o RERWA
tr[—as—(s—owF {tr(TH)—F H}s] <0

for f(5,H)=F(H) (29)
The inequality (27) or (29) is called the enclosing
condition for the similarity-center. In the ultimate state
f(,H)=F(H); the vector 6y—s (=(6—s)/R) makes
an obtuse angle with the vector 9f(S,H)/ds , which is the
outward-normal to the similarity-center surface. Noting this
fact and considering the fact that the similarity-center

moves only with the plastic deformation, the following
equation fulfilling the inequality (29) is assumed:

§—&+% {tr(%fl) ~-F'H}§=C[D”[(c-s) (30)

where C is a material function of the stress and the plastic

pure elastic smooth
response elastic - plastic
6F R'=05 transition
U automatic
4 R=0.0 R =05 stress}1 recovery
= = onto the normal
(1 =10000) (u =4000) yield surface
2
0 ﬁ-—w
-2 i i
0 05 p 1 15

Fig. 2 The function U inthe evolutionrule of
the similarity-ratio R.

internal variables in general. The translation rule of the
similarity-center is now derived as follows:

§=C/D?[(6-5) ra-L {tr(Qf(s’—H)ﬁ) ~-F'H}$ (31)
F oH
In this study the function C is assumed to be given by

C=-chR (32)

where ¢ (>0) is a material constant prescribing the
approaching rate of the similarity-center s to the current
stress.

2.4 Introduction of Elastic Boundary Concept

It is well known for many metallic materials that a
elastic response, such as Hooke’s type, would be observed
under a particular lower state of stress, so-called
proportional or elastic limit, and they also exhibit a smooth
elastic-plastic transition as the increase of stress to the
state.

dominant yielding Following these facts the

subloading surface model, categorized in the
unconventional plasticity model and describing a smooth
elastic-plastic transition, is extended to describe an elastic
response. Here it should be noted that the terminologies of
proportional or elastic limit are often used in an obscure
style, both of which are not representing an elastic
mechanical response of materials, since the former one
guarantees only a proportionality of stress-strain relation
and the later is often defined as the minimum stress
inducing a particular amount of measured small inelastic
strain.

Now, the concept of the elastic boundary is proposed, in
which the elastic response is assumed under the following

condition:

F@H)<RF(H) (R<R®) (33)
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R? is a material function of the stress and the plastic
internal variables in general, which controls the size of the

elastic boundary surface. Furthermore, the function U in Eq.

(13) is required to satisfy the following relations:

U=t for R = R,
0 for R=1, (34
(U<0 for R>1).

U is assumed to be a monotonically decreasing function of
R. It should be noted that R<R® corresponds to the
elastic state, and then R is simply calculated by Eq. (8). On
other hand, R=1 corresponds to the normal-yield state in
which the stress exists on the normal-yield surface. The
function U satisfying the relation of Eq. (34) is simply
given in this study as

- e
R-R ) for R2R® (35)

U=-ul
u n(l_Re

where u (>0) is a material constant prescribing the
approaching rate of the current stress to the normal-yield
surface (see. Fig. 2). In the case of R®=0, Eqs. (34) and
(35) coincides with Egs. (14) and (15), respectively, and
then these model results in the conventional subloading
surface model without a pure elastic response except for
R=0 and neutral/unloading situations. On the other hand,
the model adopting R®=1 falls within the framework of
conventional plasticity without a smooth elastic-plastic
transition. In case of the R>1, a stress is automatically
drawn back to the normal-yield surface since it is
formulated that R > 0 for R < 1 (subyicld state) and R
<0 for R > 1 (over the normal-yield state). Thus, a rough
numerical calculation with a large loading step is allowed
in the subloading surface model.

The plastic stretching D? in Eq. (16) with Eqgs. (13)
and (35) are formulated so as to be gradually induced as
the similarity-ratio R approaches from the elastic boundary
R® to unity, ie. as the stress approaches closely the
normal-yield surface, so exhibiting the smooth
elastic-inelastic transition. Thus, the extended subloading
proposed in this study fulfills the
smoothness condition'® '’ meaning that the stress
rate-stretching relation (or the stiffness tensor) changes
continuously for a continuous change of stress state. Thus,

surface model

it would be applicable to a general loading process for
materials with an arbitrary smooth yield surface.

3. Constitutive Equation of Metals

Based on the equations formulated in Chapter 2, the
constitutive equation for metals will be formulated in this
section. We adopt the von Mises type of loading function

f(o) and the isotropic-kinematic hardening with

H = 0 for the subloading surface:

f(6)=RF(H) (36)
where

f(o)= \E Gl (37
&=al(02%—a) ” DP” (38)
F =FR[1+ {l—exp(-h,H)}] (39)
H= \E (il (40)

¢* stands for
5 Eﬁ—étr(ﬁ)l @1

M, hy, ay and a,, are material constants, and F, is initial
value of F.

The functions in the constitutive Eq. (25) are given
from Egs. (37)-(40) as

*

Ia°l

MP=tr[N{ (\E %m%)aa}] (43)

Q

N =

(42)

F'= thlhz exp(—th) (44)

*

2= a2 -o) 43)

Numerical simulations of stress-strain responses were
conducted using the present model.

4. Mechanical Responses

Numerical simulations of stress-strain responses were

" conducted under uniaxial condition. The calculated results

were compared to the corresponding experimental data for
aluminum alloys.

4.1 Material

The material used in this study was Al-Mg alloy A5083,
a commercial aluminum alloy. Among aluminum alloys,
A5083 has been used widely for liquefied situations

Table1 Tensile properties of A5083 (MPa, %)

Material E Oy Op Of &

A 5083 72000 183 335 396 15.5

E : Young’s modulus; oy : yield stress; o : tensile strength;
& : elongation. (The number of tested specimens was 3.)
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ﬂ_‘/‘ - =V,
200 fr---= T (u =4000)
oz | g f E Parameters
(MpPa) [+ r E =72600,
vroo v=0.3, Fo =185,
100 - R°=00r0.5,
H u =10000 or 4000,
a; =8, a, =290,
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0 . 1 1 1 1
0.00 <\7 001 g, 002 003
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(u = 4000)
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R°=0.0
{u = 10000y
/‘ [ 0 experiment (A5083) |
100 s i 'l
0.001 0003 &z 0.004

Fig. 3 Stress strain relations of the experimental result
(A5083) and the numerical models under uniaxial
extension condition.

because of its excellent strength and weldability. In
addition to austenite stainless steels, aluminum alloys,
which have good resistance to embrittlement by hydrogen,
are considered. The tensile properties of A5083 at room
temperature are obtained for round bar as in Table 1.

4.2 Material and Model Responses

Fig. 3(a) shows the stress-strain relation of a monotonic
tension test of A5083, together with the calculated result by
the proposed model. Fig. 3 (b) shows the expanded
stress-strain relation around the yield stress of Fig. 3(a) by
the conventional subloading surface ( R°=0) and the
extend (R® = 0) models, selecting material parameters as
follows:

E=72600, v=0.3, Fo=185,
al=8,a2=290, (h1=h2=c=0)

R°=0 R°=05
or
u =10000 u =4000

The calculated result by the classical plasticity model

150

mMonotonic

IS £ .3 .

1001 Fyx0.5 -
Oz
(MPa)

RE=0.0
(u =10000)

50

(2)

0 0.001 0.002

Ezz 0.003
150
monotonic
IR 13— 30 cycle
100}
Ozz RE=05
(MPa) [ (u = 4000)
50

pure elastic response

(b)

0.003

0 0001 g, 0002

Fig. 4 Cyclic loading responses of (a) conventional
subloading surface model; (b) proposed model.

(R°=1 or u=w) exhibits a bi-linear like response, while
the experimental results do not. On the other hand the
unconventional plasticity models ( R°=0 or R°=0.5)
gives better results, and the smooth elastic-plastic transition
of stress-strain relation is predicted quite well by the
subloading surface mode with and without elastic boundary
parameter. Then it can be concluded that the stress-strain
relation of AS5S083 exhibiting
transition under monotonic loading condition can be

smooth elasto-plastic
reproduced well by the unconventional plasticity models.

In order to examine the difference between the
conventional and the extended model in the performance of
describing mechanical responses for = cyclic stress
conditions lower than yield stress, in which conventional
plasticity models ( R°=1) cannot describe any plastic
deformation, the numerical simulations were conducted by
conventional (R°=0) and extended ( R® = 0) subloading
surface model. Figure 4 shows the stress-strain relation
under one-side cyclic loading condition for two maximum

levels of deviatoric stresses Fypx0.5 and Fyx0.6
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corresponding to the cyclic stress states 0<R<0.5 and
0<R<0.6, respectively. Thirty times of each cyclic
loading between 0 to maximum levels are applied. It can be
seen from Fig. 4 (b) that the elastic responses are obtained
for the cyclic stress lower than the stress state R®.
Compared with the response of the conventional
subloading surface model ( R =0) in Fig 5(a), the larger
decreases of axial strain under the cyclic loading are
predicted by introducing the material constant R® on the

magnitude of the elastic boundary surface.
5. Concluding Remarks

A constitutive model within unconventional plasticity
has been presented. The model is based on the subloading
surface model and extended by incorporating elastic
boundary concept. The validity of the present model has
been confirmed by comparing the results of numerical
simulations of stress-strain responses under uniaxial
extension condition and the corresponding experimental
observations on aluminum alloy. The mechanical responses
under cyclic loading conditions are also discussed. The
highlights of this model are summarized as follows.

1. The proposed model incorporating elastic boundary
concept describes a smooth elastic-plastic transition
observed in the uniaxial extension test of aluminum
alloys.

2. The elastic responses are described for the lower stress
state than that of R®, whilst conventional subloading
surface model cannot.
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