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A multi-material Eulerian finite element method for simulating solid-fluid interaction

analyses is proposed in this paper. Although a conventional solid-fluid interaction code

models solid and fluid in a Lagrangian and an Eulerian formulation respectively, the

present computational framework bases on just the Eulerian formulation for solid and
fluid. A mixture theory is used for handling multi-material (solid and fluid) elements.
Solid and fluid element stresses are then mixed by considering their density function.
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1. Introduction

A computation of solid-fluid interaction problems
are nowadays no longer un-researched 12, The most
famous solid-fluid interaction has a Lagrangian solid
and an Eulerian fluid model, which usually implies
two solvers. Both solvers interact during the sim-
ulation. Initially, fluid pressure is given as load to
the solid. After the solid solver has carried out the
calculation, resulting solid velocities are given to the
fluid as load. Then, the fluid solver calcilates. This
loop remains until a desired time or until solution con-
verges.

The objective of this paper is to present a new ap-
proach for solid-fluid interaction analysis. All materi-
als are modeled in same domain, an Eulerian Domain.
Mixed elements are then handled by a mixture the-
ory. We expect to take the advantages of the Eulerian
formulation even for solids, as like large deformations
and material separation. In this publication only the
quality of solid-fluid interaction is presented. Quanti-
tative results will be conducted later.

It is to be pointed out that present computational
framework bases on an existing explicit finite element
program for solid dynamic problems 3. The imple-
mentation of the fluid solving capacity considers that.
For incompressible viscous fluid, the Navier-Stokes
equations which represent the equation of momentum
conservation have commonly four terms: inertial, in-
ternal and external forces. Differentiating those equa-
tions from them of solid dynamics, only the stress is
calculated in another way. In other words, different
constitutive equations are used. Additionally veloci-
ties are updated due to the fluid pressure effect.

2. Computational Framework

The computational framework is introduced in this
section. The following three sections describe the
three main parts of the solver: the solid, fluid and
solid-fluid interaction part, respectively. Before start-
ing with details, it is to be pointed out that the solu-
tion of this fixed-mesh finite element method is split-
ted here in two steps, a Lagrangian step and an Eu-
lerian or advective step. Later step transports the
material and corresponding solution variables through
the remapped mesh. Both steps, the Lagrangian and
Eulerian are solved at each time step. The flowchart
of a computational step is described in below box. Af-
ter reading and initializing the program data, a loop
is started until the wished end time is reached.

Loop: Flowchart of a computational step

o Lagrangian step
+ calculate element stress
- solid stress
- fluid stress
- average stress
+ calculate internal nodal forces
+ calculate nodal accelerations
+ calculate nodal velocities
- calculate fluid pressure
- update nodal velocities
+ calculate coordinates
e Eulerian or advective step
+ advect solution variables
+ advect nodal velocities
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At first, in the Lagrangian step, the element
stress is calculated. Here, stress laws for both ma-
terials are required, Hooke’s law for the solid and
Newtonian fluid law. Notice that only shear stresses
due to fluid viscosity are calculated. The key of this
study is the mixture of the element stress. Consid-
ering the density function of each material, solid and
fluid, the stress is averaged. A mixture theory handles
a multi-material element, which implies that more
than one material in the element are in contact or
in other words are interacting, here solid and fluid.
As next, internal nodal forces are calculated by con-
sidering previous averaged element stress. Then, the
nodal accelerations and velocities are computed. As
mentioned before, only fluid shear stresses were con-
sidered. From now on, the fluid pressure is calculated.
The well-known fractional step method has been im-
plemented. Thus, the pressure Poisson equation is
solved globally by using previous calculated veloci-
ties. A later step updates the velocities considering
the pressure effect. Nodal coordinates are then calcu-
lated, which means the mesh has moved.

The FEulerian or advective step re-meshs to
the original configuration. As consequence, material
and corresponding solution variables must be trans-
ported. For the two kind of variables, namely, element
and nodal-centered, two different algorithms are used.
A second-order advection algorithm advects element-
centered variables, like stress, density function, etc.
Only velocities are nodal-centered variables. To sat-
isfy the conservation of momentum, nodal momentum
is advected instead of the velocity only. The nodal-
centered advection algorithm does this job. The Eu-
lerian step is solved based on the finite difference
method rather than the finite element method applied
in the Lagrangian step.

It is worth to mentioned that implemented subrou-
tines integrate the element with a single gauss point,
which simplify the interaction of solution variables be-
tween solid and fluid. '

3. Solid Dynamics

Theory details about implemented finite element
method solid dynamics can be found in the litera-
ture 95967 Reviewing the Eulerian formulation of
a continua problem, let’s assume an arbitrary solution
variable ¢. The relation between the material and the
spatial time derivatives is

D¢ _ 0¢

Dt At
where D¢/Dt is the material time derivative and
O¢ /0t the spatial time derivative of the solution vari-
able ¢. v is the velocity field. The difference makes
the convective term v - (V¢). It can be shown that
the Eulerian governing equations, namely the mass,

+v-(Vg) 1)

momentum and energy conservation equations follow
the general conservative form

Y, B
SV ®=5 )

where ® is a flux function and S is a source.
The operator split method splits Eq. (2) into two
equations, namely a Lagrangian step, Eq. (3) and an

- advective step, Eq. (4). These equations are solved

sequentially. The solution of Eq. (3), which is ad-
vanced in time, is used. In Eq. (4) the first term of
left-hand side is a dummy value, since it’s solved by
keeping the time stopped.
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Equation (3) is the so-called Lagrangian step. So,
the mass, momentum and energy conservation are
solved in this step

dp

E_O (5)
Opv

Oe

where p is the density of the material, o is
the Cauchy stress, b is the body acceleration, e is
the internal emergy and D is the velocity strain.
These equations are solved in standard Lagrange hy-
drocodes, in explicit as well in implicit time integra-
tion. For impact problems the explicit time integra-
tion is more attractive because of its suitability to
parallel computing. No global stiffness matrix is nec-
essary to solved, making it easier to code.

4. Fluid Dynamics

4.1 Navier-Stokes Equations

The finite element method is widely and success-
fully applied also in fluid dynamics problems &:9):10),
Despite the advantages of the finite element in compu-
tational fluid dynamics, this study extends an existing
finite element hydrocode for solid dynamics. The gov-
erning equations are splitted in a Lagrangian step fol-
lowed by an Eulerian or advective step.. The first step
is done by using the finite element method while the

- Eulerian step is solved by the finite difference method.

The primitives variables of an incompressible vis-
cous fluid dynamic process are mainly given by fol-
lowing the Navier-Stokes equations, namely, the mo-
mentum equation and the incompressibility constrain
equation.
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v+ Vp = uV3v + pb (8)
V-v=0 9

where p is the fluid density, v is the velocity field, p is
the pressure, p is the dynamic viscosity and b is the

body acceleration. In a 2D problem with v7 = [u ],
Eq. (8) contains two equations
8u 8p u 62
T S, 1
(% p 6% 6’2
=+ = i 1
+8y [6x2+82 + pby (11)

4.2 Solving the Navier-Stokes Equations

A way of decoupling velocity and pressure is the
concept of a fractional step (or projection or pressure-
correction or Chorin’s) method. Although accuracy
might be lost, this method is widely applied due to the
relative ease of implementation and computational
performance.

A fractional step method splits the momentum
equation in _

pv = vV2v + pb (12)

po=—Vp (13)

The concept of the fractional method is carried out
in three steps: '
1. the calculation of an intermediate velocity (ne-
glecting pressure effects)
Pl =" 4 [1/\72'0” + pb] (14)
2. the calculation of the pressure by considering the
previously calculated intermediate velocity
Taking the divergence or curl (V-) of Eq. (13)
and considering the incompressibility constrain of
Eq. (9), the pressure Poisson equation is reached

V.ol = V.ot - i;fv Vp (15)
Vip =+ A7 [V vt (16)

3. the correction of the velocity by considering pres-
sure effects

ne1 AL

n+l _ v _ _vp
p

v (17

The first step of the fractional step method is solved
by using the explicit time integration. Different from
the implemented solver for solid analysis, the stress
in now calculated regarding the constitutive relation
of a Newtonian fluid. The fluid shear stress vector is
then calculated by

= / CBvdS (18)
Q

where the B is the strain-displacement matrix. C is
the constitutive tensor as

1 -1 0
C=p|-1 10 (19)
0 01

4.3 Discrete Poisson Equation
The pressure Poisson equation however is solved
globally.

[CTMFC 4 8] = 1 CTurt (20)
where M is the lamped mass matrix. C = V is

the gradient operator and CT = V- is divergence op-
erator. S is the pressure stabilization matrix recom-
mended by 11)12). Equation (20) yields to an equation
system of the type Ax=Db and can reach huge dimen-
sions, therefore an iterative solver is more appropriate
rather than a direct solver. Iterative solvers however
are beyond of this content. As experienced here, it is
just pointed out that an incomplete Cholesky conju-
gate gradient iterative solver works well.

5. Solid-Fluid Interaction

Mixture theories concept the treatment of more
than one material in an element, i.e. two materials
as shown in Fig. 1. The simplest mixture theory
have the assumption that the strain rate € is same for
all present materials in an element. So the stress rate
0., of material m is given by

Gm=Cp:é (21)

where C,,, is the constitutive tensor of material m.
The updated stress o7t by time n + 1 is then

o™l = o + GmAt (22)
The element mean stress "1 is then
nmat
_'n.+1 Z o'n+1¢m (23)

where nmat is the number of materials present in the
element and ¢,, is the element density function of
each material m.

The simplest mixture theory, also called the mean
strain rate mixture theory, is favored because of its
simplicity and robustness 1314, Here, we used it for
a solid-fluid interaction problem.

Slide Condition: By neglecting the shear compo-
nents of stress, we can simulate the slide condition.

M
?n-l-l — Z P;l;—i—l(ﬁm (24)
m=1

where P is the material pressure.

- 153 -



Fig. 1 Element containing 2 materials

6. EFEulerian Advective Step

Equation (4) is often called the advective, convec-
tive or Eulerian step. This represents the material
transport through the cells of the fixed Euler mesh.
In the operator splitting method Eqgs. (3) and (4) are
solved sequentially as illustrated in Fig. 2. In order
to extend existing traditional Lagrange finite element
programs to an Eulerian formulation in a convenient
way, practical-to-implement finite difference subrou-
tines have been focused here. In this hydrocode, a
monotonic, second order, cell-centered algorithm has
been programmed for cell-centered solution variables,
while a modification has been done for the momentum
advection, which is vertex-centered. In this case, the
vertex-centered momentum will be averaged to a cell-
centered momentum, which is advected with the same
algorithm for cell-centered variables. A final step is
required, namely to extrapolate the cell-centered re-
sults to a vertex-centered ones 19):16),17),

L

Eulerian
step

Lagrangian
step

Fig. 2 Eulerian step after Lagrangian step

After the Lagrangian step, the deformed mesh is re-
meshed to the original place easily by setting nodal co-
ordinates back. Here, it’s important to remember that
the deformed mesh is not allowed to have longer de-
formations than the element size. The Courant time
step control method must take care of this. Here the
second order Van Leer’s MUSCL 7) (monotone up-
wind schemes for conservation laws) method is im-
plemented. MUSCL method is a one-dimensional
transport algorithm. In logically meshes the one-
dimensional advection is carried out along the mesh
lines. Notice that advecting materials implies an auto-

matically movement of interface between materials.

7. Computational Results

Calculations carried out here assumes an de-
formable body and an incompressible fluid. At first
instance, present results try to show the quality of
the solid-fluid interaction rather than giving a quan-
titative validation which is planned as next. The
pressure-velocity exchange process while interacting
can be clearly appreciated on present computation
results. Material data, model geometry and simu-
lation information as well results are presented. In
all calculations the time step size is 0.00005 seconds.
Since material used here are almost incompressible,
the mass is conserved. Further, a finer mesh has been
selected for reducing interface diffusion.

7.1 Ring Falling onto Fluid

In the first computation, an elastic ring falls free
onto a fluid. A solid-fluid interaction simulation is
target by expecting elastic ring deformation due to
fluid pressure at contact surface as well fluid crater
formations due to the ring buoyancy. Material prop-
erties are shown in Table 1. As for the geometry of the

Table 1 Material data: ring-fluid

ring

Density [kg/m?] 500
Young modulus [MPa] 0.05
Poisson’s ratio [-] 0.30
fluid

Density [kg/m?] 1000
Dyn. viscosity [N.s/m?] 0.001

model as shown in Fig. 3, the model size is 1.5x1.0m.
The ring has an outer diameter of 0.25m and an inner
diameter of 0.15. The height of the fluid is 0.4m. For
simulating a certain impact velocity when the free-
falling ring reaches the fluid, an initial velocity of
0.2m/s down-wards has been added to the elastic ring.
The element division is 100x66. While the lower part
of the ring is supported by the fluid at impact, the
upper part bears a downward forcing due to gravity,
9.81m/s.. The result of this force combination forms
an oval shape. Thanks the elasticity of the ring it tries
to recover its initial shape as shown in the simulation
plots from 0.0 to 0.9 seconds in Fig. 6. Xiao and Yabe
18) published a similar simulation.

7.2 Bar in Fluid Flow

An at-the-bottom fixed elastic bar is loaded by a
fluid flow, inflow from the left side and outflow at the
right side as shown in Fig. 4. At calculation start
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Fig. 3 Ring Falling onto Fluid

the velocity is zero and it will increase from the in-
flow boundary. Inflow and outflow are computational
so handled that the volume fraction keep always 1.
When the fluid velocity reaches the bar, an bar bend-
ing is expected due to fluid pressure at left side of the
bar. Material properties are shown in Table 2. As

Table 2 Material data: bar-fluid

bar

Density [kg/m?] 1000
Young modulus [MPa] 5
Poisson’s ratio [-] 0.30
fluid

Density [kg/m>] 1000
Dyn. viscosity [N.s/m?] 0.001

for the geometry of the model as shown in Fig. 4,
the model size is 1.0x1.0m. The bar has a size of
0.1x0.8m. The element division is 50x50. No grav-
itational acceleration is added. The flow velocity is
0.2m/s from left to right. Simulation plots from 0.0
to 2.4 seconds are shown in Fig. 7.

7.3 Pontoon Falling onto Fluid

A pontoon-wise structure impacts a fluid surface
with an initial velocity simulating a certain height of
free fall. Results show here also a well simulated solid-
fluid interaction. At first the pontoon tries to displace
the fluid which intends to scape at the sides. How-
ever, the fluid pressure at pontoon bottom at certain
point tries to lift pontoon. The fluid at the sides oc-
cupy again the it initial place. The pontoon faces
bending-swingings throughout all simulation. Mate-
rial properties are shown in Table 3. As for the geom-
etry of the model as shown in Fig. 5, the model size
is 1.5x1.0m. The pontoon’s bottom has a length of
1.0m and a thickness of 0.08m. The side-walls have a

Fig. 4 Bar in Fluid Flow

Table 3 Material data: pontoon-fluid

pontoon

Density [kg/m?] 1500
Young modulus [MPa] 2
Poisson’s ratio |-] 0.30
fluid

Density [kg/m?] 1000

Dyn. viscosity [N.s/m?] 0.001

height of 0.4m and a thickness of 0.1m. The height of
the fluid is 0.5m. For simulating a certain impact ve-
locity when the free-falling ring reaches the fluid, an
initial velocity of 0.5m/s down-wards has been added
to the pontoon. The element division is 50x 34. While

(o)
®

2N

Fig. 5 Pontoon Falling onto Fluid

the lower part of the pontoon is supported by the fluid
at impact, the weight (acceleration also 9.81m/s) of
both side-walls bends the bottom. The simulation
plots from 0.0 to 1.8 seconds are shown in Fig. 8.
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Fig. 6 Ring falling onto fluid: Eulerian deformation analysis
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7 Bar in fluid flow: Eulerian deformation analysis
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Fig. 8 Pontoon falling onto fluid: Eulerian deformation analysis
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8. Conclusion

An Eulerian finite element method for simulating
solid-fluid interaction problems has been presented
here. Solid-fluid interaction tests with flexible or elas-
tic bodies have been selected rather than rigid bodies.
Interaction is well simulated as shown in the ring-
fluid, bar-fluid and pontoon-fluid calculations. Buoy-
ancy effects are also well simulated. In fact, calcu-
lations show promising results regarding the use of
simple mixture theory. A complete stress mixture is
carried out at each element rather than an interac-
tion algorithm is used. Worth to mention is the fact
that the computational framework has been adapted
to the existing explicit finite element method without
remarkable changes in code. This could encourage re-
searchers on extending their existing Eulerian codes
for further research on solid-fluid interaction with a
mixture theory.

Regarding accuracy, a much accurate interaction
process is reached with finer meshes, however the com-
putational cost can increase rapidly. It’s also not be
hidden that an Eulerian solid faces a meshing limita-
tion by regular-mesh solvers. Interesting also could
be simulations considering more of the advantages of
an Eulerian finite element approach. Problems like
large deformation with mesh distortion, contact, cre-
ation of new free-surfaces after material separation
are almost well overcome by using an Eulerian finite
element method.
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