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This paper investigates liquefaction induced Iateral spreading using a 2D Smoothed
particle hydrodynamics (SPH) based numerical method in the framework of fluid
dynamics. Owing to the fact that the induced displacement during lateral spread may
reach several meters and the shear strain develops till 100%, a method which is
essentially a Langrangian meshfree particle was developed to deal with large
displacement. By assuming the liquefied subsoil to behave as a viscous fluid during
earthquake shaking, a Bingham type model is used to model the liquefied soil. The
ability of the method is checked using results from shaking table experiments to
reproduce free surface shape, flow velocity and to investigate the relationship between
time history of flow velocity, liquefied soil thickness and surface ground slope.
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1. Introduction

Liquefaction of loose, saturated, cohesionless soils and other
granular material due to earthquake shaking constitute a major
source of damage to constructed facilities, For instance,
liquefaction induced lateral spreading represents a potential
source of distress to piles foundation, waterfront structures and
lifelines. During Niigata earthquake (1964) and Kobe earthquake
(1995), severe damages were inflicted to pile foundations and
waterfront structures.

Lateral spreads at the margins of Port and Rokko
Islands caused widespread seaward displacement of
caisson walls that severely disrupted port operations.
According to Doi and Hamada", the induced displacement
reached several meters in Ohgata area in Niigata city, where the
maximum displacement reached over 8 m.

Hence, in order to design structures being able to withstand
lateral spreading, the assessment of the induced displacement
forms the comerstone to any seismic based design method.

Numerical methods to assess post-liquefaction displacements
rely on our understanding of the mechanical behavior of the
liquefied soil during shaking. In this respect, undrained

monotonic shear tests, shaking table and centrifuge experiments
have revealed that the liquefied soil behave either as a solid or a
viscous fluid during the course of the Joading (Kawakami et al.?,
Towhata”, Yasuda®). Thus, many numerical methods were
developed by considering the liquefied soil either as a solid or a
fluid. For exampile, Aydans) used a FEM formulation to assess the
induced post-liquefaction displacement by assuming the soil as a
visco-elastic medium. Yasuda et al® proposed a simplified
procedure for the analysis of the permanent displacement using
the FEM by considering a reduction of the soil stiffness before
and after the occurrence of the liquefaction. Assuming the
liquefied soil as a Bingham fluid, Uzuoka” used the volume of
fluid method to predict both the flow process and lateral
spreading load. Using the same hypothesis for the liquefied soil,
Towhata et al® proposed a solution for the permanent
displacement on the basis of the minimum energy principle.
Using the CIP (Cubic Interpolated pseudopartcile) method,
Hadush et al” proposed a numerical method for liquefaction
induced lateral spreading analysis in the framework of fluid
dynamics and were able to simulate lateral spread of a liquefied
ground with an overlying non-liquefied layer.

Because induced displacements are large as reported from
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post-earthquake observations, grid based numerical methods such
as FEM face sometimes mesh distortion problem as it is difficult
to handle large deformation. In this case, special treatment of the
mesh is necessary to overcome numerical instability and this may
lead to time-consuming computation. Similarly, VOF based on a
staggered mesh needs special treatment to track moving boundary
and interface. Recently, Maeda and Sakai'® developed a
procedure for seepage failure analysis of granular ground using
smoothed particle hydrodynamics (SPH).

In this paper, the SPH is investigated in the framework of fluid
dynamics to assess ground displacements induced by lateral
spreading. The soil is considered as a Non-Newtonian fluid by
means of Bingham fluid model. Under this hypothesis, the soil is
capable of resisting any shear stress below the yield defined by
the residual undrained shear strength. The ability of the method to
reproduce free surface shape, time history of flow velocities and
its relation to liquefied soil thickness and surface ground slope is
investigated.

2. SPH formulation

The SPH is essentially a Lagrangian meshfree particle method,
where the continuous medium is represented by a set of particles
that follow the fluid motion and advect its physical quantities such
as mass and momentum. The SPH was originally developed to
deal with astrophysical problem and is nowadays applied to treat
a variety of problem including fluid flow and solid mechanics.

2.1 Governing equation
For a Newtonian incompressible fluid, the shear stress-shear

strain rate relationship can be expressed by the following
equation:

.ap
% = pe 1
Where 1 : Dynamic viscosity
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e :Deviatoric strain rate tensor.
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Where v : Velocity vector

The motion of an incompressible, uniform density fluid is
governed by the conservation of mass and momentum principles.
It is expressed by the following two equations.
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In Eq. (3) and (4), p is the density and g is the acceleration of

gravity. o “ is the total stress tensor which can be written as the
sum of an isotropic component p and a viscous component 7%.

o =—p5 41 5)

Substituting Eq. (5) into the momentum Eq. (4) leads to the
equation of motion expressed in the form of:
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Where: v = 1/ p represents the kinetic viscosity.

2.2 SPH formulation for Navier-Stockes equations

In SPH a function representing a physical quantity can be
written in an integral form as:

N .

F(x) = J'f(x')W(x- X mdx'x S L fx W (x=x,.0) ()
Q FER

h represents the smoothing length defining the influence domain

and W(x—x', k) the kemel function, which should satisfy the
following normalization condition:

j W(x—x', h)dx'=1 ®)
[$]

The derivative of the kemel function is expressed as:
N

Ve Y LSOV xR O)
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In this study, we adopted the quintic spline kernel function having
the following expression:

(B-5)° —6(2—5)° +15(1—-5)° if0<s<l

NS S 1<
W h) =ay (3-5)" —6(2-5) ifl<s<2
GB-s) if2<s<3

0 ifs>3

(10)

Where # is the distance between the particles, s is equal to 774 and
op is a normalization constant having the values of 1/1204,
7/4787) and 3/359n/’ in one, two and three-dimensional space
respectively. In this study, the smoothing length 4 is taken as
1.1 times the initial spacing between particles.

The SPH formulation for Eq. (3) and Eq. (6) can be achieved
using Eq. (7) and Eq. (9). After transformation we get:

Dp, < s p Wy
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From Eq. (11), Roman subscripts j are used to denote the
particles identification; while Greek indices «ff are used to
express the coordinate system. Therefore, in Eq. (11) and (12),
W; represents the smoothing function of particle 7 evaluated at
particle /.

Using Eq. (5) for the total stress, Eq. (12) can be expressed as:

Dv? N oW,
=y (e T s
Dt j=1 pz pj axt
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In Eq. (13), the first part of the right hand side represents the SPH
approximation for the pressure term, while the second part
represents the viscous forces. The pressure terms are computed
using an appropriate equation of state which relates the
hydrostatic pressure to local densities. Monaghan'? suggested the
following equation of state while modeling free surface problem.

p=B(E) -1 (14
Po

Where yis a constant and it is taken equal to 7 in this study. py
represents the initial density while B is a parameter that sets a limit
for the maximum change of the density. In order to limit the
density fluctuation to an acceptable value of 1%, the value of the
sound speed should be appropriately chosen.

3. Extension of SPH to model lateral spread

In this study, the SPH method is formulated in the framework
of fluid dynamics. Hence, the liquefied soil is assumed to behave
as a viscous fluid during shaking.

In order to extend the SPH method to mode! lateral spread, an
appropriate viscosity coefficient should be defined for liquefied
soil. In this respect, viscosity of liquefied soil was investigated
using shaking table experiments Towhata'”, Hamada and
Wakamatsu', dropping ball method Miyajima et al.'), steel ball
pull-up test and viscometer Kawakami et al.”.According to the
obtained experimental results, it was found that the viscosity
coefficient of the liquefied soil decreases with increasing shear
strain rate. This suggests that the behavior of the liquefied soil
could be assumed as a non-Newtonian fluid. Based on the results
obtained from viscometer, Uzuoka” proposed a relationship
between the shear strain rate and the shear stress in the form of a
Bingham model. Accordingly, this study adopts the concept of a
Bingham model to extend the SPH method to a non Newtonian
fluid as it will be discussed in the next section.

3.1 SPH formulation for a non- Newtonian fluid

The general equation of the momentum in Eq. (13) is used to
model a Non-Newtonian fluid. The main idea consists in defining
an equivalent viscosity to be incorporated in the SPH
approximation of the viscous forces.

According to the concept of the Bingham model, the soil is
capable of resisting any shear below the yield stress represented
by the minimum undrained shear strength and then behaves like a
Newtonian fluid for shear stresses greater than the yield stress. A
Bingham type fluid has the following shear stress-shear strain rate
relationship.

T=TpntHg 7 (15)
Where T y,represents the minimum undrained shear strength and
U its viscosity
If we define an equivalent viscosity in the form of Eq. (16), anon
Newtonian fluid can be modeled as a Newtonian type fluid.

Tmin (16)
Y

Her = Hp T

Where}/ is given by the second invariant of the deviatoric strain
rate tensor.

. 1.a,6.a/3
y= Ee e 17n

4. Numerical simulations

In this section, the SPH method previously described will be
validated using results obtained from lg shaking table
experiments. The first part of the numerical simulation attempts to
reproduce the final free surface shape and the velocity flow
obtained from a lateral spread experiment conducted by
Hamada et al'”. The second part of the numerical simulations
aims to investigate the relationship between the flow velocity with
respect to the soil thickness and the slope gradient, and find out
how the shape of the time history of the flow velocities do change
with the soil layer thickness.

4.1 Lateral spreading experiment

To investigate the characteristics of the ground movement
after the earthquake motion ceases, Hamada et al." conducted a
series of 1g shaking table experiments in which a model ground
with an initial plane surface was constructed in a rigid soil box.
The model has 3 m long, 1 m wide and 0.3 m high. The box was
vibrated in the lateral direction until a total liquefaction occurs,
and then lifted with a specific gradient using a hydraulic jack.
During the experiment the final shape of the free surface was
continuously monitored and the time history of the induced
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displacements at 3 different depths in the central section of the
box was measured. Different tests were performed by varying the
initial relative density and the inclination of the soil box. Figure 1
illustrates the experimental setup.

Targets for displacement
measurement

Unit: mm
15)

Fig. 1 Outline of the experimental setup

19 carried out numerical

In a previous study, Naili et al.
simulations to assess the time history of the induced displacement
at three different locations at the central cross section, and
compared the results with the experimental observations.

In this simulation, we attempt to reproduce the observed free
surface and flow velocity of the experiment in which the soil box
inclination & = 4.2%. To achieve this, the minimum undrained
shear strength and the viscosity coefficient constitute a
prerequisite. According to the experimental observation, the
displacement of the liquefied soil was triggered when the slope
reached an inclination & = 2%. Accordingly, the minimum
undrained shear strength 1, was computed at the middle of the
soil deposit as well as at the bottom. Moreover, taking into
account the experimental results on the characteristics of the
liquefied soil, the viscosity coefficient was varied from 0.01 Pa-s
to 10 Pas. The minimum undrained shear strength can be
assessed considering the equilibrium forces of a sloped ground
with an inclination & The resistant shear strength needed to
maintain the slope into equilibrium represents the minimum

undrained shear strength. This can be expressed

by 7, = ycos(0)sin(0) , where y is the saturated unit

weight of the soil equal to 1800 kN/m’® in this study and 4
represents the soil height at which 1, is assessed.

Table 1 bellow summarizes the numerical parameters used
during the simulations.

Table1 Numerical parameters used during simulations

Cases | Viscosity (Pa-s) Tmin (P2)
1 10 54
2 0.1 54
3 0.01 54
4 10.0 54
5 1.0 108

(1) Numerical setup

A total number of 2250 material particles uniformly distributed,
equally spanning the soil box were used to represent the model
ground with a surface gradient € = 4.2%. Particles with
Lennard-Jones potential'” were employed to represent a non slip
boundary conditions at the wall surface. Figure 2 shows the numerical
setup at the beginning of the calculation process.
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Fig.2 Initial condition at t= 0s.

(2) Simulations results

To satisfy the CFL (Courant-Fredrich-Levy) condition, a time
step At = 10™ s was adopted throughout the calculation process.
However, it was noticed that shortly after the start of the
computation, a sudden blowup of the particles occurred in the
calculation domain. To overcome this numerical instability, we
used the XSPH technique proposed by Monaghan'” where the
particles move according to Eq. (18).

dx, m
—_t =y —¢ — v W.
dt ! ;pj gy

vy =V Y

(18)

Where € is a constant in the range0 < & <1. This technique
states that each particle moves in a velocity closer to the average
velocity of the neighboring particles. By conducting several
simulations and comparing the simulated free surface shapes with
the observed one, a value of € equal to 0.5 seems to give
acceptable and comparable results as shown in figures 3 and 4.
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Fig.3 Final free surface shape att=12s.
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Fig. 4 Simulated free surface for case 1 and 5.

The simulated free surface for case 1 and 5 as seen in figure 4
reproduced clearly the trend of the observed free surface during
the experiment. By representing the vectors displacement of the
free surface, we notice that the upstream part subsided due to
gravity while the downstream heaved due to the volume transfer
from the upstream. The central part kept almost the same
configuration as the initial ground surface. Figure 5 shows the
current observed feature of the free surface in case 1.
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Fig.5 Vector displacement at the top of the free surface
for case 1.

Table 2 below summarizes the maximum flow velocities
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Fig. 6 Time history of flow velocity for casel.

Figure 6 depicts the time history of the flow velocity during
the first 2 s of the simulation at the central part of the soil
container at three different depths for case 1. The following
observations can be made:

e The simulated maximum flow velocity for case 1 is

smaller than the observed one during the experiment as
shown in Table 2.

e The velocities decrease slowly after the steady state is
reached and do not vanish as in the experiment. This is
due to the fact that the model does not take into
consideration the pore water pressure dissipation and the

recovery of the soil rigidity.
12
0.3 - 0.5s 1s 2s 4s 8s s
0.25 4
—_ 0.2 4
£ /
z /
£ 0.15 4
z
0.1 4
0.05 -
0 - -
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Displacement (m)

Fig. 7 Displacement distribution along the height at the central
cross section for cases 1 and 4.

0.3 - 05s 1s 25 4s 8s 128
observed during the experiment. ; /
0.25 1 J
Table2 Experimental observed maximum flow velocities' g™
Z0.15
Height | Maximum flow velocity T o
(em) (cms) 0.0
3 0.01 0 ‘ ‘
0 0.005 0.0t 0.015 002 0025 0.03 0035 0.04 0045
12 0.03 Displacement (m)
21 0.06 Fig. 8 Displacement distribution along the height at the central

cross section for case 5.
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Figures 7 and 8 show the displacement distribution along the
height at the central cross section of the liquefied layer for case 1,
4 and 5 respectively. It can be seen that the induced displacements
are insensitive to the yield viscosity coefficient. This can be
explained by the fact that the induced shear strain rate throughout
the simulation is smaller than 1/s, which according to Eq. (15)
gives almost the same values of the equivalent viscosity, and thus
same range of the induced displacement. However, the
displacements respond strongly to any change in the minimum
undrained shear strength, as in case 5 where the induced
displacements are half of the simulated one for cases 1 and 4.

In both cases 1 and 4, the induced shear strain is of the order
of 20% which is in the range of the observed value during
earthquake.

4. 2 Numerical simulation of flow velocity with respect to
surface slope gradient and liquefied layer thickness

In their investigation using shaking table test, Hamada and
Wakamatsu" conducted experiments to clarify the mechanism of
liquefaction-induced lateral spreading and find out the nature of
the liquefied soil. They also focus their research on predicting the
magnitude of the induced lateral displacements. They stated that
the liquefied soil behaves as a viscous fluid during shaking and as
a solid after the dissipation of the pore water pressure.
Accordingly, the Reynolds similitude law encountered in fluid
dynamics can be applied between models and actual grounds.

By running several experiments of a sloped ground model
with different layer thickness ranging between 15 and 38 cm and
surface gradient varying between 1 and 5% prepared in a soil box
of 3m long and 1 m wide, Hamada and Wakamatsu showed that
the velocity of the ground flow is proportional to the square root
of the layer thickness. By assuming a flow velocity distribution as
one fourth of a sine wave, they proposed a relationship for the
maximum velocity at the ground surface with respect to soil layer
thickness, ground slope and viscosity of the liquefied layer.

In this section, we do not intend to simulate the experiment
performed by Hamada and Wakamatsu, but rather use the
experimental setup described in section (4.1) to investigate
numerically the relationship between the shapes of the time
history of the flow velocity, the liquefied layer thickness and the
ground gradient slope.

We conducted numerical simulations using liquefied layer
thickness ranging from 16 cm to 50 cm with a ground gradient
slope of 3% and 5%. We attempt to focus on how the maximum
velocity and the required time to reach this maximum do very
with layer thickness and ground gradient slope.

(1) Numerical setup

Total 10 cases of simulations were performed considering a
liquefied ground model of thickness varying between 16cm and
50 em with a ground slope of 3% and 5% inside a soil box of a
3m length.

The Bingham model is taken as the constitutive law for the
liquefied ground considering a yield viscosity p of 1 Pass.

The minimum undrained shear strength was assessed for each
case at the middle of the soil layer. Figure 9 shows the computed
minimum undrained shear strength for each liquefied layer
thickness.
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Layer thickness (%)

Fig. 9 Minimum undrained shear stress versus layer thickness

(2) Simulations results

Numerical simulations showed that the maximum flow
velocity occurs within the first 2 s of the time calculation.
Accordingly, for better resolution, the time history of flow
velocity is plotted during this time span.

0.05 -
0.045 -
0.04 -
0.035 -
0.03 -
0.025 -
0.02 -
0.015 -
0.01 -
0.005 -

Flow velocity (m/s)

0.00 0.50 1.00 1.50 2.00 2.50
Time (s)

Fig. 10 Time history of flow velocity for slope gradient 6 =3%

Figures 10 and 11 depict the time history of the flow
velocities for a surface ground slope 6 equal to 3% and 5%
respectively.

It can be seen that the shape of the curve at its base widens
with decreasing liquefied soil thickness while the velocity flow
increases with increasing soil thickness. However, the time span
necessary to reach the maximum velocity is longer for shallow
liquefied soil layers.

Generally, it is observed that the induced maximum flow
velocity is larger for thick liquefied soil layer which is in
agreement with physical and experimental observations.
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Moreover, both graphs illustrate clearly that the peak of the
flow velocity for each curve lies on an envelope curve that decays
in an exponential way with increasing time.
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0.01 -
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0 : : ‘ : ‘
000 050 100 150 200 250

Time (s)

Fig. 11 Time history of flow velocity for slope gradient 6 = 5%

(3 Regression analysis

The results of the simulations showed that there is a
relationship between the maximum flow velocity and the
liquefied soil thickness.

A similar relationship exists also between the time required to
reach the maximum flow velocity and the liquefied layer
thickness. Figure 12 expresses this relationship for a slope
gradient 8 =3% and 5%.

. 8=3%
z 12 4 8=5%
> ——fitted (3%)
g 1 3 - - - fitted (5%)
© N
>
X 0.8 -
E
S 06 -
3]
2 ..
8 04+ T a
Q
£
£ 02
0 : : : : . ,

0 10 20 30 40 50 60
Layer thickness (cm)

Fig. 12 Time to reach maximum velocity versus liquefied
soil thickness

Regression analysis to express the relationship between the
time span needed to reach the maximum flow velocity and the
corresponding liquefied soil thickness was derived.

The best fit that expresses this relationship is given by Eq.
(19) and Eq. (20) respectively for slope gradient 6 = 3% and 8 =
5%.

T=10.22(H )™ (19)

T=1041(H)™"® (20)

In the same manner, the relationship between the maximum
flow velocities and the liquefied layer thickness is illustrated in
figure 13 for a slope gradient of 3% and 5%.
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Fig. 13 Flow velocity versus liquefied layer thickness

Similarly, regression analysis was performed to express the
relationship between the flow velocity and the square root of the
liquefied soil thickness. This relationship is given by Eq. (21).

vV =0.58H% 1)

(4) Time history of surface displacement

The time history of the induced displacement at the surface of
the liquefied layer was also assessed at the central cross section
for a slope gradient 6 = 3% and 5%. Figures 14 and 15 depict the
corresponding time history for each liquefied layer thickness.

—e—H=16cm
1 —=—H=20cm

4 . ——H=30cm
—e— H=38cm
1 —%—H=50cm

Displacement at the surface (cm)
N
o

0.06 ” 0.50 1.00 1.50 2.00 2.50
Time (s)
Fig. 14 Time history of the induced displacement for a slope
gradient 6 = 3%
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Displacement at the surface (cm)

0.00 0.50 1.00 1.50 2.00 2.50
Time (s)

Fig. 15 Time history of the induced displacement for a slope
gradient 6 = 5%

5. Conclusions

This paper investigates a Lagrangian mesh free particle
method using smoothed particle hydrodynamics for liquefaction
induced lateral spreading analysis.

Based on post earthquake observations and experimental
results, the liquefied soil is considered to behave as a viscous fluid
during earthquake shaking. A Bingham type constitutive model
was used throughout this study to simulate the behavior of the
liquefied soil. The proposed method was first checked to verify
results obtained from a shaking table experiment of a lateral
spread.

The simulated free surface shape fit with a certain degree of
confidence the observed one. Moreover, the general trend of the
free surface was clearly observed at the middle where the surface
kept almost the same inclination as in the initial configuration.
The soil subsided in the upstream and heaved in the downstream
due to volume transfer. The time history of the flow velocity
was also simulated at the middle cross section at three different
locations along the height. The amplitude of the flow velocities
was smaller than the observed one, and the flow velocity
decreases slowly than the experiment one. This is mainly due to
the nature of the constitutive law that does not take into account
pore water pressure dissipation and strength recovery.

The distribution of the displacement along the height at the
central cross section was also simulated and it was found that the
induced displacements are insensitive to the yield viscosity within
the simulated range, but sensitive to the minimum undrained
shear strength.

In the last part, we carried out numerical simulation to
investigate the relationship between the maximum flow velocity,
the liquefied soil thickness and the ground gradient slope. Based
on numerical results, we observed that the maximum flow
velocities increase with increasing layer thickness and slope
gradient. We also noticed that the shape of the time history

velocity curve at its base narrows with increasing layer thickness.
Moreover, the maximum peak velocities flows lay on a curve
representing the required time to reach the maximum velocity
with respect to the layer thickness.

The relationship between the required time for the flow
velocity to reach its maximum was expressed by a power type
function in term of liquefied layer thickness. We also expressed
the relationship between the flow velocity and the square root of
the liquefied layer thickness.

It is worth to mention that this study represents a contribution
to analyze liquefaction induced lateral spreading with Lagrangian
meshfree  particle method using smoothed particle
hydrodynamics. It is a promising tool able to handle large
displacements. However, it needs improvements to take into
account pore water pressure dissipation and strength recovery.
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