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This paper describes the development of a depth averaged model of open channel
flows based on a generalized curvilinear coordinate system attached to the bottom
surface. The model was applied to simulate the water surface profile of flows over a
circular surface. An experiment was conducted in the laboratory to validate the model.
Good agreements in comparison between both steady and unsteady analysis results
with observation suggest that, the model can simulate flows in open channel with

highly curved channel bed.
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1. Introduction

In a chute spillway, the stability of the free
surface is strongly dependent on the geometry of
the approach channel as well as that of spillway.
If there is an abrupt drop at the end of channel’s
bed, a free overfall or a vertical fully aerated
drop occurs. This phenomenon has attracted
considerable attentions of investigators!23.4
since the pioneering work of Rouse® due to its
practical engineering use n simple
flow-measuring devices34 . But their approaches
could not be applied in case of an abrupt change
of channel's bed with shape,

accompanied with small discharge that cannot

circular

result in free overfall.

On the other hand, Dressler® derived a more
general set of one-dimensional shallow water
equations in which the effect of channel bed
curvature was included. Using Dressler’s
concepts, Sivakumaran”® has generalized the
derivation to a two-dimensional surface. Berger
and Carey%1® improved these formulations by
including the vorticity features to obtain more
general equations. These studies were based on
the procedure of asymptotic approximation
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proposed by Friedrichs!? and then extended by
Keller'?. However this approach is significant
only when the flow is sufficient shallow and
gradually varied. For this reason, these models
appear to be inapplicable for the case of highly
curved surface.

This deficiency can be overcome if the
fundamental equations are firstly transformed
into a new generalized curvilinear coordinates
system attached to the bottom, and then taking
integral to derive the more general form of
depth-averaged equations.

This paper is therefore devoted in filling this
gap, by developing a 1D mathematical model
based on depth-averaged equations with a
generalized curvilinear coordinate system
attached to the bottom surface. The derivation is
based on the assumption of shallow water and
neglecting the internal turbulent stresses with
exception that, the pressure distribution was
considered as a combination of hydrostatic
pressure and the effect of centrifugal force due to

the curvature of the channel’s bed.

The developed model was applied to calculate
the water surface profile in open channel
attached with circular surface at the end. To



verify the model, an experiment was conducted
to measure the water surface profile, where the
model results of both steady and unsteady
analysis were compared with the observation.

2. Open Channel Flows through a Circle
Surface

2.1 Experimental Setup

The experiments were conducted in an
open-channel main flume consisted of two
straight channels joined perpendicular to each
other by a step ‘A’ at the end as described in Fig
la. The flume was 135cm long, 10cm wide and
20cm deep, made of a steel frame with glass in
all side walls and bed which allowed the
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Fig. 1 Side view of the experimental facility

(All units are in centimeter)

convenience for visual observations.

In this study two detachable circular parts
with radius of 15 and 5 cm respectively were
used (Fig. 1b). These parts were made such that,
it is easily to be attached and detached to and
from the main flume at step ‘A’, without altering
the other parts of experiment facility to form a
circular channel bottom at the joint (Fig. 1c).
These parts (B and C) were purposely
constructed to investigate the effect of different
curvatures to flows. For simplicity of discussion,
from now onward, the curvature with 15cm and
5cm radius will be referred as “large case” and
“small case” respectively.

The water surface elevations were measured
by the ultrasonic sensor Keyence UD-500
accompanied with the receiver Keyence NR-2000
(Fig. 2). For each case the measurements were

Fig. 2 Side view of the experimental site
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Fig. 3 An example of water depth time
series at different location (T'C02)
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focused in the region with the curvature of the
bottom at four points 0° (point 1), 30° (point 2),
60° (point 3) and 90° (point 4) to the vertical
direction (Fig. 1d).

2.2 Experimental procedures

Water was drawn from a constant head tank
which is being filled by a turbine pump to ensure
the steady in-flow rate. The flow rate was
controlled by a control valve and discharge
measurements were carried out at the end of the
flume for different flow conditions.

For each case, two different discharge values
were investigated named TC-01 to TC-04. The
samples of time series results of water depth are
shown in Fig. 3. And the time-averaged values
with the flow conditions are listed in Table 1.

In this paper we focused on the steady features
of the water surface profile by choosing the
conditions with small discharge where unsteady
oscillations were not observed. Since large
oscillation starts when the discharge increases,
the unsteady characteristics will be investigated
in the next paper.

3. Governing Equation

Firstly, the new generalized curvilinear
coordinate is introduced. The coordinate system

is generated based on the bottom plane with two
axes (§ —77) attached to the plane and the other

axis (4’ ) is a straight line perpendicular to it
(Fig. 4).

In Fig. 4, n is the straight axis normal to
plane (xOz) or is identical with y -axis. The

surface is expressed mathematically by the
equation ¢(x,y,z0 and the derivatives of

spatial independent variables
( X,,%,,X;,YgsVysYeseow ) are denoted by the

following equations:

%= 1,8 =15, = €.8: =68, = SM1: — 6.1,
J J J
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Fig. 4 Curvilinear coordinates attached to
the bottom

where! X,y,z are the Cartesian coordinates,

subscripts indicate differentiation and the
transformation Jacobian (J) is defined as:

s ¢ ¢
J=n, n, n, 2

¢, 6. 6.

Using the assumption of constant-density,
shallow water and incompressible flows, the
continuity equation and Navier-Stokes equations
are transformed into the new generalized
curvilinear coordinate system. Taking integral
from bottom to free surface with respect to
¢ -axis imposing the kinematic boundary
condition, the depth-averaged equations are
derived as follows!3.19:

Continuity equation:

16h O0M O N
lon, oM N ®)
J, o o8EJ, onJ,
Momentum equation in £ -direction:
2 .A_l_ +i uMm +,_a_ M +L(M21"0i
o\ J, ) o9&\ J, on\ J, Jh

4 4 2~ ¢ h £
+ MNT, + NMT,%, + N I“OW)=T]—G’
_§:0+§,:0+§120 —a—]‘£d§— Tb:

g, e,

h
_gxonxo‘f_fyonyodb_ zonzoijﬁdéf (4)
Jo onidp



Table 1. Experimental conditions

_ Discharge Water depth (mm)
Experiment . ,
(litter/s) Point 1 | Point 2 Point 3 Point 4

Small case TC-01 0.385 9.47 6.72 4.46 3.05

TC -02 0.775 14.41 10.51 7.83 5.58

TC -03 0.699 15.53 8.35 4.31 3.23
Large case

TC-04 0.992 18.51 10.64 6.97 5.08

The expression for pressure term is derived
through the integration of momentum equation

ﬁ N + ﬁ UN 6 VN 1 (M F” in ¢ -direction neglecting the acceleration and
o\J,) o5 877 J h shear stress (eq. 6):

Momentum equation in 77 -direction:

h

h ¢ ¢ ¢ 3
+MNT,} + NMT,"_ + N rOW) TG" J.%dgz{lJUI‘O::+VUFOV§+UVFO§W+V 0””—64}2
0 0

(6)

_§x07x0+§_v077yo+§zonzo i]‘ﬁdg— 7
Jo oc Jp 2/, Neglecting transversal transport, then it
follows that:

+nl +
77,\'0 i]]v() ’70 a deé, (5) 1 ah a M
0 - = (7)
J, ot 6§ J
Where:
£,1n,¢ ¢ curvilinear coordinates o(M +i UM +—1—M21“ : —iG”
r: time ot o& Jh O,
h: the flow depth in ¢ -direction
U,V : contravariant components of velocity fxo +E2 5 . GR vt ®
vector; J _62 AT Y
J,: Jacobian at the bottom surface ° °
p: pressure
o density of water 4. Steady Analysis of Water Surface Profile
G*,G”,G* : contravariant components of
gravitational vector Using the system of equations (7-8), we can
7,77 ¢ contravariant components of shear analyze the water surface profile of the flow over
stress acting on  the bottom a cnjcular surface as depicted in figure 4.
respectively Consider the steady state, eqs. (7-8) can be recast
r,: Riemann-Christoffel =~ symbols  of as followingt
metric tensors expressed as: Continuity equation:
d M M
Lo o&' — T =0o—=const.=Q, &> M =0,J, 9)
Te="3g 287 ( " j (=129 i .
J
and or Uh=0,J, U= g(’h—" (10
M=Uh,N=Vh

Momentum equation:
(The subscript zero “0” is denoted for the

values right at the bottom plane)
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Substitute egs. (9), (10) into (11), after some
manipulations, the equation for water surface
profile can be obtained in the form of eq. (12):

dn_ fihE)

= (12)
g f,(h9)
with
§X0+§ dG £13
fih, &y ="—""" 3 aE W +G*h
§x0+§zo df"ié ¢ Ayl
20 220 927 \: T +21“05§ aF h

-0/ [d]g, +J r%}h 1027} (13)
and
Lo =l +e3 )65 + 02 (19

The common method of analysis including
singular point analysis!314 is applied to calculate
the water surface profile in both the upstream
and downstream direction from this point. The
singular point is defined as the point at which
both functions f,(h, &) and f,(A &) in equation

(12) are equal to zero.
The equations f,(h£)=0 and f,(hE)=0

express the quasi-normal depth line and critical
depth line respectively (Fig. 5).

Quasi-normal
Critical depth

Water sufrace
Bottom

Exp.

x(m)

Fig. 5 Illustration of computed water
surface with quasi-normal and
critical depth lines (TC-01)
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The water surface profile is derived from eq.
(12) by using fourth-order Runge-Kutta scheme
with the initial slope near the singular point
defined by the following equation:

2
REANE RN €A R NCAR:
dh 045 5h o0&, Ohlg oh|g
agls - A
oh|
(The subscript “s” refer to the derivatives at a

singular point.)

Figures 6 to 9 show the comparison of water
surface profile between the 1D model’s results
under steady state condition and the experiment
for TC-01 to TCO4.

It is observed from the figures that the
calculated results are in consistent with the
experimental data in both large and small cases.



Note that during the experiment, because of
limitation of sensors the measurements were
only focused in the vicinity of the circular
surface.
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Fig. 8 Steady water surface profile with
condition of TC-03
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Fig. 9 Steady water surface profile with
condition of TC-04

5. Numerical Method for Unsteady Analysis

In order to study the unsteady characteristics
of flows in the next stage of this study, we tried to
develop the numerical method for unsteady
analysis by applying the common method used in
the field of the numerical hydraulics.

For solving equations (7-8) numerically, the
two-point forward scheme was used for time
integration, on the other hand the First Upwind
scheme was employed for the convective term
based on cell-centered staggered grid (Fig. 10) for
spatial discretization (egs. 15-16).

- 852 -

O:mu O:h
POgOUy
i1 i i+1 g:

Illustration of staggered grid

Fig. 10

0.60

Exp.
Cal.

z (m)

0.50

Bottom

. 1 . .
1.00
x (m)

1 .
c.95

0.45 -
0.80 1.05 1.10

Fig.11 Water surface profile at equilibrium
state of TC-01
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Fig. 12 Water surface profile at equilibrium
state of TC-02

Continuity equation:

1
1 hi':/z —hapn 1M, _

M

AS

|

Momentum equation-

}:o (15

JOI+I/2 At J0i+1 JOi

M,-"+1 -M; i Ui+]/2Mi+a B Ui—l/ZM—Ii+b
At Ag Joi Joia
2 & ¢
+U; h,.l”ogfi =h,G;
(fjo +&5 )i - ¢ 2 ¢
2A§ [M' rofffi - M’.‘lrofgi—I]



L) ¢
+M[thlil/2 _Gi;;lhiz—l/z ]_ us (16)

2A¢ P ).
where:

0 if Um/z 20 b 0 if U,._l/2 >0
a = . , =

1 ifU,.+1/2<O 1 ifU,._l/2 <0

n Ul’i— + Ul'"

and UL, ===

The bottom shear stress was evaluated using
the following equation!3.14:

£
T ~ -
o f‘U}U = fleJu? an
Yol .
where f is the resistant coefficient. In this study,

since all walls were made of smooth glass, the
value of f=0.01 was used. ¢, iscovariant base

vector as shown in Fig. 4.
The model has been applied in estimating the
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Fig.13 Water surface profileat equilibrium
state of TC-03
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Fig.14 Water surface profile at equilibrium
state of TC-04

water surface profile of flows over a circular
surface Fig. 4, based on the flow conditions
identical with that of the experiments (Table 1).

The inflow discharge is given at the upstream
and the Neumann derivatives are provided at
the downstream end to complete the boundary
conditions.

In this paper, setting the constant discharge at
upstream end with constant initial depth, the
equilibrium state of flow was reached after
around 20 seconds. Then, comparisons were
made between the numerical and experimental
water surface profile as shown in Fig. 11 - 12 for
“small case” and Fig. 13 - 14 for “large case”. In
both cases, the good agreements can be observed
from the figures implying the ability of the model
in simulating the flows over a circular structure.

6. Conclusion

A simple method for computing the water
surface profile of flows over a circular structure
has been derived based on depth-averaged
equations in a coordinate system attached to the
bottom. The method was applied to calculate
water surface profiles for the flows over circular
structure. The experiment was conducted in the
laboratory and the results showed good
agreement with both the steady and unsteady
analysis results.

The use of the new generalized curvilinear
coordinate system during the integration process
allows us to investigate the flows over a very
steep channel bed or with highly curved bed,
which other model can not deal with.
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